Articles | Volume 13, issue 1
https://doi.org/10.5194/esd-13-133-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-13-133-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric regional climate projections for the Baltic Sea region until 2100
National Centre for Climate Research (NCKF), Danish Meteorological Institute, Copenhagen, Denmark
Erik Kjellström
Research and Development Department, Swedish Meteorological and Hydrological Institute, Norrköping,
Sweden
Christian Dieterich
Research and Development Department, Swedish Meteorological and Hydrological Institute, Norrköping,
Sweden
deceased
Matthias Gröger
Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock,
Germany
Hans Eberhard Markus Meier
Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock,
Germany
Research and Development Department, Swedish Meteorological and Hydrological Institute, Norrköping,
Sweden
Related authors
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Earth Syst. Dynam., 16, 1169–1182, https://doi.org/10.5194/esd-16-1169-2025, https://doi.org/10.5194/esd-16-1169-2025, 2025
Short summary
Short summary
By compositing trends in multiple climate variables, this study presents emerging regimes that are relevant for solar energy applications. It is shown that the favourable conditions for exploiting solar energy are emerging during spring and early summer. The study also underscores the increasingly important role of clouds in regulating surface solar radiation as the aerosol concentrations are decreasing over Europe and the societal value of satellite-based climate monitoring.
Gustav Strandberg, August Thomasson, Lars Bärring, Erik Kjellström, Michael Sahlin, Renate Wilcke, and Grigory Nikulin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2002, https://doi.org/10.5194/egusphere-2025-2002, 2025
Short summary
Short summary
The need for information about climate change is ever increasing. Therefore, it is important to have knowledge about climate change, along with an understanding of the uncertainties of climate model ensembles. Here, climate change in Sweden and neighbouring countries and its relation to global warming is described. Global warming results in higher temperature, more warm days and fewer cold days. The local and global warming suggest that climate change in Sweden may currently be at its fastest.
José A. Jiménez, Gundula Winter, Antonio Bonaduce, Michael Depuydt, Giulia Galluccio, Bart van den Hurk, H. E. Markus Meier, Nadia Pinardi, Lavinia G. Pomarico, and Natalia Vazquez Riveiros
State Planet, 3-slre1, 3, https://doi.org/10.5194/sp-3-slre1-3-2024, https://doi.org/10.5194/sp-3-slre1-3-2024, 2024
Short summary
Short summary
The Knowledge Hub on Sea Level Rise (SLR) has done a scoping study involving stakeholders from government and academia to identify gaps and needs in SLR information, impacts, and policies across Europe. Gaps in regional SLR projections and uncertainties were found, while concerns were raised about shoreline erosion and emerging problems like saltwater intrusion and ineffective adaptation plans. The need for improved communication to make better decisions on SLR adaptation was highlighted.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023, https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
Short summary
The Baltic Earth Assessment Reports summarise the current state of knowledge on Earth system science in the Baltic Sea region. The 10 review articles focus on the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Some highlights of the results are presented here.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Changgui Lin, Erik Kjellström, Renate Anna Irma Wilcke, and Deliang Chen
Earth Syst. Dynam., 13, 1197–1214, https://doi.org/10.5194/esd-13-1197-2022, https://doi.org/10.5194/esd-13-1197-2022, 2022
Short summary
Short summary
This study endorses RCMs' added value on the driving GCMs in representing observed heat wave magnitudes. The future increase of heat wave magnitudes projected by GCMs is attenuated when downscaled by RCMs. Within the downscaling, uncertainties can be attributed almost equally to choice of RCMs and to the driving data associated with different GCMs. Uncertainties of GCMs in simulating heat wave magnitudes are transformed by RCMs in a complex manner rather than simply inherited.
