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Supplementary Text 

 

S1 On priors and updates to the WASP model 

The WASP model described in Goodwin (2018) is used here, with updated prior distributions, functional 

forms of radiative forcing from greenhouse gasses and aerosols and internal noise in the energy imbalance. 

The time-step in the WASP model is altered from 48 time-steps per year in Goodwin (2018) to 12 time-steps 

per year here. The random-normal prior distribution for the Planck feedback, 𝜆!"#$%& (Supplementary Table 

S1), is estimated via 𝜆!"#$%& = 4𝑓𝜎𝑇', where f is the greenhouse fraction of upwards longwave radiation at 

the top of the atmosphere relative to the surface (Trenberth et al., 2014), 𝜎 is the Stephan-Boltzmann 

constant and 𝑇 is the global mean surface temperature of Earth (Jones and Hapham, 2013). Uniform prior 

probability distributions for 𝜆(#)* (from -3.0 to +1.0 Wm-2K-1) and 𝜆)"+, (from -3.0 to +3.0 Wm-2K-1) are 

used. 

 

The random-normal prior distribution for the CO2 radiative forcing coefficient (Supplementary Table S1) is 

taken from the estimate of IPCC (2013), 𝑎-./ = 5.35 ± 0.27 Wm-2. The functional forms of radiative 

forcing from CH4 and N2O are updated after Etminan et al. (2016), with random-normal prior distributions of 

uncertainty (Supplementary Table S1) to reflect uncertainty for these relations estimated in Etminan et al. 

(2016). A radiative forcing term is introduced to WASP here to represent the internal variability in Earth’s 

energy imbalance using AR1 noise, with the constants tuned to imposed monthly and annual root-mean-

square energy imbalance after Trenberth et al. (2014). 

 

S2 Radiative forcing from aerosols in the WASP model 

The calculation of radiative forcing from aerosols in the WASP model (Goodwin, 2016) is updated in this 

study. The version of WASP described in Goodwin (2018) uses a single time series for aerosol radiative 

forcing scaled by a single uncertainty parameter that is varied between ensemble members. Here, aerosol 

radiative forcing is separated into direct and indirect aerosol forcing components from emissions of different 

types of aerosols: Black Carbon (BC), Organic Carbon (OC), sulphates (SOx), nitrous oxides (NOX), 

ammonia (NH3) and volatile organic compounds (VOC).  

 

The version of WASP used here is updated to employ aerosol radiative forcing based on the FAIR v1.3 

(Smith et al., 2018) model scheme, with this scheme chosen as it avoids the use of iterative computational 

methods and thus retains computational efficiency. The direct aerosol radiative forcing over time is related to 

the emissions of different anthropogenic aerosol types, 𝐸0, via 

 

𝑅1234#53+(𝑡) = 𝛾#53+46-𝐸6- + 𝛾#53+4.-𝐸.- + 𝛾#53+47.!𝐸7.! + 𝛾#53+48.!𝐸8.! + 𝛾#53+489"𝐸89"
+ 𝛾#53+4:.-𝐸:.-  

           (S1) 
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which assumes anthropogenic aerosol are sufficiently short-lived in the atmosphere such that radiative 

forcing can be related directly to emissions without an intermediate step of calculating atmospheric 

concentrations (Smith et al., 2018). 

 

The AeroCom experiments (Myhre et al., 2013) analyse direct radiative forcing for each aerosol type across 

multiple atmospheric models in the year 2010. Smith et al. (2018) uses these 2010 best estimates (Myhre et 

al., 2013) to constrain the coefficients 𝛾#53+46- , 𝛾#53+4.- , 𝛾#53+47.!, 𝛾#53+48.!, 𝛾#53+489" and 𝛾#53+47.; 

in the FaIR model. In the WASP model used here, this is extended by using the uncertainty estimates in 

Myhre et al. (2013) to independently vary the values of coefficients 𝛾#53+46- , 𝛾#53+4.- , 𝛾#53+47.!, 

𝛾#53+48.!, 𝛾#53+489" and 𝛾#53+4:.-  between the prior ensemble members (Supplementary Table S1). Thus, 

the prior WASP ensemble here is representative of the multi-model variation in how sensitive direct aerosol 

radiative forcing is to emissions of each aerosol type evaluated in Myhre et al. (2013). 

 

The coefficients relating aerosol emissions to direct radiative forcing are thus written (Supplementary Table 

S1): 𝛾#53+47.! = (−0.32 ± 0.11)/𝐸7.!4/<=<; 𝛾#53+46- = (0.18 ± 0.07)/𝐸6-4/<=<; 𝛾#53+4.- = (−0.03 ±

0.01)/𝐸.-4/<=<; and 𝛾#53+4:.- = (−0.06 ± 0.09)/𝐸:.-4/<=<. Nitrate aerosol radiative forcing is split into 

components of 40% from NOX and 60% from NH3, as used by Smith et al. (2018), giving: 𝛾8.! =

0.4 × (−0.08 ± 0.04)/𝐸8.!4/<=<; and 𝛾89" = 0.6 × (−0.08 ± 0.04)/𝐸89"4/<=<.  

