Articles | Volume 12, issue 2
https://doi.org/10.5194/esd-12-709-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-709-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bayesian estimation of Earth's climate sensitivity and transient climate response from observational warming and heat content datasets
School of Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
B. B. Cael
Ocean Biogeosciences, National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
Related authors
Richard G. Williams, Philip Goodwin, Paulo Ceppi, Chris D. Jones, and Andrew MacDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-800, https://doi.org/10.5194/egusphere-2025-800, 2025
Short summary
Short summary
How the climate system responds when carbon emissions cease is an open question: some climate models reveal a slight warming, whereas most models reveal a slight cooling. Their climate response is affected by how the planet takes up heat and radiates heat back to space, and how the land and ocean sequester carbon from the atmosphere. A framework is developed to connect the temperature response of the climate models to competing and opposing-signed thermal and carbon contributions.
Philip Goodwin, Richard Williams, Paulo Ceppi, and B. B. Cael
EGUsphere, https://doi.org/10.5194/egusphere-2023-2307, https://doi.org/10.5194/egusphere-2023-2307, 2023
Preprint archived
Short summary
Short summary
Climate feedbacks are normally evaluated by considering the change over time for Earth's energy balance and surface temperatures in the climate system. However, we only have around 1 degree Celsius of temperature change to utilise. Here, climate feedbacks are instead evaluated from the change in latitude of Earth's energy balance and surface temperatures, where we have around 70 degrees Celsius of temperature change to utilise.
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Richard G. Williams, Philip Goodwin, Paulo Ceppi, Chris D. Jones, and Andrew MacDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-800, https://doi.org/10.5194/egusphere-2025-800, 2025
Short summary
Short summary
How the climate system responds when carbon emissions cease is an open question: some climate models reveal a slight warming, whereas most models reveal a slight cooling. Their climate response is affected by how the planet takes up heat and radiates heat back to space, and how the land and ocean sequester carbon from the atmosphere. A framework is developed to connect the temperature response of the climate models to competing and opposing-signed thermal and carbon contributions.
Philip Goodwin, Richard Williams, Paulo Ceppi, and B. B. Cael
EGUsphere, https://doi.org/10.5194/egusphere-2023-2307, https://doi.org/10.5194/egusphere-2023-2307, 2023
Preprint archived
Short summary
Short summary
Climate feedbacks are normally evaluated by considering the change over time for Earth's energy balance and surface temperatures in the climate system. However, we only have around 1 degree Celsius of temperature change to utilise. Here, climate feedbacks are instead evaluated from the change in latitude of Earth's energy balance and surface temperatures, where we have around 70 degrees Celsius of temperature change to utilise.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Cited articles
Andrews, T., Gregory, J. M., and Webb, M. J.:
The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models,
J. Climate,
28, 1630–1648, https://doi.org/10.1175/JCLI-D-14-00545.1, 2015.
Annan, J. D.:
Recent Developments in Bayesian Estimation of Climate Sensitivity,
Current Climate Change Reports,
1, 263–267, https://doi.org/10.1007/s40641-015-0023-5, 2015.
Annan, J. D. and Hargreaves, J. C.: Bayesian deconstruction of climate sensitivity estimates using simple models: implicit priors and the confusion of the inverse, Earth Syst. Dynam., 11, 347–356, https://doi.org/10.5194/esd-11-347-2020, 2020.
Bodman, R. W. and Jones, R. N.:
Bayesian estimation of climate sensitivity using observationally constrained simple climate models,
WIREs Clim. Change,
7, 461–473, https://doi.org/10.1002/wcc.397, 2016.
Cattell, R. B.:
The scree test for the number of factors,
Journal of Multivariate Behavioral Research
1, 245–276, 1966.
Cheng, L.: Global Ocean Heat Content estimate from 1940 to 2019 (v3, Monthly), available at: http://159.226.119.60/cheng/images_files/IAP_OHC_estimate_update.txt, last access: 10 October 2020.
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.:
Improved estimates of ocean heat content from 1960 to 2015,
Science Advances,
3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017.
Cowtan, K. and Way, R. G.:
Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends,
Q. J. Roy. Meteor. Soc.,
140, 1935–1944, https://doi.org/10.1002/qj.2297, 2014.
Draper, N. and Smith, H.:
Applied Regression Analysis, 2nd edn.,
John Wiley & Sons, Inc., New York, 1981.
Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.:
Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing,
Geophys. Res. Lett.,
43, 12614–12623, https://doi.org/10.1002/2016GL071930, 2016.
Global Carbon Project: Supplemental data of Global Carbon Budget 2018 (Version 1.0), Data set, Global Carbon Project, https://doi.org/10.18160/gcp-2018 (last access: 10 October 2020), 2018.
