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Abstract. Future climate change projections, impacts, and mitigation targets are directly affected by how sensi-
tive Earth’s global mean surface temperature is to anthropogenic forcing, expressed via the climate sensitivity (S)
and transient climate response (TCR). However, the S and TCR are poorly constrained, in part because historic
observations and future climate projections consider the climate system under different response timescales with
potentially different climate feedback strengths. Here, we evaluate S and TCR by using historic observations
of surface warming, available since the mid-19th century, and ocean heat uptake, available since the mid-20th
century, to constrain a model with independent climate feedback components acting over multiple response
timescales. Adopting a Bayesian approach, our prior uses a constrained distribution for the instantaneous Planck
feedback combined with wide-ranging uniform distributions of the strengths of the fast feedbacks (acting over
several days) and multi-decadal feedbacks. We extract posterior distributions by applying likelihood functions
derived from different combinations of observational datasets. The resulting TCR distributions when using two
preferred combinations of historic datasets both find a TCR of 1.5 (1.3 to 1.8 at 5–95 % range) ◦C. We find the
posterior probability distribution for S for our preferred dataset combination evolves from S of 2.0 (1.6 to 2.5) ◦C
on a 20-year response timescale to S of 2.3 (1.4 to 6.4) ◦C on a 140-year response timescale, due to the impact
of multi-decadal feedbacks. Our results demonstrate how multi-decadal feedbacks allow a significantly higher
upper bound on S than historic observations are otherwise consistent with.

1 Introduction

A key goal in climate science is to evaluate how sensitive the
global mean temperature anomaly is, which is done via the
following equation:

λeff(t)= (Rtotal(t)−N (t))/1T (t), (1)

where both Rtotal and 1T are defined as zero at some prein-
dustrial state. The climate sensitivity at some time t , S(t)
in K, is then defined as the radiative forcing for a doubling of
CO2, R2×CO2 , divided by λeff(t),

S(t)=
R2×CO2

λeff(t)
=
R2×CO21T (t)
Rtotal(t)−N (t)

. (2)

S and λeff may be evaluated from estimates of historic ra-
diative forcing and observational constraints on 1T and N ;
see Eqs. (1) and (2). Note that Earth’s energy imbalance, N ,
can be observationally constrained as a time average through
reconstructing the heat content changes in the Earth system
dominated by the ocean (e.g. Cheng et al., 2017; Levitus
et al., 2012).

Many previous studies evaluating S from historical obser-
vational data and radiative forcing estimates (see Eq. 2) have
either calculated a single constant climate sensitivity (see
Annan, 2015; Annan and Hargreaves, 2020; Bodman and
Jones, 2016; Lewis and Curry, 2014; Sherwood et al., 2020;
Skeie et al., 2018; Otto et al., 2013; Nijsse et al., 2020) or
have evaluated S for specific historic periods (e.g. Tokarska
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Figure 1. Surface temperature and ocean heat content anomalies from 1955 from datasets and dataset-constrained simulations. (a) Historic
surface warming relative to the 1961–1990 average in the HadCRUT5 and HadCRUT5 (no infilling) surface temperature datasets (solid lines)
and posterior ensemble simulations (dashed lines show ensemble medians, and shading shows 95 % ensemble ranges) constrained by each
temperature dataset, along with the Cheng et al. ocean heat content dataset. (b) Ocean heat content (OHC) anomaly in the upper 700 m of the
global ocean in the NODC and Cheng et al. datasets (solid lines) and posterior ensemble simulations (dashed lines show ensemble medians,
and shading shows 95 % ensemble ranges) constrained by each OHC dataset along with the HadCRUT5 temperature dataset.

et al., 2020), acknowledging that the value for the specific
historical period may not apply for all timescales into the fu-
ture.

The assumption of a single constant S over time leads to
uncertainties arising from model inadequacy (Annan, 2015),
since climate sensitivity may not be constant with time or
across different response timescales (e.g. Rugenstein et al.,
2020; Rohling et al., 2012, 2018; Goodwin, 2018; Knutti
et al., 2017; Senior and Mitchell, 2000; Proistosescu and
Huybers, 2017). There is also the possibility that, at any
given time or timescale, the climate feedback may be dif-
ferent for different sources of radiative forcing, such as well-
mixed greenhouse gases and volcanic aerosols (e.g. Marvel
et al., 2015).

The aim here is to perform Bayesian probabilistic eval-
uations of both S and transient climate response (TCR
in K), using observational constraints on global surface tem-
perature and ocean heat content anomalies to constrain a
model framework that includes time-varying climate feed-
backs (Eqs. 1 and 2). Our estimates of S and TCR are inde-
pendent of simulated warming responses in complex climate
models (in contrast to estimates utilizing complex model out-
put via emergent constraints, e.g. Nijsse et al., 2020).

We utilize a numerical model that allows multiple climate
feedbacks to individually respond to radiative forcing over
different timescales (Goodwin, 2018), such that λeff varies
over time (Eqs. 1 and 2). This study considers the instanta-
neous Planck feedback and two further timescales of climate

feedback: a multiday feedback representing a selection of
fast climate processes, such as water vapour and clouds, and
a multi-decadal climate feedback representing slower pro-
cesses, such as the surface warming pattern effect. Gener-
ating a prior model ensemble with varying fast and multi-
decadal climate feedback strengths, we extract three pos-
terior ensembles using a Bayesian comparison to observa-
tional reconstructions. Each posterior ensemble applies a dif-
ferent combination of historic reconstructions of global sur-
face temperature anomaly (either HadCRUT5 or HadCRUT5
without statistical infilling of geographically absent data,
hereafter HadCRUT5 (no infill); Morice et al., 2021; Fig. 1a)
and a reconstruction of the ocean heat content anomaly (ei-
ther Cheng et al., 2017, hereafter Cheng et al., or Levitus
et al., 2012, hereafter NODC; Fig. 1b). All of our poste-
rior ensembles are extracted using the additional constraints
from HadSST4 (Kennedy et al., 2019) and the Global Car-
bon Budget (le Quéré et al., 2018) for sea surface temper-
ature and ocean carbon uptake anomalies, respectively (see
Supplement).

2 Model of surface warming from time-varying
climate feedback

Equation (1) considers surface warming via a single effective
climate feedback response to total radiative forcing, where
the effective climate feedback represents an aggregated re-
sponse to multiple climate feedbacks to multiple sources of
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radiative forcing. Here, surface warming is modelled as an
extended energy balance response to i sources of radiative
forcing by j climate feedbacks operating over different re-
sponse timescales (Goodwin, 2018),

1T (t)=
(

1−
N (t)
Rtotal(t)

)∑
i

[
Ri(t)

λPlanck+
∑
jλi,j (t)

]
. (3)

The j combinations of climate feedbacks processes con-
sidered here are as follows.

1. λfast is the combined fast feedbacks operating over re-
sponse timescales approximately linked to the residence
timescale of water vapour in the atmosphere (van der
Ent and Tuinenberg, 2017), including clouds, water
vapour-lapse rate, snow and sea ice surface albedo.

2. λmulti-decadal is the combined feedbacks operating over
a multi-decadal timescale that may, for example, be
linked to a surface warming pattern adjustment (e.g. An-
drews et al., 2015).

Note that slow climate feedbacks with timescales longer
than multi-decadal are not explored here, since the historical
records of temperature and heat content changes do not ex-
tend long enough to offer a reliable constraint on processes
acting on such long timescales. In addition, the snow and
ice albedo feedback has a timescale longer than the atmo-
spheric water vapour residence timescale but is included in
λfast here as the snow and sea ice timescale responds signifi-
cantly faster than multi-decadal timescales. The sign conven-
tion adopted has positive overall λeff, such that negative λfast
and λmulti-decadal are amplifying.

The Warming Acidification and Sea level Projector
(WASP) model starts simulations at 1700 CE by default (e.g.
Goodwin, 2018), with different sources of radiative forcing
defined from some time after that date. While the observa-
tional constraints used in this study start in 1850 CE, the
model state in 1850 is affected by radiative forcing received
prior to that date. Therefore, this study imposes radiative
forcing on the WASP model prior to 1850. The i sources of
radiative forcing used in Eq. (3) are as follows:

1. atmospheric CO2 forcing, calculated from CO2 concen-
trations using RCO2 = aCO21 lnCO2, following IPCC
(2013);

2. combined forcing from other well-mixed greenhouse
gases, RWMGHG, including methane, nitrous oxides in-
dividually calculated from concentrations following Et-
minan et al. (2016) (see Supplement), and halocarbons
following IPCC (2013);

3. combined direct and indirect anthropogenic aerosol
forcing and linked annual aerosol emission rates (Myhre
et al., 2013; Smith et al., 2018, see Supplement);

4. volcanic aerosol radiative forcing, calculated after 1850
from volcanic aerosol optical depth (AOD) using
Rvolcanic=−(19± 0.5)AOD (Gregory et al., 2016) and
before 1850 from the global radiative forcing time series
used in the Reduced Complexity Model Intercompar-
ison Project (RCMIP) phase 1 (Nicholls et al., 2020),
with identical relative uncertainty imposed both pre-
and post-1850;

5. solar forcing;

6. internal variability in Earth’s energy imbalance, im-
posed using AR1 noise with coefficients chosen to ap-
proximate the properties of monthly and yearly average
noise from Trenberth et al. (2014).