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021, https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
Short summary
Dense blooms of cyanobacteria occur every summer in the Baltic Proper and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important role in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Stelios Myriokefalitakis, Matthias Gröger, Jenny Hieronymus, and Ralf Döscher
Ocean Sci., 16, 1183–1205, https://doi.org/10.5194/os-16-1183-2020, https://doi.org/10.5194/os-16-1183-2020, 2020
Short summary
Short summary
Global inorganic and organic nutrient deposition fields are coupled to PISCES to investigate their effect on ocean biogeochemistry. Pre-industrial deposition fluxes are lower compared to the present day, resulting in lower oceanic productivity. Future changes result in a modest decrease in the nutrients put into the global ocean. This work provides a first assessment of the atmospheric organic nutrients' contribution, highlighting the importance of their representation in biogeochemistry models.
Cited articles
Akhtar, N., Krug, A., Brauch, J., Arsouze, T., Dieterich, C., and Ahrens, B.:
European Marginal Seas in a regional atmosphere-ocean coupled model and
their impact on Vb-cyclones and associated precipitation, Clim. Dynam., 53, 5967–5984,
https://doi.org/10.1007/s00382-019-04906-x, 2019.
BACC Author Team: Assessment of Climate Change for the Baltic Sea
Basin, Regional Climate Studies, Springer Verlag, Berlin, Heidelberg, ISBN 978-3-540-72785-9, 2008.
BACC II Author Team: Second Assessment of Climate Change for the
Baltic Sea Basin, Regional Climate Studies, Springer Verlag, Berlin,
Heidelberg, ISBN 978-3-319-16005-4, 2015.
Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing
climate: Does short-term summer precipitation increase faster?, Geophys.
Res. Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015.
Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S., Schär, C., Vautard, R., Jerez, S., and Imecs, Z.: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate
models for Europe, Clim. Dynam., 49, 2665–2683, https://doi.org/10.1007/s00382-016-3471-2, 2017
Benestad, R. E.: A new global set of downscaled temperature scenarios, J. Climate, 24, 2080–2098, https://doi.org/10.1175/2010JCLI3687.1, 2011
Boé, J., Somot, S., Corre, L., and Nabat, P.: Large discrepancies in summer
climate change over Europe as projected by global and regional climate
models: causes and consequences, Clim. Dynam., 54, 2981–3002, https://doi.org/10.1007/s00382-020-05153-1, 2020.
Buser, C. M., Künsch, H. R., and Schär, C.: Bayesian multi-model
projections of climate: generalization and application to ENSEMBLES results,
Clim. Res., 4, 227–241, 2010.
Christensen, J. H. and Christensen O. B.: Severe summertime flooding in
Europe, Nature 421, 805–806, 2003.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model
projections of changes in European climate by the end of the century,
Climatic Change, 81, 7–30, 2007.
Christensen, O. B. and Kjellström, E.: Projections for Temperature,
Precipitation, Wind, and Snow in the Baltic Sea Region until 2100, Oxford Research Encyclopedia of Climate Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.695, 2018.
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W. T., Laprise, R., Magaña, Rueda, V., Mearns, L., Menéndez, C. G.,
Räisänen, J., Rinke, A., Sarr, A., and Whetton, P.: Regional Climate
Projections, in: Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press,
Cambridge, UK, 2007.
Christensen J. H., Kjellström E., Giorgi, F., Lenderink, G., and
Rummukainen, M.: Weight assignment in regional climate models, Clim. Res., 44,
179–194, 2010.
Christensen O. B., Kjellström E., and Zorita E.: Projected
Change–Atmosphere, in: Second Assessment
of Climate Change for the Baltic Sea Basin, Regional Climate Studies, edited by: The BACC II Author Team, 217–234, Springer, https://doi.org/10.1007/978-3-319-16006-1_11, 2015a.
Christensen, O. B., Yang, S., Boberg, F., Maule, C. F., Thejll, P., Olesen, M.,
Drews, M., Sørup, H. J. D., and Christensen, J. H.: Scalability of regional
climate change in Europe for high-end scenarios, Clim. Res., 64, 25–38,
https://doi.org/10.3354/CR01286, 2015b.
Christensen, J. H., Larsen, M. A. D., Christensen, O. B., Drews, M., and
Stendel, M.: Robustness of European climate projections from dynamical
downscaling, Clim. Dynam., 53, 4857–4869, https://doi.org/10.1007/s00382-019-04831-z, 2019.