Goodwin, P.:
How historic simulation-observation discrepancy affects future warming projections in a very large model ensemble,
Clim. Dynam.,
47, 2219–2233, CLDY-D-15-00368R2, https://doi.org/10.1007/s00382-015-2960-z, 2016.
Goodwin, P.:
On the time evolution of climate sensitivity and future warming,
Earths Future,
6, EFT2466, https://doi.org/10.1029/2018EF000889, 2018.
Goodwin, P. and Cael, B. B.: WASP Earth System Model v3.0, March2021, https://doi.org/10.5281/zenodo.4639491, 2021.
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.:
A new method for diagnosing radiative forcing and climate sensitivity,
Geophys. Res. Lett.,
31, L03205, https://doi.org/10.1029/2003GL018747, 2004.
Gregory, J. M., Andrews, T., Good, P., Mauritsen, T., and Forster, P. M.:
Small global-mean cooling due to volcanic radiative forcing,
Clim. Dynam.,
47, 3979–3991, https://doi.org/10.1007/s00382-016-3055-1, 2016.
Gregory, J. M., Andrews, T., Ceppi, P., Mauritsen, T., and Webb, M. J.:
How accurately can the climate sensitivity to CO2 be estimated from historical climate change?,
Clim. Dynam.,
54, 129–157, https://doi.org/10.1007/s00382-019-04991-y, 2019.
IPCC:
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9781107415324, 1535 pp., 2013.
Jackson, D. A.:
Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches, Ecology,
74, 8, 2204–2214, 1993.
Jones, P. D. and Harpham, C.:
Estimation of the absolute surface air temperature of the Earth,
J. Geophys. Res.-Atmos.,
118, 3213–3217, https://doi.org/10.1002/jgrd.50359, 2013.
Jolliffe, I. T.:
Principal components in regression analysis. Principal component analysis,
Springer, New York, NY, 129–155, 1986.
Kennedy, J. J., Rayner, N. A., Atkinson, C. P., and Killick, R. E.:
An ensemble data set of sea-surface temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set,
J. Geophys. Res.-Atmos.,
124, 7719–7763, https://doi.org/10.1029/2018JD029867, 2019.
Knutti, R., Rugenstein, M. A. A., and Hegerl, G. C.:
Beyond equilibrium climate sensitivity,
Nat. Geosci.,
10, 727–736, https://doi.org/10.1038/NGEO3017, 2017.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M.:
World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010,
Geophys. Res. Lett.,
39, L10603, https://doi.org/10.1029/2012GL051106, 2012.
Lewis, N. and Curry, J. A.:
The implications for climate sensitivity of AR5 forcing and heat uptake estimates,
Clim. Dynam.,
45, 1009–1023, https://doi.org/10.1007/s00382-014-2342-y, 2014.
Marvel, K., Schmidt, G. A., Miller, R. L., and Nazarenko, L. S.:
Implications for climate sensitivity from the response to individual forcings,
Nat. Clim. Change,
6, 386–389, https://doi.org/10.1038/nclimate2888, 2015.
Met Office Hadley Centre: HadCRUT.5.0.0.0 Data Download, available at: https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.0.0/download.html, last access: 10 October 2020a.
Met Office Hadley Centre: HadSST.4.0 Data Download, available at: https://www.metoffice.gov.uk/hadobs/hadsst4/data/download.html, last access: 10 October 2020b.
Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson, I. R.:
An updated assessment of near-surface temperature change from 1850: the HadCRUT5 dataset,
J. Geophys. Res., 126, e2019JD032361, https://doi.org/10.1029/2019JD032361, 2021.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
National Oceanic and Atmospheric Administration: Global Ocean Heat Content, available at: https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/, last access: 10 October 2020.
Nicholls, Z. R. J., Meinshausen, M., Lewis, J., Gieseke, R., Dommenget, D., Dorheim, K., Fan, C.-S., Fuglestvedt, J. S., Gasser, T., Golüke, U., Goodwin, P., Hartin, C., Hope, A. P., Kriegler, E., Leach, N. J., Marchegiani, D., McBride, L. A., Quilcaille, Y., Rogelj, J., Salawitch, R. J., Samset, B. H., Sandstad, M., Shiklomanov, A. N., Skeie, R. B., Smith, C. J., Smith, S., Tanaka, K., Tsutsui, J., and Xie, Z.: Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response, Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, 2020.
Nijsse, F. J. M. M., Cox, P. M., and Williamson, M. S.: Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models, Earth Syst. Dynam., 11, 737–750, https://doi.org/10.5194/esd-11-737-2020, 2020.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Otto, A., Otto, F. E. L., Boucher, O., Church, J., Hegerl, G., Forster, P. M., Gillet, N. P., Gregory, J., Johnson, G. C., Knutti, R., Lewis, N., Lohmann, U., Marotzke, J.,Myhre, G., Shindell, D., Stevens, B., and Allen, M. R.:
Energy budget constraints on climate response,
Nat. Geosci.,
6, 415–416, https://doi.org/10.1038/ngeo1836, 2013.