The equations WASP uses to evolve climate feedback over
time are presented in Goodwin (2018) and discussed here in
the Supplement. Briefly, when radiative forcing from source i
is not increasing in magnitude between times t − δt and t ,
|Ri(t)| ≤ |Ri(t − δt)|, the j th combination of climate feed-
back processes evolves according to the following equation
(see Supplement):

λi,j (t)= λi,j (t − δt)+
(
λ

equil
j − λi,j (t − δt)

)
·

(
1− exp

(
−δt

τj

))
. (4)

However, when radiative forcing from source i is increas-
ing in magnitude, |Ri(t+δt)|> |Ri(t)|, climate feedback λi,j
evolves from t to t + δt according to the following equation
(see Supplement):

λi,j (t)=
∣∣∣∣Ri(t − δt)Ri(t)

∣∣∣∣(λi,j (t − δt)+
(
λ

equil
j − λi,j (t − δt)

)
·

(
1− exp

(
−δt

τj

)))
. (5)

Thus, from Eqs. (3)–(5), any additional radiative forcing
acts instantaneously at the Planck feedback in the first time
step it is applied and then evolves over the e-folding re-
sponse timescales τj towards the equilibrium climate feed-
back: λequilibrium= λPlanck+ λ

equil
fast + λ

equil
multi-decadal. Figure S7

in the Supplement shows how climate feedback evolves
over time in response to an idealized radiative forcing us-
ing Eqs. (4) and (5). Since Eq. (5) is applied separately for
each of the i sources of radiative forcing, the framework used
here allows different values of climate feedback at any point
in time for each source of radiative forcing.

This model of climate feedbacks responding to imposed
radiative forcing over multiple response timescales, Eqs. (3)–
(5), produces a time-evolving effective climate feedback,
Eq. (1), and time-evolving climate sensitivity, Eq. (2), in re-
sponse to a prescribed forcing scenario. Here, the transient
climate response, TCR, is calculated as the 20-year average
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warming centred at the year of CO2 doubling for a scenario
with a 1 %yr−1 rise in CO2 and no other forcing (hereafter,
the 1pctCO2 scenario).

3 Generation of the prior and posterior ensembles

We generate probabilistic prior and posterior model ensem-
bles with varied model input parameters using Bayes’ theo-
rem. The joint posterior probability that the climate system
parameters X have a specific set of values X′ given back-
ground information I and observations of the climate system
{obs}, prob(X =X′|{obs},I ), is expressed using Bayes’ the-
orem,

prob(X =X′|{obs},I )∝ prob({obs}|X =X′,I )

· prob(X =X′|I ), (6)

where

1. prob(X =X′|I ) is the joint prior probability that X =
X′ for climate system parameter values (Table S1 in the
Supplement; solid lines in Fig. 2 for λPlanck, λequil

fast , and
λ

equil
multi-decadal);

2. prob({obs}|X =X′,I ) is known as the likelihood func-
tion and expresses the probability of obtaining the ob-
servations in {obs} for the given joint parameter values
X =X′ and background information I . Here, this is es-
timated from where the simulated model observables
for X =X′ and I lie on the probability distributions for
the real observables (Table S2 in the Supplement).

Here, we use large ensemble simulations of the WASP
model (Goodwin, 2016), adopting the updated version of
Goodwin (2018) with explicitly time-evolving climate feed-
backs (Eqs. 3–5; see Supplement). This version of WASP
does not contain a single parameter for S or λeff at time t ;
see Eqs. (1) and (2). Instead, the values of S and λeff emerge
over time in the model in response to the forcing scenario
from a combination of multiple prescribed climate system
parameters (Eqs. 3–5). The WASP model contains a five-
box representation of ocean heat and carbon uptake, with an
ocean circulation that is varied between ensemble members
but remains constant in time within each ensemble member
(Table S1).

We form a prior model ensemble where a total of 25 model
input parameters independently varied between simulations
(Table S1) to represent the prior climate system parame-
ter distribution X; see Eq. (6). Five of the input parameters
within X describe how climate feedback responds to an im-
posed radiative forcing (λPlanck, λequil

fast , λequil
multi-decadal, τFast, and

τSlow) with a sixth input parameter (the radiative forcing co-
efficient for CO2) converting this climate feedback to climate
sensitivity (Table S1, Eq. 2). The λPlanck parameter is ran-
domly varied from normal distribution (Fig. 2a, solid black

line), while the λequil
fast and λequil

multi-decadal parameters are ran-
domly varied from uniform distributions (Fig. 2b and c, solid
black lines), reflecting the degree of assumed prior knowl-
edge of their values (Supplement).

A further 13 of the 25 model input parameters that var-
ied within X relate to uncertainty in historic radiative forc-
ing (Table S1). The WASP model is historically forced un-
til 2014 and follows ssp585 thereafter (O’Neill et al., 2016)
with atmospheric concentrations of greenhouse gases, direct
and indirect radiative forcing from anthropogenic aerosols,
radiative forcing from volcanic aerosols, and solar forcing
(see Supplement). The radiative forcing from each compo-
nent (aside from solar forcing) is varied between simulations
in the prior ensemble (Table S1) to approximate historic un-
certainty (Myhre et al., 2013; Etminan et al., 2016; Smith
et al., 2018; Gregory et al., 2016).

Normal input distributions (Table S1) are used to repre-
sent historic uncertainty in the radiative forcing sensitivity
to greenhouse gas concentrations (Myhre et al., 2013; Et-
minan et al., 2016), the direct radiative forcing sensitivity
to anthropogenic aerosol emissions for six separate aerosol
types (Myhre et al., 2013), and the radiative forcing sensitiv-
ity to volcanic aerosol optical depth (Gregory et al., 2016).
However, a skew normal input distribution is used to repre-
sent historic uncertainty in the indirect radiative forcing from
anthropogenic aerosols (Table S1) since there is a long tail
of possibly strongly negative radiative forcing from this ef-
fect (IPCC, 2013). The input distributions of direct and indi-
rect aerosol radiative forcing coefficients together produce a
broad and skewed prior distribution of total recent radiative
forcing from aerosols (Fig. 3, solid and dotted black lines,
shown for year 2014) with a similar mean to the best estimate
of recent aerosol radiative forcing from IPCC (2013) Assess-
ment Report 5 (Fig. 3, compare black lines to light blue lines,
with the IPCC AR5 estimate shown for year 2011).

We generate three prior ensembles, containing from
2.1× 109 to 4.6× 109 ensemble members. In each prior en-
semble, the 25 input parameters independently varied such
that the relative frequency distributions of each input pa-
rameter are set to the assumed prior probability distribu-
tion, prob(X =X′|I ) in Eq. (6) (Table S1; Fig. 2 solid lines
for λPlanck, λequil

fast , and λequil
multi-decadal). Observational tests from

three combinations of historic datasets are then used to form
a likelihood function and extract a subset of the prior ensem-
ble simulations into the posterior ensembles (Table S2).

There are n= 12 observational constraints within {obs}
(Table S2). The probability of obtaining the kth observa-
tional constraint given X =X′ and I is calculated assuming
Gaussian uncertainty in the observable (e.g. Annan and Har-
greaves, 2020),

prob
(
{obs}k|X =X′,I

)
∝ e

−(µk−xk)2

2σ2
k , (7)

where µk and σk are the observational mean and standard de-
viation uncertainty of observable k (Table S2), and xk is the
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Figure 2. Prior and posterior probability densities for climate feedback terms: (a) the Planck climate feedback, (b) fast climate feedback,
and (c) multi-decadal climate feedback. Shown are the prior distributions (thick black lines) and posterior distributions when constrained by
different dataset combinations (dotted blue, red, and grey lines). Panel (d) shows a scatter plot of fast climate feedback and multi-decadal
climate feedback values in the posterior ensemble constrained by the HadCRUT5 and Cheng et al. datasets.