Coppola, E., Nogherotto, R., Ciarlo, J. M., Giorgi, F., Somot, S., Nabat,
P., Corre, L., Christensen, O, B., Boberg, F., van Meijgaard, E., Aalbers,
E., Lenderink, G., Schwingshackl, C., Sandstad, M., Sillmann, J., Bülow,
K., Teichmann, C., Iles, C., Kadygrov, N., Vautard, R., Levavasseur, G.,
Sørland, S. L., Demory, M.-E., Kjellström, E., and Nikulin, G.:
Assessment of the European climate projections as simulated by the large
EURO-CORDEX regional climate model ensemble, J. Geophys. Res.-Atmos.,
126, e2019JD032356, https://doi.org/10.1029/2019JD032356, 2021.
Déqué, M., Somot, S., Sanchez-Gomez, E., Goodess, C. M., Jacob, D.,
Lenderink, G., and Christensen O. B.: The spread amongst ENSEMBLES regional
scenarios: regional climate models, driving general circulation models and
interannual variability, Clim. Dynam., 38, 951–964, 2012.
Dieterich, C., Wang, S., Schimanke, S., Gröger, M., Klein, B, Hordoir,
R., Samuelsson, P., Liu, Y., Axell, L., Höglund, A., and Meier, H. E.
M.: Surface heat budget over the North Sea in climate change simulations,
Atmosphere, 10, 272, https://doi.org/10.3390/atmos10050272,
2019.
Donat, M. G., Leckebusch, G. C., Wild, S., and Ulbrich, U.: Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model simulations, Nat. Hazards Earth Syst. Sci., 11, 1351–1370, https://doi.org/10.5194/nhess-11-1351-2011, 2011.
Dosio, A.: Projections of climate change indices of temperature and
precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX
regional climate models, J. Geophys. Res.-Atmos., 121, 5488–5511,
https://doi.org/10.1002/2015JD024411, 2016.
Döscher, R., Willén, U., Jones, C., Rutgersson, A., Meier, H. E. M.,
Hansson, U., and Graham, L. P.: The development of the regional coupled
ocean–atmosphere model RCAO, Boreal Environ. Res., 7, 183–192,
2002.
DKRZ: EURO-CORDEX data archive, available at, e.g., http://esgf-data.dkrz.de, last access: 14 January 2022.
Dutheil, C., Meier, H. E. M, Gröger, M., and Börgel, F.: Understanding
past and future sea surface temperature trends in the Baltic Sea, Clim. Dynam., https://doi.org/10.1007/s00382-021-06084-1, 2021.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Feser, F., Weisse, R., and von Storch, H.: Multi-decadal atmospheric modeling
for Europe yields multipurpose data, EOS Trans., 82, 305–310, 2001.
Gao, Y., Chen, F., and Jiang Y.: Evaluation of a convection-permitting
modeling of precipitation over the Tibetan Plateau and its infuences on the
simulation of snow-cover fraction, J. Hydrometeorol., 21, 1531–1548, https://doi.org/10.1175/jhm-d-19-0277.1, 2020.
Giorgi, F. and Gao X.-J.: Regional earth system modeling: Review and future
directions, Atmospheric and Oceanic Science Letters, 11, 189–197, 2018.
Giorgi, F., Jones, C., and Asrar G. R.: Addressing climate information needs
at the regional level: the CORDEX framework, WMO Bull., 58, 175–183, 2006.
Graham, L. P., Chen, D., Christensen, O. B., Kjellström, E., Krysanova,
V., Meier H. E. M., Radziejewski, M., Rockel, B., Ruosteenoja, K., and
Räisänen, J.: Projections of future climate change, in: Assessment of
Climate Change for the Baltic Sea Basin, The BACC Author Team, XXI,
473 pp., Springer, ISBN 978-3-540-72785-9, 2008.
Gröger, M., Dieterich, C., Meier, H. E. M., and Schimanke S.: Thermal air-sea coupling
in hindcast simulations for the North Sea and Baltic Sea on the NW European
shelf, Tellus A, 67, 26911, https://doi.org/10.3402/tellusa.v67.26911, 2015.
Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., and Meier,
H. E. M.: Summer hydrographic changes in the Baltic Sea, Kattegat and
Skagerrak projected in an ensemble of climate scenarios downscaled with a
coupled regional ocean–sea ice–atmosphere model, Clim. Dynam., 53, 5945–5966, https://doi.org/10.1007/s00382-019-04908-9, 2019.
Gröger, M., Dieterich, C., and Meier, H. E. M.: Is interactive air sea
coupling relevant for simulating the future climate of Europe?, Clim. Dynam., 56, 491–514, https://doi.org/10.1007/s00382-020-05489-8, 2021a.
Gröger, M., Dieterich, C., Haapala, J., Ho-Hagemann, H. T. M., Hagemann, S., Jakacki, J., May, W., Meier, H. E. M., Miller, P. A., Rutgersson, A., and Wu, L.: Coupled regional Earth system modeling in the Baltic Sea region, Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, 2021b.
Gustafsson, N., Nyberg, L., and Omstedt, A.: Coupling of a high-resolution
atmospheric model and an ocean model for the Baltic Sea, Mon. Weather
Rev., 126, 2822–2846, 1998.
Hagemann, S., Machenhauer, B., Jones, R., Christensen, O. B., Déqué,
M., and Vidale P. L.: Evaluation of water and energy budgets in regional climate
models applied over Europe, Clim. Dynam, 23, 547–567, 2004.
Hanel, M. and Buishand, A.: Analysis of precipitation extremes in an
ensemble of transient regional climate model simulations for the Rhine
basin, Clim. Dynam, 36, 1135–1153, 2011.
Held, I. and Soden, B: Robust response of the hydrological cycle to
global warming, J. Climate, 19, 5686–5699, 2006.
Ho-Hagemann, H. T. M., Gröger, M., Rockel, B., Zahn, M., Geyer, B., and Meier, H. E. M.:
Effects of air-sea coupling over the North Sea and the Baltic Sea on
simulated summer precipitation over Central Europe, Clim. Dynam., 49, 3851, https://doi.org/10.1007/s00382-017-3546-8, 2017.
IPCC Climate Change 2001: The Scientific Basis, Contribution from Working
Group I to the Third Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge, UK, 2001.
IPCC Climate Change 2007: The Physical Science Basis, edited by: Solomon, S., Qin, D.,
Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., Miller, H. L., and Chen, Z.,
Cambridge University Press, Cambridge, UK, 2007.
IPCC Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
1535 pp., 2013.
IPCC Climate Change 2021: The Physical Science Basis, Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University
Press, ISBN 978-92-9169-158-6, 2021.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A.,
Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and
Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for
European impact research, Reg. Environ. Change, 14, 563–578,
https://doi.org/10.1007/s10113-013-0499-2, 2014.
Kelemen, F. D., Primo, C., Feldmann, H., and Ahrens, B.: Added Value of
Atmosphere-Ocean Coupling in a Century-Long Regional Climate Simulation,
Atmosphere, 10, 537, https://doi.org/10.3390/atmos10090537,
2019.
Kendon, E., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., and
Senior, C. A.: Heavier summer downpours with climate change revealed by
weather forecast resolution model, Nat. Clim. Change, 4, 570–576,
https://doi.org/10.1038/nclimate2258, 2014.
Keuler, K., Radtke, K., Kotlarski, S., and Lüthi, D.: Regional climate
change over Europe in COSMO-CLM: Influence of emission scenario and driving
global model, Met. Z., 25, 121–136, https://doi.org/10.3929/ethz-b-000117030, 2016.
Kjellström, E.: Recent and future signatures of climate change in
Europe, Ambio, 33, 193–198, 2004.
Kjellström, E. and Lind, P.: Changes in the water budget in the Baltic
Sea drainage basin in future warmer climates as simulated by the regional
climate model RCA3, Boreal Environ. Res., 14, 114–124, 2009.