Proistosescu, C. and Huybers, P. J.:
Slow climate mode reconciles historical and model-based estimates of climate sensitivity,
Science Advances,
3, e1602821, https://doi.org/10.1126/sciadv.1602821, 2017.
Rohling, E. J., Sluijs, A., Dijkstra, H. A., Köhler, P., van de Wal, R. S. W., von der Heydt, A. S., Beerling, D. J., Berger, A., Bijl, P. K., Crucifix, M., DeConto, R., Drijfhout, S. S., Fedorov, A., Foster, G. L., Ganopolski, A., Hansen, J., Hönisch, B., Hooghiemstra, H., Huber, M., Huybers, P., Knutti, R., Lea, D. W., Lourens, L. J., Lunt, D., Masson-Delmotte, V., Medina-Elizalde, M., Otto-Bliesner, B., Pagani, M., Pälike, H., Renssen, H., Royer, D. L., Siddall, M., Valdes, P., Zachos J. C., and Zeebe, R. E.:
Making sense of palaeoclimate sensitivity,
Nature,
491, 683–691, https://doi.org/10.1038/nature11574, 2012.
Rohling, E. J., Marino, G., Foster, G. L., Goodwin, P. A., von der Heydt, A. S., and Köhler, P.:
Comnparing climate sensitivity, past and present,
Annu. Rev. Mar. Sci.,
10, 261–288, https://doi.org/10.1146/annurev-marine-121916-063242, 2018.
Rugenstein, M., Bloch-Johnson, J., Gregory, J., Andrews, T., Mauritsen, T., Li, C., Frölicher, T. L., Paynter, D., Gokhan Danabasoglu, G., Yang, S., Dufresne, J.-L., Cao, L., Schmidt, G. A., Abe-Ouchi, A., Geoffroy, O., and Knutti, R.:
Equilibrium climate sensitivity estimated by equilibrating climate models,
Geophys. Res. Lett.,
47, e2019GL083898, https://doi.org/10.1029/2019GL083898, 2020.
Schwarz, G. E.:
Estimating the dimension of a model,
Ann. Stat.,
6, 461–464, 1978.
Senior, C. and Mitchell, J. F.:
The time-dependence of climate sensitivity,
Geophys. Res. Lett.,
27, 2685–2688, https://doi.org/10.1029/2000GL011373, 2000.
Sherwood, S., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L., Hausfather, Z., von der Heydt, A. S., Knutti, R., Mauritsen, T., Norris, J. R., Proitosescu, C., Rugenstein, M., Schmidt, G. A., Tokarska, K. B., and Zelinka, M. D.:
An assessment of Earth's climate sensitivity using multiple lines of evidence,
Rev. Geophys.,
58, e2019RG000678, https://doi.org/10.1029/2019RG000678, 2020.
Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M., and Myhre, G.: Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data, Earth Syst. Dynam., 9, 879–894, https://doi.org/10.5194/esd-9-879-2018, 2018.
Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A., and Regayre, L. A.: FAIR v1.3: a simple emissions-based impulse response and carbon cycle model, Geosci. Model Dev., 11, 2273–2297, https://doi.org/10.5194/gmd-11-2273-2018, 2018.
Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., Michou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O'Connor, F. M., Robertson, E., Wiltshire, A., Andrews, T., Hannay, C., Miller, R., Nazarenko, L., Kirkevåg, A., Olivié, D., Fiedler, S., Lewinschal, A., Mackallah, C., Dix, M., Pincus, R., and Forster, P. M.: Effective radiative forcing and adjustments in CMIP6 models, Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, 2020.
Tokarska, K. B., Hegerl, G. C., Schurer, A. P., Forster, P. M., and Marvel, K.:
Observational constraints on effective climate sensitivity from the historical period,
Environ. Res. Lett.,
15, 034043, https://doi.org/10.1088/1748-9326/ab738f, 2020.
Trenberth, K. E., Fasullo, J. T., and Balmaseda, M. A.:
Earth's Energy Imbalance,
J. Climate,
27, 3129–3144, https://doi.org/10.1175/JCLI-D-13-00294.1, 2014.
van der Ent, R. J. and Tuinenburg, O. A.: The residence time of water in the atmosphere revisited, Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017, 2017.
Short summary
Climate sensitivityis a key measure of how sensitive Earth's climate is to human release of greenhouse gasses, such as from fossil fuels. However, there is still uncertainty as to the value of climate sensitivity, in part because different climate feedbacks operate over multiple timescales. This study assesses hundreds of millions of climate simulations against historical observations to reduce uncertainty in climate sensitivity and future climate warming.
Climate sensitivityis a key measure of how sensitive Earth's climate is to human release of...
Altmetrics
Final-revised paper
Preprint