Figure 3. Recent radiative forcing from aerosols in model ensembles and estimates. Solid lines are frequency distributions from the prior
model ensembles (black) and posterior model ensembles constrained by different combinations of observational datasets (red, grey, and blue).
Also shown are 90 % ranges (dotted lines) and best estimates (circles) from IPCC AR5 (IPCC, 2013: light blue), an ensemble of 17 CMIP6
models analysed by Smith et al. (2020) (purple), and the prior and HadCRUT5 and Cheng et al. posterior model ensembles. For model
ensembles the best estimate is calculated from the model ensemble mean. The 90 % range represents the 5th to 95th percentile in the prior
and HadCRUT5 and Cheng et al. model ensembles and represents the mean± 1.645 standard deviations for the CMIP6 model ensemble. All
distributions are for the year 2014, except the IPCC AR5 estimate, which is for the year 2011.
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simulated value of the observable for X =X′ and I . To cal-
culate the overall probability of obtaining all n observational
constraints within obs given X =X′ and I , we multiply the
probabilities for all {obs}k,

prob
(
{obs}|X =X′,I

)
=

n∏
k=1

prob
(
{obs}k|X =X′,I

)
. (8)

Three different ensembles are generated using different
combinations of surface temperature (HadCRUT5 and Had-
CRUT5 (no infilling): Fig. 1a) and heat content (Cheng et al.
and NODC: Fig. 1b) datasets to construct the likelihood func-
tion that acts as a constraint on the posterior (Eq. 6). These
model ensembles are termed HadCRUT5 and Cheng et al.,
HadCRUT5 and NODC, and HadCRUT5 (no infilling) and
Cheng et al. (Table S2). The preferred combination of obser-
vational datasets is HadCRUT5 and Cheng et al., as these
represent the most up-to-date methodologies for their re-
spective temperature (Morice et al., 2021) and heat content
(Cheng et al., 2017) reconstructions. The other dataset com-
binations are included to assess the sensitivity of our method
to different heat content datasets (HadCRUT5 and NODC)
and the sensitivity of our findings to the statistical infilling of
missing data (HadCRUT5 (no infill) and Cheng et al.). It is
noted that most other temperature datasets now reconstruct
similar historic global mean temperature anomalies to Had-
CRUT5 (e.g. see Morice et al. 2021).

For each of the three posterior ensembles, correspond-
ing to different dataset combinations, the probability of a
prior simulation being included within the posterior ensem-
ble is proportional to prob({obs}|X =X′,I ); see Eq. (8).
A simulation is accepted into the posterior ensemble if the
value of prob({obs}|X =X′,I ), assessed using Eq. (8), is
greater than a number randomly drawn between 0 and some
number greater than or equal to the maximum value of
prob

(
{obs}|X =X′,I

)
achieved in that prior ensemble.

We adopt a normal prior distribution for λPlanck, informed
by Earth’s global mean surface temperature (Jones and
Harpham, 2013) and radiation budget (Trenberth et al., 2014)
(Fig. 2a, solid black line). We adopt uniform prior distribu-
tions of λequil

fast and λequil
multi-decadal (Fig. 2b and c solid black

lines), thus assuming that any value within the boundaries
is equally likely before we consider the observations, {obs}
(Eq. 6). Our boundaries for the uniform distributions of λequil

fast

and λequil
multi-decadal are set wide enough such that the poste-

rior distributions are not significantly affected by the bound-
aries (Fig. 2, red and blue) but are narrow enough such that
the problem is computationally tractable. The distribution for
λ

equil
multi-decadal is centred at 0, such that no prior assumption is

made as to whether multi-decadal feedbacks will amplify or
dampen future warming (Fig. 2).

4 Results

The three prior and posterior ensembles generated clearly
range in size: a total of 1764 simulations are accepted into
the HadCRUT5 and Cheng et al. posterior ensemble from
an initial prior ensemble of 4.6× 109 simulations, a total
of 2997 simulations are accepted into the HADCRUT5 and
NODC posterior ensemble from an initial prior ensemble
of 2.7× 109 simulations, and 9190 simulations are accepted
into the HadCRUT5 (no infill) and Cheng et al. posterior
ensemble from an initial prior ensemble of 2.1× 109 sim-
ulations. A smaller fraction of the prior simulations are ac-
cepted into the posterior ensembles that use likelihood func-
tion terms, prob({obs}k|X =X′,I ) in Eq. (7), with smaller
observational uncertainty, σk (Table S2).

The posterior distributions of climate feedback terms
are similar for both ensembles constrained by the Had-
CRUT5 dataset (HadCRUT5 and Cheng et al., and Had-
CRUT5 and NODC), revealing that the Planck feedback,
fast feedback, and multi-decadal feedback strengths are in-
sensitive to the choice of ocean heat content dataset used
within the likelihood function (Fig. 2a–c compare red and
grey). The Planck feedback has posterior distributions in
the range λPlanck= 3.3± 0.1 Wm−2 K−1 for both ensembles
(mean± standard deviation: Fig. 2a, red and grey).

A strong compensatory link between fast and multi-
decadal feedback strengths emerges in the posterior en-
sembles, with the HadCRUT5 and Cheng et al. en-
semble revealing a best fit relationship of λ

equil
fast =

−1.59λequil
multi-decadal− 2.51, with R2

= 0.92 (Fig. 2d). The
posterior distributions for fast and multi-decadal cli-
mate feedback strengths are bimodal in the HadCRUT5
and Cheng et al. and HadCRUT5 and NODC ensem-
bles (Fig. 2b and c, red and grey), corresponding to
one observation-consistent region with weaker amplifying
fast feedback (λequil

fast ∼−0.6 Wm−2) and strong amplifying
multi-decadal feedback (λequil

multi-decadal∼−1.7 Wm−2) and
another observation-consistent region with very strong am-
plifying fast feedback (λequil

fast ∼−2.2 Wm−2) and damping
multi-decadal feedback (λequil

multi-decadal∼+1 Wm−2) (Fig. 2d,
shown for the HadCRUT5 and Cheng et al. ensemble), not-
ing that the sign convention used implies amplifying feed-
back from negative λ. This bimodality, with an unfavoured
region around λequil

multi-decadal ∼ 0 (Fig. 2), is consistent with ef-
fective climate feedback changing over the historic period
(e.g. Gregory et al., 2019), since λequil

multi-decadal = 0 would cor-
respond with a constant value of λeff over the entire historic
period. The bimodality in the λequil

fast and λequil
multi-decadal pos-

terior distributions is not seen in the ensemble constrained
by the temperature reconstruction without statistical infilling
(HadCRUT5 (no infill) and Cheng et al.), which instead has
broader single-peak distributions (Fig. 2b and c blue).
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Figure 4. Climate sensitivity (S) from 10- to 140-year response timescales following a 4×CO2 forcing scenario constrained by different
combinations of observational reconstructions. Solid lines show the median, dashed lines and dark shading show the 66 % range (17th to
83rd percentiles), and dotted lines and light shading show the 95 % range (2.5th to 97.5th percentiles). Panels (a), (b), and (c) show results
from posterior model ensembles constrained by different dataset combinations, where red lines on panels (b) and (c) give a comparison to
HadCRUT5 and Cheng et al.

Figure 5. Probabilistic estimates of climate sensitivity (S) for different combinations of observational constraints over (a) a 20-year response
timescale, (b) a 50-year response timescale, and (c) a 140-year response timescale.

4.1 The climate sensitivity and transient climate
response

S is analysed by forcing the four posterior ensembles with an
instantaneous step-function quadrupling of atmospheric CO2
(hereafter, the 4×CO2 scenario) and applying Eq. (2) with

11-year averages. The value of S changes over time (Figs. 4
and 5) as the fast and multi-decadal climate feedbacks evolve
in response to the imposed radiative forcing (Eqs. 3–5).

For each combination of datasets used, S is best con-
strained from the historic observational reconstructions on

https://doi.org/10.5194/esd-12-709-2021 Earth Syst. Dynam., 12, 709–723, 2021
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Table 1. Climate sensitivity (S, K) and transient climate response (TCR, K) best estimate (median) and ranges (where 66 % confidence
interval represents the 17th to 83rd percentile range, 90 % confidence interval represents 5th to 95th percentile range, and 95 % confidence
interval represents 2.5th to 97.5th percentile range) under different observational constraints for surface warming and heat uptake. All
ensembles use the standard prior distributions (Table S1) except “HadCRUT5 and Cheng et al. (with alternative multi-decadal climate
feedback prior)”, which uses the prior for λmulti-decadal from Sherwood et al. (2020) (Fig. 8c, purple) and standard priors for all other terms.

Climate sensitivity metric HadCRUT5 and
Cheng et al.

HadCRUT5 and NODC HadCRUT5
(no infilling)
and Cheng et al.