Kjellström, E. and Christensen, O. B.: Regional Climate Modelling for
the Baltic Sea Region, in: Climate of the Baltic Sea
region, edited by: von Storch, H., Oxford Research Encyclopedia of Climate Science, Oxford University
Press, USA, https://doi.org/10.1093/acrefore/9780190228620.013.700, 2020.
Kjellström, E. and Ruosteenoja, K.: Present-day and future
precipitation in the Baltic Sea region as simulated in a suite of regional
climate models, Climatic Change, 81, 281–291,
https://doi.org/10.1007/s10584-006-9219-y, 2007.
Kjellström, E., Bärring, L., Jacob, D., Jones, R., Lenderink, G., and Schär, C.: Modelling daily temperature extremes: Recent climate and
future changes over Europe, Climatic Change, 81, 249–265, 2007.
Kjellström, E., Nikulin, G., Hansson, U., Strandberg, G., and Ullerstig,
A.: 21st century changes in the European climate: uncertainties derived from
an ensemble of regional climate model simulations, Tellus A, 63, 24–40,
2011.
Kjellström, E., Thejll, P., Rummukainen, M., Christensen, J. H., Boberg,
F., Christensen, O. B., and Fox Maule, C.: Emerging regional climate change
signals for Europe under varying large-scale circulation conditions, Clim
Res., 56, 103–119, 2013.
Kjellström, E., Bärring, L., Nikulin, G., Nilsson, C., Persson, G.,
and Strandberg, G.: Production and use of regional climate model projections
– a Swedish perspective on building climate services, Climate Services,
2–3, 15–29, https://doi.org/10.1016/j.cliser.2016.06.004, 2016.
Kjellström, E., Nikulin, G., Strandberg, G., Christensen, O. B., Jacob, D., Keuler, K., Lenderink, G., van Meijgaard, E., Schär, C., Somot, S., Sørland, S. L., Teichmann, C., and Vautard, R.: European climate change at global mean temperature increases of 1.5 and 2 ∘C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models, Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, 2018.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kyselý, J., Gaál, L., Beranová, R., and Plavcová, E.:
Climate change scenarios of precipitation extremes in Central Europe from
ENSEMBLES regional climate models, Theor. Appl. Climatol, 104, 529–542, 2011.
Larsen, A. N., Gregersen, I. B., Christensen, O. B., Linde, J. J., and
Mikkelsen, P. S.: Potential future increase in extreme one-hour
precipitation events over Europe due to climate change, Water Sci. Tech.,
60, 2205–2216, 2009.
Lenderink, G. and van Meijgaard, E.: Linking increases in hourly precipitation
extremes to atmospheric temperature and moisture changes, Environ. Res. Lett.
5, 025208, https://doi.org/10.1088/1748-9326/5/2/025208, 2010.
Lenderink, G., Belušić, D., Fowler, H., Kjellström, E., Lind,
P., van Meijgaard, E., van Ulft, B., and de Vries, H.: Systematic increases
in the thermodynamic response of hourly precipitation extremes in an
idealized warming experiment with a convection-permitting climate model,
Environ. Res. Lett., 14, 074012, https://doi.org/10.1088/1748-9326/ab214a, 2019.
Lind, P. and Kjellström, E.: Temperature and precipitation changes in
Sweden; a wide range of model-based projections for the 21st century, SMHI
Reports Meteorology and Climatology, 113, ISSN 0347-2116, 2008.
Lind, P., Lindstedt, D., Kjellström, E., and Jones, C.: Spatial and
Temporal Characteristics of Summer Precipitation over Central Europe in a
Suite of High- Resolution Climate Models, J. Climate, 29, 3501–3518,
https://doi.org/10.1175/JCLI-D-15-0463.1, 2016
Lind, P., Belušić, D., Christensen, O. B., Dobler, A., Kjellström, E., Landgren, O., Lindstedt, D., Matte, D., Pedersen, R. A., Toivonen, E., and Wang, F. : Benefits and added value
of convection-permitting climate modeling over Fenno-Scandinavia, Clim. Dynam., 55, 1893–1912, https://doi.org/10.1007/s00382-020-05359-3, 2020.