HadCRUT5 and Cheng
et al. (with alternative
multi-decadal climate
feedback prior)

S on 20-year timescale (K) Median: 2.1 K
66 % CI: 1.8 to 2.3 K
90 % CI: 1.6 to 2.5 K
95 % CI: 1.6 to 2.7 K

Median: 2.1 K
66 % CI: 1.8 to 2.4 K
90 % CI: 1.7 to 2.6 K
95 % CI: 1.6 to 2.7 K

Median: 2.0 K
66 % CI: 1.7 to 2.2 K
90 % CI: 1.6 to 2.5 K
95 % CI: 1.5 to 2.6 K

Median: 1.9 K
66 % CI: 1.7 to 2.2 K
90 % CI: 1.6 to 2.5 K
95 % CI: 1.6 to 2.7 K

S on 50-year timescale (K) Median: 2.1 K
66 % CI: 1.8 to 2.9 K
90 % CI: 1.6 to 3.6 K
95 % CI: 1.5 to 4.1 K

Median: 2.0 K
66 % CI: 1.8 to 2.8 K
90 % CI: 1.6 to 3.4 K
95 % CI: 1.6 to 3.9 K

Median: 2.0 K
66 % CI: 1.7 to 2.6 K
90 % CI: 1.6 to 3.3 K
95 % CI: 1.5 to 3.7 K

Median: 2.2 K
66 % CI: 1.9 to 2.5 K
90 % CI: 1.7 to 2.9 K
95 % CI: 1.7 to 3.2 K

S on 100-year timescale
(K)

Median: 2.2 K
66 % CI: 1.6 to 3.9 K
90 % CI: 1.5 to 5.7 K
95 % CI: 1.4 to 6.9 K

Median: 2.0 K
66 % CI: 1.6 to 3.7 K
90 % CI: 1.4 to 5.4 K
95 % CI: 1.4 to 6.6 K

Median: 2.1 K
66 % CI: 1.6 to 3.1 K
90 % CI: 1.5 to 4.8 K
95 % CI: 1.4 to 6.0 K

Median: 2.3 K
66 % CI: 2.0 to 2.7 K
90 % CI: 1.8 to 3.2 K
95 % CI: 1.7 to 3.6 K

S on 140-year timescale
(K)

Median: 2.3 K
66 % CI: 1.6 to 4.2 K
90 % CI: 1.4 to 6.5 K
95 % CI: 1.3 to 8.2 K

Median: 2.0 K
66 % CI: 1.6 to 3.9 K
90 % CI: 1.4 to 6.4 K
95 % CI: 1.4 to 7.9 K

Median: 2.1 K
66 % CI: 1.6 to 3.3 K
90 % CI: 1.4 to 5.3 K
95 % CI: 1.4 to 7.0 K

Median: 2.4 K
66 % CI: 2.0 to 2.8 K
90 % CI: 1.8 to 3.4 K
95 % CI: 1.8 to 3.7 K

TCR (K) Median: 1.5 K
66 % CI: 1.4 to 1.6 K
90 % CI: 1.3 to 1.8 K
95 % CI: 1.3 to 1.9 K

Median: 1.5 K
66 % CI: 1.4 to 1.6 K
90 % CI: 1.3 to 1.8 K
95 % CI: 1.3 to 1.8 K

Median: 1.4 K
66 % CI: 1.3 to 1.6 K
90 % CI: 1.3 to 1.7 K
95 % CI: 1.2 to 1.8 K

Median: 1.5 K
66 % CI: 1.4 to 1.6 K
90 % CI: 1.3 to 1.7 K
95 % CI: 1.3 to 1.8 K

a 20-year timescale (Figs. 4 and 5a, Table 1). These 20-
year response timescale S estimates are also similar between
different dataset combinations: varying from 2.1 ◦C (1.6 to
2.5 ◦C at 90 % range from 5th to 95th percentiles) for the
HadCRUT5 and Cheng et al. dataset combination to 2.1 ◦C
(1.7 to 2.6 ◦C) for the HadCRUT5 and NODC dataset com-
bination.

The distributions see a general increase in S out to
50-,100-, and 140-year timescales, with greater uncertainty
(Figs. 4 and 5; Table 1) due to the uncertainty in how multi-
decadal climate feedback will evolve (Fig. 2). The TCR is
analysed by forcing our posterior ensembles with a 1pctCO2
scenario and recording the surface warming for each en-
semble member for the 20-year average centred on the year
in which CO2 reaches twice its initial value (Fig. 6; Ta-
ble 1). Our analysis reveals a TCR of 1.5 (1.3 to 1.8 at 90 %
range) ◦C when constrained by the HadCRUT5 temperature
reconstruction with either ocean heat content dataset (Ta-
ble 1).

4.2 Variation in the posterior model ensembles

The observational records provide constraints on the param-
eters of the posterior ensembles that manifest not only as
posterior distributions for these parameters but also as rela-
tionships between them, as well as between model parame-
ters and key model outputs of interest (such as S(t)). While
the correlation structure of the 25 parameters’ joint posterior
distribution is generally quite complex, some key structures
emerge that indicate how S and TCR uncertainties might be
reduced. This method of analysing variation and simplifying
the degrees of freedom of variation in large data-constrained
efficient model ensembles may ultimately help explore pa-
rameter space in more complex Earth system models.

4.2.1 Correlations of model parameters and outputs

We assemble the three observationally consistent ensem-
bles into a single meta-ensemble, where each model real-
ization is weighted inversely to the number of members in
its individual ensemble such that each of the three observa-
tional combinations is weighed equally (henceforth all anal-
yses in this section are weighted, i.e. weighted correlations,
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Figure 6. Transient climate response (TCR) for combinations of
temperature and heat content datasets, evaluated from 1pctCO2 sce-
nario using the 20-year average warming centred on the moment of
CO2 doubling.

weighted principal component analysis, and weighted step-
wise regression). We then first examine the correlations be-
tween individual model parameters. We find three strongly
correlated groups of model parameters (Fig. S1 in the Sup-
plement). First, the λequil

multi-decadal and λequil
fast feedback param-

eters are strongly compensating (ρ=−0.95) and the λPlanck
feedback is also fairly well correlated with these (ρ = 0.49
and −0.56, respectively). Second, ratio 1 (the ratio of global
near-surface warming to global sea surface warming at equi-
librium) and ratio 2 (the ratio of global whole-ocean warm-
ing to global sea surface warming at equilibrium) param-
eters strongly compensate (ρ=−0.85), indicating the ra-
tio of near-surface warming to global whole-ocean warm-
ing is tightly constrained by these datasets. Finally, all of
the greenhouse gas and aerosol sensitivities are well corre-
lated, with |ρ| ≥ 0.4 (except for the aerosol indirect effect).
None of these are surprising as they reflect the primary con-
straints of the observations, i.e. ocean, near-surface warm-
ing, and radiative forcing histories, but the former does indi-
cate that a better-constrained fast feedback parameter would
directly reduce uncertainty on multi-decadal feedbacks and
thereby S on multi-decadal and centennial timescales. Model
outputs are in general correlated in expected fashions with
each other and with model parameters. TCR is well corre-
lated with S on all timescales (20, 50, 100, and 140 years),
and S on timescales greater than 20 years is also well cor-
related, whereas S20 is only weakly correlated with these as
it is controlled by other feedback parameters. We therefore
focus on TCR, S20, and S100 hereafter. S and TCR are, as ex-
pected, very strongly correlated with the feedback parame-
ters and also appreciably correlated with greenhouse gas and
aerosol sensitivity parameters but are weakly correlated with
most other model parameters.

4.2.2 Principal components

Correlations between model parameters’ posteriors imply
that the dimensionality of the parameter space can be re-
duced and that the observational constraints collapse the pos-
terior solution into a parameter space with fewer degrees of
freedom. Principal component analysis (PCA; Jolliffe, 1986;
note that we do not describe the method here as it is well
described in many textbooks such as Jolliffe, 1986) is a
straightforward, ubiquitous means to identify these degrees
of freedom and is justifiable here in the absence of strongly
non-linear model equations and given the Gaussian or near-
Gaussian likelihoods and priors.

We perform a PCA on the model parameters’ joint pos-
terior; the results are presented in Fig. 7. In the scree plot
(Fig. 7a), there is an obvious break point at the fifth princi-
pal component (PC), indicating the first five PCs are inter-
pretable and the remaining are unstructured variations (Cat-
tell, 1966). These PCs are shown in Fig. 7b–f, with loadings
of only the parameters with the absolute value of the load-
ing > 0.25 shown (full PCs are shown in Figs. S2–S6 in the
Supplement for completeness). The first three of these PCs
are dominated by the fast and multi-decadal feedbacks and
the sensitivity of radiative forcing to CO2 and two aerosols
(SOx and NH3) (Fig. 7b–d). The fourth and fifth PC are dom-
inated by oceanic factors (Fig. 7e and f): the timescales of
the multi-decadal feedback and the ventilation of different
ocean fractions, the buffered carbon inventory, and the warm-
ing ratios of near-surface to sea surface and sea surface to
whole-ocean warming. Altogether, these PCA results sug-
gest that the observational constraints used herein collapse
the 25 model parameters around a five-dimensional subspace
and that these five dimensions reflect the balance between the
effects of climate feedbacks, greenhouse gases, and aerosols
on atmospheric and oceanic warming, as well as the structure
of the large-scale ocean circulation.

Note also there are numerous ways to quantify the num-
ber of interpretable or meaningful PCs resulting from a PCA
(Jackson, 1993); the first five PCs we focus on here explain
60 % of the total variance in the dataset, but the decisive
break in the scree plot (Fig. 7a) indicates strong evidence
that these PCs are qualitatively different to the remaining PCs
(6–25). We interpret the remaining variance in the data as re-
flective of the large amount of parametric uncertainty left in
these models beyond what the observations herein can con-
strain, attesting to the importance of large ensemble simula-
tions as employed here for quantifying uncertainty in S and
TCR.

4.2.3 Stepwise regression

It is also of interest to what extent the model outputs are
directly predictable from or explicable by the individual
model parameters and/or PCs. Given the roughly Gaussian
and linear model equations, multilinear regression is a suit-
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Figure 7. Principal component analysis of the posterior model ensembles. Shown is a scree plot of principal component (PC) vs. variance
explained and PCs 1–5, simplified by showing only the model parameters with loading greater than 0.25 in magnitude. All 25 varied model
parameters are fully defined in Table S1. Briefly, a_CO2 is the CO2 radiative forcing coefficient; γaero-XX terms reflect the sensitivity of
radiative forcing to aerosol type XX; τmulti-decadal is the timescale for multi-decadal feedback; τmixed, τinter, and τbottom are the ocean
ventilation timescales for the ocean surface mixed layer, intermediate water, and bottom water, respectively; Ib is the buffered carbon
inventory of the air–sea system; ratio 1 is the ratio of warming for global surface temperatures relative to global sea surface temperatures at
equilibrium; and ratio 2 is the ratio of warming for the whole ocean temperatures relative to sea surface temperatures at equilibrium.

able approach to identifying these links. Stepwise regres-
sion (Draper and Smith, 1981) in particular follows an auto-
matic procedure of including and removing explanatory vari-
ables from the model fit to identify an optimal combination.
We perform stepwise regression to predict the model out-
puts from the model parameters, (de)selecting explanatory
variables using the Bayesian information criterion (Schwarz,
1978) and also including interactions between model param-
eters (i.e. their products).

We find S100 to be a significant function of PC1–5 and
their interactions, with an R2

= 0.50. While this is not an
especially good fit, it is 83 % of the variance in the model
parameters explained by these PCs; i.e. almost all of the
model parameter variance these PCs explain directly trans-
lates to explained variance in S100. In combination with the
PCA results, this suggests the observations used here col-
lapse the model parameters around five degrees of freedom
and that S100 is proportional to these degrees of freedom
and their interactions, with the remaining variance in S100

due to the remaining variance in the model parameters. This
implies that the observational constraints used here directly
constrain S100 in our modelling approach, with very little
information lost through constraining model parameters. In
contrast, S20 and TCR are more poorly predicted from these
PCs (R2

= 0.37 and 0.19, respectively).
We also performed stepwise regression of model outputs

against the 25 model parameters. We found S100 to be a sig-
nificant function of only nine model parameters (the three
feedback parameters; the multi-decadal feedback timescale;
and the sensitivities to CO2, SOx, aerosol indirect forcing,
volatile organic compounds (VOCs), and N2O), but it was
very well predicted by these parameters (R2

= 0.86). S20 was
even better predicted (R2

= 0.96) by a similar suite of pa-
rameters (exchanging sensitivities to aerosol indirect forcing,
VOCs, and N2O with sensitivity to CH4). This implies both
that S is not strongly dependent on the other parameters in
the model used here and also that there is a large amount
of variation in S that can be reduced by better constraining
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these parameters. In contrast, TCR is sensitive to more model
parameters (15) but is also similarly predictable from these
(R2
= 0.95).

4.3 Choice of priors and the sensitivity of results

The prior distributions for climate feedback terms adopted
here (Fig. 2a–c, black; Table S1) will impact the posterior
distributions for climate feedback terms, TCR, S20, S50, S100,
and S140 (Table 1). However the question remains as to how
much they will be impacted. Our prior distribution for λequil

Planck
is chosen as normal with a mean of 3.3 Wm−2 K−1 and
standard deviation of ± 0.2 Wm−2 K−1 since we have high
confidence in the value from observational evidence (Jones
and Harpham, 2013; Trenberth et al., 2014). However, the
prior distributions for λequil

fast and λequil
multi-decadal are uniform over

broad ranges (Fig. 2b and c, black) to reflect our initial igno-
rance as to their values (before applying observational con-
straints, Table S2). Both prior distributions for λequil

fast and
λ

equil
multi-decadal have minimum values of−3.0 Wm−2 K−1, cho-

sen to be just less in magnitude than (and opposite in sign to)
the mean in the prior for λequil

Planck because we know that the
total feedback must be positive on any timescale. The maxi-
mum value for λequil

multi-decadal is chosen to be +3.0 Wm−2 K−1

so that the prior distribution for multi-decadal feedbacks is
symmetric around 0 and so that multi-decadal feedbacks
have an equal prior likelihood of amplifying or damping sur-
face warming. The range of λequil

fast is chosen to have maxi-
mum of +1.0 Wm−2 K−1 to maximize computational effi-
ciency, as this is higher than the maximum values found in
the posterior ensembles (Fig. 2c, dotted lines), and thus there
is no need to extend the distribution further.

These are not the only prior distributions that could have
been chosen, and the scatter relationship in Fig. 2d shows
that if we constrain either λequil

multi-decadal or λequil
fast then we also

constrain the other term. Sherwood et al. (2020) use evidence
from a range of sources to justify a Gaussian distribution for
the climate feedback due to the pattern effect that amplifies
warming over several decades by 0.5 Wm−2 K−1 with a 90 %
confidence interval of 0 to 1 Wm−2 K−1. This is equivalent
in this study to a normal distribution for λequil

multi-decadal with a
mean of −0.5 Wm−2 K−1 and a 90 % confidence range of
−1.0 to 0.0 Wm−2 K−1 (Fig. 8c, purple), noting the change
in sign convention relative to Sherwood et al. (2020). Since
the evidence used by Sherwood et al. (2020) to justify this
distribution does not contain the observational constraints
used within the likelihood function in this study (Table S2),
we are free to adopt the Sherwood et al. (2020) distribution
as an alternative prior for λequil

multi-decadal (Fig. 8c, purple). Here,
the impact of this alternative prior on our results is explored
by weighting the posterior simulations in the HadCRUT5 and
Cheng et al. ensemble according to where their λequil

multi-decadal
values fit within the Sherwood et al. (2020) prior distribu-

tion for multi-decadal climate feedback relative to the uni-
form prior distribution (Fig. 8c, compare purple and black).
Adopting this alternative prior on λequil

multi-decadal (Fig. 8c, pur-
ple) does indeed constrain the posterior distributions for both
λ

equil
multi-decadal and λequil

fast (Fig. 8, compare light blue to red).
This has only a minor impact on TCR and climate sensi-
tivity on a 20-year timescale (Table 1) but greatly reduces
uncertainty in posterior climate sensitivity on 100- and 140-
year timescales (Table 1): changing S140 from 2.3 (1.6 to
4.2 at 66 % confidence) K with uniform prior to 2.4 (2.0 to
2.8) K with the Sherwood et al. (2020) prior on multi-decadal
feedback. This reduction in confidence interval should be ex-
pected since the prior for λmulti-decadal has been significantly
reduced in range (Fig. 8c, compare black and purple). Full
analysis of the impact of alternative priors is reserved for fur-
ther study.

5 Discussion

Many studies have combined reconstructions of surface tem-
perature and ocean heat uptake with estimates of radiative
forcing to calculate the effective climate feedback and/or
transient climate response during the historic period (e.g.
Annan, 2015; Annan and Hargreaves, 2020; Bodman and
Jones, 2016; Lewis and Curry, 2014; Skeie et al., 2018; Otto
et al., 2013; Tokarska et al., 2020). However, climate feed-
back strengths evolve over time in complex climate models
(e.g. Andrews et al., 2015), indicating that climate sensitiv-
ity values obtained from historic observations may not apply
into the future.