Lindvall, J. and Svensson, G.: The diurnal temperature range in the CMIP5
models, Clim. Dynam, 44, 405–421, https://doi.org/10.1007/s00382-014-2144-2, 2015.
Meier, H. E. M., Höglund, A., Döscher, R., Andersson, H., Löptien,
U., and Kjellström, E.: Quality assessment of atmospheric surface fields over
the Baltic Sea from an ensemble of regional climate model simulations with
respect to ocean dynamics, Oceanologia, 53, 193–227, 2011.
Nakićenović, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., la Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Zhou, D.: Emission scenarios. A Special
Report of Working Group III of the Intergovernmental Panel on Climate
Change, Cambridge University Press, 599 pp., ISBN 92-9169-113-5, 2000.
Nikulin, G., Kjellström, E., Hansson, U., Jones, C., Strandberg, G., and
Ullerstig, A.: Evaluation and future projections of temperature,
precipitation and wind extremes over Europe in an ensemble of regional
climate simulations, Tellus A, 63, 41–55, 2011.
Nilsen, I. B., Hanssen-Bauer, I., Tveito, O. E., and Wong, W. K.: Projected
changes in days with zero crossings for Norway, Int. J. Climatol., 2021, 41,
2173–2188, https://doi.org/10.1002/joc.6913, 2021.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok,
K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Global
Environ. Chang., 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Prein, A. F., Gobiet, A., Truhetz, H., Keuler, K., Goergen, K., Teichmann,
C., Fox Maule, C., van Meijgaard, E., Déqué, M., Nikulin, G.,
Vautard, R., Colette, A., Kjellström, E., and Jacob, D.: Precipitation in
the EURO-CORDEX 0.11∘ and 0.44∘ simulations: high
resolution, high benefits?, Clim. Dynam., 46, 383–412, https://doi.org/10.1007/s00382-015-2589-y, 2015.
Primo, C., Kelemen, F. D., Feldmann, H., Akhtar, N., and Ahrens, B.: A regional atmosphere–ocean climate system model (CCLMv5.0clm7-NEMOv3.3-NEMOv3.6) over Europe including three marginal seas: on its stability and performance, Geosci. Model Dev., 12, 5077–5095, https://doi.org/10.5194/gmd-12-5077-2019, 2019.
Räisänen, J.: Probabilistic projections of temperature and
precipitation change for the period 2021–2050, in: Proc. Future Climate and
Renewable Energy: Impacts, Risks and Adaptation, 31 May–2 June 2010, Oslo,
78–79, 2010.
Räisänen, J. and Eklund, J.: 21st century changes in snow climate
in northern Europe: a high-resolution view from ENSEMBLES regional climate
models, Clim. Dynam., 38, 2575–2591, 2011.
Räisänen, J.: Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change, The Cryosphere, 15, 1677–1696, https://doi.org/10.5194/tc-15-1677-2021, 2021.
Ruosteenoja, K. and Räisänen, P.: Seasonal changes in solar
radiation and relative humidity in Europe in response to global warming, J.
Climate, 26, 2467–2481, https://doi.org/10.1175/JCLI-D-12-00007.1, 2013.
Samuelsson, P., Jones, C., Willén, U., Ullerstig, A., Gollvik, S.,
Hansson, U., Kjellström, E., Nikulin, G., and Wyser, K.: The Rossby Centre
Regional Climate Model RCA3: Model description and performance, Tellus A,
63, 4–23, 2011.
Schuler, D. V., Beldring, S., Førland, E. J., Roald, L. A., and
Engen-Skaugen, T.: Snow cover and snow water equivalent in Norway: current
conditions (1961–1990) and scenarios for the future (2071–2100), Met No
Report, no. 01/2006 Climate, Oslo, Norway, ISSN 1503-8025, 2006.