This study applies the historic observational record (Ta-
ble S2) and estimates of historic radiative forcing (Fig. 3;
Table S2) to constrain how climate sensitivity evolves on
different response timescales (Figs. 4 and 5), utilizing a
model of independent climate feedback terms that respond
to forcing over instantaneous (Planck), fast (several days),
and multi-decadal timescales (Eqs. 2–4). A Bayesian ap-
proach is adopted, where uniform prior probability distribu-
tions are applied for the fast and multi-decadal climate feed-
backs (Fig. 2, Table S1). Different temperature and ocean
heat content observational datasets (Table S2, Eqs. 6–8) are
applied to extract posterior probability distributions for cli-
mate feedbacks (Fig. 2) and other model properties (e.g. re-
lated to aerosol radiative forcing Fig. 3). We then use these
posterior probability distributions to evaluate climate sen-
sitivity (S) and transient climate response (TCR) from the
4×CO2 and 1pctCO2 forcing scenarios, respectively.

Our estimates of S on a 20-year timescale are directly
comparable to estimates of climate sensitivity made from his-
torical constraints (e.g. Otto et al., 2013; Lewis and Curry,
2014), without explicitly considering the impact of additional
slower (including multi-decadal) climate feedbacks that may
not have had time to equilibrate in the present day.
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Figure 8. The prior and posterior distribution of climate feedback terms, showing the impact of alternative prior distribution for multi-
decadal climate feedback. Black lines show the standard prior distributions (as Fig. 2a–c), while the purple line (c) shows the alternative
prior distribution for multi-decadal feedback from Sherwood et al. (2020). Red lines show the posterior in the HadCRUT5 and Cheng et al.
ensemble for the standard prior distributions (as Fig. 2a–c), and light blue lines show the posterior distributions for climate feedback terms
when using the alternative multi-decadal prior.

Our estimates of S on 100- and 140-year timescales are
directly comparable to the climate sensitivity estimates eval-
uated in complex climate model simulations from simula-
tions lasting over 100 years, for example using the Gregory
et al. (2004) method. Note that additional slow feedbacks
not considered here, acting from many decades to millennia,
may affect how our estimates are comparable to estimates of
climate sensitivity from the palaeo-record where any longer
feedbacks have been treated as radiative forcing (e.g. Rohling
et al., 2012, 2018).

We find that the HadCRUT5 (Morice et al., 2021) temper-
ature reconstruction implies a larger S and TCR than Had-
CRUT5 (no infill) (Figs. 4–6; Table 1), demonstrating the
importance of statistical infilling of geographical areas ab-
sent in historical datasets when constraining future warm-
ing (Cowtan and Way, 2014). The Cheng et al. (2017) ocean
heat content reconstruction implies similar S to the NODC
reconstruction (Figs. 3 and 5; Table 1), showing the insen-
sitivity of our results to these different heat content recon-
structions (Fig. 1b). The different heat content datasets make
almost no impact on TCR (Fig. 6; Table 1), which may be

expected when considering that a larger historic heat con-
tent also implies larger heat uptake on a 1pctCO2 scenario
and that this balances any warming impact of a larger S. An
alternative narrower prior distribution for multi-decadal cli-
mate feedback (Sherwood et al., 2020) reduces uncertainty in
our posterior estimates of S on longer, i.e. 100- and 140-year,
timescales but has little impact on TCR or S on a 20-year
timescale (Table 1, Fig. 8).

Our method constrains S over multiple response
timescales (Fig. 4; Table 1). Our constraints on S over 100-
and 140-year response timescales (S100, S140; see Table 1)
are directly comparable to previous reviews of climate sen-
sitivity in the literature in AR5 (IPCC, 2013) and Sherwood
et al. (2020). The IPCC (2013) AR5 estimate of (“effective”
or “equilibrium”) climate sensitivity has a 66 % (or better)
likelihood range of 1.5 to 4.5 K (IPCC, 2013), while the re-
cent Sherwood et al. (2020) Bayesian review has a narrower
baseline 17th–83rd percentile (66 %) range of 2.6 to 3.6 K.
The Sherwood et al. (2020) range removes both the lower
portion of the likely IPCC climate sensitivity (66 % likeli-
hood or better) range (from 1.5 to 2.5 K) and the upper por-
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tion (from 3.7 to 4.5 K), suggesting a similar best estimate
but with reduced uncertainty compared to IPCC (2013).

Our posterior 66 % range for S140 (of 1.6 to 4.2 K for our
preferred HadCRUT5 and Cheng et al. ensemble) is in very
good agreement with the equivalent IPCC (2013) range (Ta-
ble 1) and is broader than the recent Sherwood et al. (2020)
range. Both Sherwood et al. (2020) and this study apply
Bayesian approaches to constrain effective climate feedback,
λeff, and use this constraint on λeff to then constrain S. Our
broader range compared to Sherwood et al. (2020) may arise
from differences in our Bayesian approaches. Firstly, Sher-
wood et al. (2020) consider additional sources of evidence,
for example from palaeoclimate reconstructions, that may
narrow their range of climate sensitivity relative to ours. Sec-
ondly, our methodology includes a model of climate feed-
back that is explicitly allowed to evolve over different re-
sponse timescales (Fig. 2; Eqs. 1–5; Supplement), with equal
prior weighting given to amplifying and damping feedback
evolution over multi-decadal timescales (Fig. 2b). This time
evolution in λeff thus allows S to also evolve over different
response timescales (Fig. 3, Table 1) and prevents our ap-
proach from over-constraining S on multi-decadal and cen-
tury timescales from historical datasets that record only the
decadal responses to recent anthropogenic forcing. When a
narrower prior distribution for multi-decadal climate feed-
back from Sherwood et al. (2020) is adopted within our ap-
proach, our posterior S140 decreases in range (2.0 to 2.8 K at
66 % confidence; see Table 1) but to lower values than Sher-
wood et al. (2020). It should be noted that additional slow
feedbacks acting on longer timescales (century and longer)
may allow climate sensitivity to evolve further (e.g. Rohling
et al., 2012, 2018) but are not considered in our methodology.

Code availability. The WASP model code used here is available
for download at https://doi.org/10.5281/zenodo.4639491 (Goodwin
and Cael, 2021).

Data availability. The datasets used (Table S2) are publicly avail-
able. HadCRUT5 is available at https://www.metoffice.gov.uk/
hadobs/hadcrut5/data/current/download.html (Met Office Hadley
Centre, 2020a). NODC is available at https://www.nodc.noaa.
gov/OC5/3M_HEAT_CONTENT/ (National Oceanic and At-
mospheric Administration, 2020). Cheng et al. is available
at http://159.226.119.60/cheng/images_files/IAP_OHC_estimate_
update.txt (Cheng, 2020). HadSST4 is available at https://www.
metoffice.gov.uk/hadobs/hadsst4/data/download.html (Met Office
Hadley Centre, 2020b). The Global Carbon Budget 2018 data
are available at https://doi.org/10.18160/gcp-2018 (Global Carbon
Project, 2018).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-12-709-2021-supplement.

Author contributions. PG and BBC conceived the experiments.
PG conducted the WASP model ensembles. PC and BBC analysed
model output and wrote the manuscript.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. Philip Goodwin acknowledges support
from UKRI Natural Environmental Research Council grant
NE/T010657/1. The authors acknowledge the use of the IRIDIS
High Performance Computing Facility and associated support ser-
vices at the University of Southampton in the completion of this
work. B. B. Cael acknowledges support from the National Envi-
ronmental Research Council (NE/315R015953/1) and the Horizon
2020 Framework Programme (820989, project COMFORT). The
work reflects only the authors’ views; the European Commission
and their executive agency are not responsible for any use that may
be made of the information the work contains.

Financial support. This research has been supported by the
UK Research and Innovation (grant nos. NE/T010657/1 and
NE/315R015953/1) and the Horizon 2020 (COMFORT project,
grant no. 820989).

Review statement. This paper was edited by Andrey Gritsun and
reviewed by two anonymous referees.

References

Andrews, T., Gregory, J. M., and Webb, M. J.: The dependence of
radiative forcing and feedback on evolving patterns of surface
temperature change in climate models, J. Climate, 28, 1630–
1648, https://doi.org/10.1175/JCLI-D-14-00545.1, 2015.

Annan, J. D.: Recent Developments in Bayesian Estimation of Cli-
mate Sensitivity, Current Climate Change Reports, 1, 263–267,
https://doi.org/10.1007/s40641-015-0023-5, 2015.

Annan, J. D. and Hargreaves, J. C.: Bayesian deconstruction of cli-
mate sensitivity estimates using simple models: implicit priors
and the confusion of the inverse, Earth Syst. Dynam., 11, 347–
356, https://doi.org/10.5194/esd-11-347-2020, 2020.