Sein, D. V, Gröger, M., Cabos, W., Alvarez, F., Hagemann, S., de la Vara,
A., Pinto, J. G., Izquierdo, A., Koldunov, N. V., Dvornikov, A. Y., Limareva,
N., Martinez, B., and Jacob, D.: Regionally coupled atmosphere – ocean –
marine biogeochemistry model ROM: 2. Studying the climate change signal in
the North Atlantic and Europe, J. Adv. Model. Earth Syst., 12, e2019MS001646, https://doi.org/10.1029/2019MS001646, 2020.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their
impacts on the natural physical environment, in: Managing the Risks of
Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field,
C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M.: A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change (IPCC), Cambridge University
Press, Cambridge, UK, and New York, NY, USA, 109–230, 2012.
Strandberg, G., Bärring, L., Hansson, U., Jansson, C., Jones, C.,
Kjellström, E., Kolax, M., Kupiainen, M., Nikulin, G., Samuelsson, P.,
Ullerstig, A., and Wang, S.: CORDEX scenarios for Europe from the Rossby
Centre regional climate model RCA4, Reports Meteorology and Climatology,
116, SMHI, SE-60176 Norrköping, Sverige, ISSN 0347-2116; 116, 2014.
Sutton, R. T., Dong, B., and Gregory, J. M.: Land/sea warming ratio in
response to climate change: IPCC AR4 model results and comparison with
observations, Geophys. Res. Lett., 34, L02701, https://doi.org/10.1029/2006GL028164, 2007.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tobin, I., Jerez, S., Vautard, R., Thais, F., Déqué, M., Kotlarski,
S., Fox Maule, C., van Meijgaard, E., Nikulin, G., Noël, T., Prein, A.,
and Teichmann, C..: Climate change impacts on the power generation potential
of a European mid-century wind farms scenario, Environ. Res. Lett., 11, 034013, https://doi.org/10.1088/1748-9326/11/3/034013, 2016.
van der Linden, P. and Mitchell, J. F. B.: ENSEMBLES: climate change
and its impacts: summary of research and results from the ENSEMBLES project,
Met Office, Hadley Centre, Exeter, UK, available at: https://ensembles-eu.metoffice.gov.uk/docs/Ensembles_final_report_Nov09.pdf (last access: 14 January 2022), 2009.
van Vuuren, D. P., Edmonds, J. A., Kainuma, M., Riahi, K., and Weyant, J.: A
special issue on the RCPs, Climatic Change 109, 1–4, 2011.
Vautard, R., Gobiet, A., Sobolowski, S., Kjellström, E., Stegehuis, A.,
Watkiss, P., Mendlik, T., Landgren, O., Nikulin, G., Teichmann, C., and
Jacob, D.: The European climate under a 2 ∘C global warming,
Environ. Res. Lett., 9, 034006, https://doi.org/10.1088/1748-9326/9/3/034006, 2014.
Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K.,
Coppola, E., Corre, L., van Meijgaard, E., Nogherotto, R., Sandstad, M.,
Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O. B., Ciarlo, J.
M., Demory, M.-E., Giorgi, F., Jacob, D., Jones, R. G., Keuler, K.,
Kjellström, E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann,
J., Solidoro, C., Sørland, S. L., Steger, C., Teichmann, C.,
Warrach-Sagi, K., and Wulfmeyer, V.: Evaluation of the large EURO-CORDEX
regional climate model ensemble, J. Geophys. Res., 126, e2019JD032344, https://doi.org/10.1029/2019JD032344, 2021.
Wang, S., Dieterich, C., Döscher, R., Höglund, A., Hordoir, R.,
Meier, H., Samuelsson, P., and Schimanke, S.: Development and evaluation of
a new regional coupled atmosphere ocean model in the North Sea and Baltic
Sea, Tellus A, 67, 24284, https://doi.org/10.3402/tellusa.v67.24284, 2015.
Wibig, J., Mauran, D., Benestad, R., Kjellström, E., Lorenz, P., and
Christensen, O. B.: Projected Change – Models and Methodology, edited by: The BACC
II Author Team, Second Assessment of Climate Change for the Baltic
Sea Basin, Regional Climate Studies, 189–216, Springer, available at: https://link.springer.com/chapter/10.1007/978-3-319-16006-1_10 (last access: 14 January 2022), 2015.
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate...
Special issue
Altmetrics
Final-revised paper
Preprint