Bodman, R. W. and Jones, R. N.: Bayesian estimation of
climate sensitivity using observationally constrained sim-
ple climate models, WIREs Clim. Change, 7, 461–473,
https://doi.org/10.1002/wcc.397, 2016.

Cattell, R. B.: The scree test for the number of factors, Journal of
Multivariate Behavioral Research 1, 245–276, 1966.

Cheng, L.: Global Ocean Heat Content estimate from 1940 to
2019 (v3, Monthly), available at: http://159.226.119.60/cheng/
images_files/IAP_OHC_estimate_update.txt, last access: 10 Oc-
tober 2020.

Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham,
J., and Zhu, J.: Improved estimates of ocean heat con-
tent from 1960 to 2015, Science Advances, 3, e1601545,
https://doi.org/10.1126/sciadv.1601545, 2017.

https://doi.org/10.5194/esd-12-709-2021 Earth Syst. Dynam., 12, 709–723, 2021

https://doi.org/10.5281/zenodo.4639491
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/current/download.html
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/current/download.html
https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/
https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/
http://159.226.119.60/cheng/images_files/IAP_OHC_estimate_update.txt
http://159.226.119.60/cheng/images_files/IAP_OHC_estimate_update.txt
https://www.metoffice.gov.uk/hadobs/hadsst4/data/download.html
https://www.metoffice.gov.uk/hadobs/hadsst4/data/download.html
https://doi.org/10.18160/gcp-2018
https://doi.org/10.5194/esd-12-709-2021-supplement
https://doi.org/10.1175/JCLI-D-14-00545.1
https://doi.org/10.1007/s40641-015-0023-5
https://doi.org/10.5194/esd-11-347-2020
https://doi.org/10.1002/wcc.397
http://159.226.119.60/cheng/images_files/IAP_OHC_estimate_update.txt
http://159.226.119.60/cheng/images_files/IAP_OHC_estimate_update.txt
https://doi.org/10.1126/sciadv.1601545


722 P. Goodwin and B. B. Cael: Bayesian estimation of Earth’s climate sensitivity

Cowtan, K. and Way, R. G.: Coverage bias in the Had-
CRUT4 temperature series and its impact on recent tem-
perature trends, Q. J. Roy. Meteor. Soc., 140, 1935–1944,
https://doi.org/10.1002/qj.2297, 2014.

Draper, N. and Smith, H.: Applied Regression Analysis, 2nd edn.,
John Wiley & Sons, Inc., New York, 1981.

Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radia-
tive forcing of carbon dioxide, methane, and nitrous oxide: A sig-
nificant revision of the methane radiative forcing, Geophys. Res.
Lett., 43, 12614–12623, https://doi.org/10.1002/2016GL071930,
2016.

Global Carbon Project: Supplemental data of Global Car-
bon Budget 2018 (Version 1.0), Data set, Global Carbon
Project, https://doi.org/10.18160/gcp-2018 (last access: 10 Oc-
tober 2020), 2018.

Goodwin, P.: How historic simulation-observation discrepancy af-
fects future warming projections in a very large model en-
semble, Clim. Dynam., 47, 2219–2233, CLDY-D-15-00368R2,
https://doi.org/10.1007/s00382-015-2960-z, 2016.

Goodwin, P.: On the time evolution of climate sensitiv-
ity and future warming, Earths Future, 6, EFT2466,
https://doi.org/10.1029/2018EF000889, 2018.

Goodwin, P. and Cael, B. B.: WASP Earth System Model v3.0,
March2021, https://doi.org/10.5281/zenodo.4639491, 2021.

Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S.,
Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C., and
Williams, K. D.: A new method for diagnosing radiative forc-
ing and climate sensitivity, Geophys. Res. Lett., 31, L03205,
https://doi.org/10.1029/2003GL018747, 2004.

Gregory, J. M., Andrews, T., Good, P., Mauritsen, T., and Forster, P.
M.: Small global-mean cooling due to volcanic radiative forcing,
Clim. Dynam., 47, 3979–3991, https://doi.org/10.1007/s00382-
016-3055-1, 2016.

Gregory, J. M., Andrews, T., Ceppi, P., Mauritsen, T., and Webb,
M. J.: How accurately can the climate sensitivity to CO2 be esti-
mated from historical climate change?, Clim. Dynam., 54, 129–
157, https://doi.org/10.1007/s00382-019-04991-y, 2019.

IPCC: Climate Change 2013: The Physical Science Basis. Con-
tribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midg-
ley, P. M., Cambridge University Press, Cambridge, UK,
https://doi.org/10.1017/CBO9781107415324, 1535 pp., 2013.

Jackson, D. A.: Stopping Rules in Principal Components Analysis:
A Comparison of Heuristical and Statistical Approaches, Ecol-
ogy, 74, 8, 2204–2214, 1993.

Jones, P. D. and Harpham, C.: Estimation of the absolute surface air
temperature of the Earth, J. Geophys. Res.-Atmos., 118, 3213–
3217, https://doi.org/10.1002/jgrd.50359, 2013.

Jolliffe, I. T.: Principal components in regression analysis. Principal
component analysis, Springer, New York, NY, 129–155, 1986.

Kennedy, J. J., Rayner, N. A., Atkinson, C. P., and Kil-
lick, R. E.: An ensemble data set of sea-surface temper-
ature change from 1850: the Met Office Hadley Centre
HadSST.4.0.0.0 data set, J. Geophys. Res.-Atmos., 124, 7719–
7763, https://doi.org/10.1029/2018JD029867, 2019.

Knutti, R., Rugenstein, M. A. A., and Hegerl, G. C.: Beyond
equilibrium climate sensitivity, Nat. Geosci., 10, 727–736,
https://doi.org/10.1038/NGEO3017, 2017.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck,
J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P.,
Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos,
A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C.,
Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M.,
Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A.
K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Gold-
ewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z.,
Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, J. E. M. S.,
Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon,
A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Re-
hder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck,
C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stein-
hoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello,
F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N.,
Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S., and Zheng,
B.: Global Carbon Budget 2018, Earth Syst. Sci. Data, 10, 2141–
2194, https://doi.org/10.5194/essd-10-2141-2018, 2018.

Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H.
E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D.,
Yarosh, E. S., and Zweng, M. M.: World ocean heat content and
thermosteric sea level change (0–2000 m), 1955–2010, Geophys.
Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106,
2012.

Lewis, N. and Curry, J. A.: The implications for climate sensitivity
of AR5 forcing and heat uptake estimates, Clim. Dynam., 45,
1009–1023, https://doi.org/10.1007/s00382-014-2342-y, 2014.

Marvel, K., Schmidt, G. A., Miller, R. L., and Nazarenko,
L. S.: Implications for climate sensitivity from the re-
sponse to individual forcings, Nat. Clim. Change, 6, 386–389,
https://doi.org/10.1038/nclimate2888, 2015.

Met Office Hadley Centre: HadCRUT.5.0.0.0 Data Download,
available at: https://www.metoffice.gov.uk/hadobs/hadcrut5/
data/HadCRUT.5.0.0.0/download.html, last access: 10 Octo-
ber 2020a.

Met Office Hadley Centre: HadSST.4.0 Data Download, avail-
able at: https://www.metoffice.gov.uk/hadobs/hadsst4/data/
download.html, last access: 10 October 2020b.

Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P.,
Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T.
J., Jones, P. D., and Simpson, I. R.: An updated assess-
ment of near-surface temperature change from 1850: the
HadCRUT5 dataset, J. Geophys. Res., 126, e2019JD032361,
https://doi.org/10.1029/2019JD032361, 2021.

Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S.,
Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T.,
Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen,
T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X.,
Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch,
P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T.,
Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon,
J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of
the direct aerosol effect from AeroCom Phase II simulations, At-
mos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-
13-1853-2013, 2013.

Earth Syst. Dynam., 12, 709–723, 2021 https://doi.org/10.5194/esd-12-709-2021

https://doi.org/10.1002/qj.2297
https://doi.org/10.1002/2016GL071930
https://doi.org/10.18160/gcp-2018
https://doi.org/10.1007/s00382-015-2960-z
https://doi.org/10.1029/2018EF000889
https://doi.org/10.5281/zenodo.4639491
https://doi.org/10.1029/2003GL018747
https://doi.org/10.1007/s00382-016-3055-1
https://doi.org/10.1007/s00382-016-3055-1
https://doi.org/10.1007/s00382-019-04991-y
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1002/jgrd.50359
https://doi.org/10.1029/2018JD029867
https://doi.org/10.1038/NGEO3017
https://doi.org/10.5194/essd-10-2141-2018
https://doi.org/10.1029/2012GL051106
https://doi.org/10.1007/s00382-014-2342-y
https://doi.org/10.1038/nclimate2888
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.0.0/download.html
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.0.0/download.html
https://www.metoffice.gov.uk/hadobs/hadsst4/data/download.html
https://www.metoffice.gov.uk/hadobs/hadsst4/data/download.html
https://doi.org/10.1029/2019JD032361
https://doi.org/10.5194/acp-13-1853-2013
https://doi.org/10.5194/acp-13-1853-2013


P. Goodwin and B. B. Cael: Bayesian estimation of Earth’s climate sensitivity 723

National Oceanic and Atmospheric Administration: Global Ocean
Heat Content, available at: https://www.nodc.noaa.gov/OC5/
3M_HEAT_CONTENT/, last access: 10 October 2020.

Nicholls, Z. R. J., Meinshausen, M., Lewis, J., Gieseke, R., Dom-
menget, D., Dorheim, K., Fan, C.-S., Fuglestvedt, J. S., Gasser,
T., Golüke, U., Goodwin, P., Hartin, C., Hope, A. P., Kriegler,
E., Leach, N. J., Marchegiani, D., McBride, L. A., Quilcaille, Y.,
Rogelj, J., Salawitch, R. J., Samset, B. H., Sandstad, M., Shiklo-
manov, A. N., Skeie, R. B., Smith, C. J., Smith, S., Tanaka, K.,
Tsutsui, J., and Xie, Z.: Reduced Complexity Model Intercom-
parison Project Phase 1: introduction and evaluation of global-
mean temperature response, Geosci. Model Dev., 13, 5175–5190,
https://doi.org/10.5194/gmd-13-5175-2020, 2020.

Nijsse, F. J. M. M., Cox, P. M., and Williamson, M. S.: Emer-
gent constraints on transient climate response (TCR) and equi-
librium climate sensitivity (ECS) from historical warming in
CMIP5 and CMIP6 models, Earth Syst. Dynam., 11, 737–750,
https://doi.org/10.5194/esd-11-737-2020, 2020.

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedling-
stein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F.,
Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sander-
son, B. M.: The Scenario Model Intercomparison Project (Sce-
narioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482,
https://doi.org/10.5194/gmd-9-3461-2016, 2016.

Otto, A., Otto, F. E. L., Boucher, O., Church, J., Hegerl, G.,
Forster, P. M., Gillet, N. P., Gregory, J., Johnson, G. C.,
Knutti, R., Lewis, N., Lohmann, U., Marotzke, J.,Myhre, G.,
Shindell, D., Stevens, B., and Allen, M. R.: Energy bud-
get constraints on climate response, Nat. Geosci., 6, 415–416,
https://doi.org/10.1038/ngeo1836, 2013.

Proistosescu, C. and Huybers, P. J.: Slow climate mode
reconciles historical and model-based estimates of
climate sensitivity, Science Advances, 3, e1602821,
https://doi.org/10.1126/sciadv.1602821, 2017.

Rohling, E. J., Sluijs, A., Dijkstra, H. A., Köhler, P., van de Wal, R.
S. W., von der Heydt, A. S., Beerling, D. J., Berger, A., Bijl, P. K.,
Crucifix, M., DeConto, R., Drijfhout, S. S., Fedorov, A., Foster,
G. L., Ganopolski, A., Hansen, J., Hönisch, B., Hooghiemstra,
H., Huber, M., Huybers, P., Knutti, R., Lea, D. W., Lourens, L.
J., Lunt, D., Masson-Delmotte, V., Medina-Elizalde, M., Otto-
Bliesner, B., Pagani, M., Pälike, H., Renssen, H., Royer, D. L.,
Siddall, M., Valdes, P., Zachos J. C., and Zeebe, R. E.: Mak-
ing sense of palaeoclimate sensitivity, Nature, 491, 683–691,
https://doi.org/10.1038/nature11574, 2012.

Rohling, E. J., Marino, G., Foster, G. L., Goodwin, P. A., von
der Heydt, A. S., and Köhler, P.: Comnparing climate sensi-
tivity, past and present, Annu. Rev. Mar. Sci., 10, 261–288,
https://doi.org/10.1146/annurev-marine-121916-063242, 2018.

Rugenstein, M., Bloch-Johnson, J., Gregory, J., Andrews, T., Mau-
ritsen, T., Li, C., Frölicher, T. L., Paynter, D., Gokhan Dan-
abasoglu, G., Yang, S., Dufresne, J.-L., Cao, L., Schmidt,
G. A., Abe-Ouchi, A., Geoffroy, O., and Knutti, R.: Equi-
librium climate sensitivity estimated by equilibrating cli-
mate models, Geophys. Res. Lett., 47, e2019GL083898,
https://doi.org/10.1029/2019GL083898, 2020.

Schwarz, G. E.: Estimating the dimension of a model, Ann. Stat., 6,
461–464, 1978.

Senior, C. and Mitchell, J. F.: The time-dependence of
climate sensitivity, Geophys. Res. Lett., 27, 2685–2688,
https://doi.org/10.1029/2000GL011373, 2000.

Sherwood, S., Webb, M. J., Annan, J. D., Armour, K. C., Forster,
P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K.
D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P.,
Bretherton, C. S., Foster, G. L., Hausfather, Z., von der Heydt,
A. S., Knutti, R., Mauritsen, T., Norris, J. R., Proitosescu, C.,
Rugenstein, M., Schmidt, G. A., Tokarska, K. B., and Zelinka,
M. D.: An assessment of Earth’s climate sensitivity using mul-
tiple lines of evidence, Rev. Geophys., 58, e2019RG000678,
https://doi.org/10.1029/2019RG000678, 2020.

Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M., and Myhre,
G.: Climate sensitivity estimates – sensitivity to radiative forc-
ing time series and observational data, Earth Syst. Dynam., 9,
879–894, https://doi.org/10.5194/esd-9-879-2018, 2018.

Smith, C. J., Forster, P. M., Allen, M., Leach, N., Mil-
lar, R. J., Passerello, G. A., and Regayre, L. A.: FAIR
v1.3: a simple emissions-based impulse response and car-
bon cycle model, Geosci. Model Dev., 11, 2273–2297,
https://doi.org/10.5194/gmd-11-2273-2018, 2018.

Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins,
W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., Mi-
chou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H.,
O’Connor, F. M., Robertson, E., Wiltshire, A., Andrews, T.,
Hannay, C., Miller, R., Nazarenko, L., Kirkevåg, A., Olivié,
D., Fiedler, S., Lewinschal, A., Mackallah, C., Dix, M., Pin-
cus, R., and Forster, P. M.: Effective radiative forcing and adjust-
ments in CMIP6 models, Atmos. Chem. Phys., 20, 9591–9618,
https://doi.org/10.5194/acp-20-9591-2020, 2020.

Tokarska, K. B., Hegerl, G. C., Schurer, A. P., Forster, P. M., and
Marvel, K.: Observational constraints on effective climate sensi-
tivity from the historical period, Environ. Res. Lett., 15, 034043,
https://doi.org/10.1088/1748-9326/ab738f, 2020.

Trenberth, K. E., Fasullo, J. T., and Balmaseda, M. A.:
Earth’s Energy Imbalance, J. Climate, 27, 3129–3144,
https://doi.org/10.1175/JCLI-D-13-00294.1, 2014.

van der Ent, R. J. and Tuinenburg, O. A.: The residence time of
water in the atmosphere revisited, Hydrol. Earth Syst. Sci., 21,
779–790, https://doi.org/10.5194/hess-21-779-2017, 2017.

https://doi.org/10.5194/esd-12-709-2021 Earth Syst. Dynam., 12, 709–723, 2021

https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/
https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/
https://doi.org/10.5194/gmd-13-5175-2020
https://doi.org/10.5194/esd-11-737-2020
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1038/ngeo1836
https://doi.org/10.1126/sciadv.1602821
https://doi.org/10.1038/nature11574
https://doi.org/10.1146/annurev-marine-121916-063242
https://doi.org/10.1029/2019GL083898
https://doi.org/10.1029/2000GL011373
https://doi.org/10.1029/2019RG000678
https://doi.org/10.5194/esd-9-879-2018
https://doi.org/10.5194/gmd-11-2273-2018
https://doi.org/10.1088/1748-9326/ab738f
https://doi.org/10.1175/JCLI-D-13-00294.1
https://doi.org/10.5194/hess-21-779-2017

	Abstract
	Introduction
	Model of surface warming from time-varying climate feedback
	Generation of the prior and posterior ensembles
	Results
	The climate sensitivity and transient climate response
	Variation in the posterior model ensembles
	Correlations of model parameters and outputs
	Principal components
	Stepwise regression

	Choice of priors and the sensitivity of results

	Discussion
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