 

WASP is also updated to use an emulation of indirect aerosol radiative forcing from aerosol-cloud 

interaction, 𝑅#%2(𝑡) in Wm-2, after FaIRv1.3 model (Smith et al., 2018),  

 

𝑅#%2(𝑡) = 𝑅#%2:/<==
𝐺(𝑡) − 𝐺(𝑡=?@A)

𝐺(𝑡/<==) − 𝐺(𝑡=?@A)
 

           (S2) 

where 𝑅#%2:/<== is the radiative forcing from aerosol cloud interaction in 2011, and 𝐺 is related to emissions 

of aerosol components via; 

 

𝐺(𝑡) = −1.95 logA1 + 0.0111𝐸7.!(𝑡) + 0.0139[𝐸.-(𝑡) + 𝐸6-(𝑡)]D 

           (S3) 

We vary the value of 𝑅#%2:/<== between the prior ensemble members to account for the skewed uncertainty in 

indirect aerosol radiative forcing estimated within IPCC AR5 (IPCC, 2013). To account for a skew in the 

uncertainty in historic indirect aerosol radiative forcing (IPCC, 2013), a skewed-normal prior distribution for 

𝑅#%2:/<== is adopted (Supplementary Table S1). 
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S3 Time-evolving climate sensitivity in the WASP model 

The WASP model code considers feedback processes evolving over time independently to different sources 

of radiative forcing. This supplementary section explores how one single feedback process evolves over time 

to a single source of radiative forcing in WASP. For an idealised step function of radiative forcing occurring 

at 𝑡 = 𝑡<, the climate feedback contribution from a given process is assumed to start at 𝜆(𝑡<) = 0  at the 

moment of the step function, and then approach the equilibrium value for that process over an e-folding 

timescale 𝜏, 

 

𝜆(𝑡) = 𝜆5BC2" F1 − exp
−(𝑡 − 𝑡<)

𝜏 J 

           (S4) 

This relationship (S4) is equivalently expressed relative to the value of 𝜆 at some intermediate time 𝑡=, 

 

𝜆(𝑡) = 𝜆(𝑡=) + A𝜆5BC2" − 𝜆(𝑡=)D F1 − exp
−(𝑡 − 𝑡=)

𝜏 J 

           (S5) 

 

The value of 𝜆(𝑡) is complicated when the magnitude of radiative forcing continues to rise after the initial 

perturbation, since now each contribution to the rise in radiative forcing will contribute to 𝜆(𝑡) via an 

exponential decay from 0 to 𝜆5BC2" over a different time-interval relating to the length of time ago that that 

specific contribution to the rise in radiative forcing occurred. To calculate 𝜆(𝑡) when there have been 

multiple contributions to the rise in magnitude of radiative forcing at different times we may write, 

 

𝜆(𝑡) = K 𝜆5BC2" L1 − exp
−(𝑡 − 𝑡′)

𝜏
N 𝑑𝑅′

D#ED(*)

D#E<

K 𝑑𝑅′

D#ED(*)

D#E<

P  

           (S6) 

where t0 is the most recent time that R has changed sign such that R(t0) = 0; R = R’ at t = t’; and it is assumed 

that R has been either unchanging or increasing in magnitude for all time since t0 (i.e. [𝑑𝑅/𝑑𝑡] 𝑅⁄ > 0). This 

integral may be re-written for a numerical time-stepping model as a summation over all timesteps 𝑡′ since the 

most recent time that R changed sign, 

 

𝜆(𝑡) =S𝜆5BC2" L1 − exp
−(𝑡 − 𝑡′)

𝜏
N δ𝑅(𝑡′) Sδ𝑅(𝑡′)U  

           (S7) 

where δ𝑅(𝑡H) is the increase in radiative forcing at time-step 𝑡′. However, numerically solving this integral 

via the summation (S7) would require a numerical model to take many steps in the calculation, recall many 

values of past radiative forcing and utilise an algorithm to identify the most recent time when R changed 



 4 

sign. To simplify and speed up the calculation, WASP adopts an approximation that requires knowledge of 

only the previous time-step value of climate feedback from that process, 𝜆(𝑡 − 𝛿𝑡), and the previous 

timestep value of radiative forcing, 𝑅(𝑡 − 𝛿𝑡), and the additional radiative forcing for the current timestep, 

𝛿𝑅. 

 

If the magnitude of R has not increased since the previous time-step, 𝛿𝑅/𝑅(𝑡 − 𝛿𝑡) ≤ 0, a time-step 

equation of the same form as (S5) is applied: 

 

𝜆(𝑡) = 𝜆(𝑡 − 𝛿𝑡) + A𝜆5BC2" − 𝜆(𝑡 − 𝛿𝑡)D F1 − exp
−𝛿𝑡
𝜏 J 

            (S8) 

If the magnitude of R has increased since the last time-step,	𝛿𝑅/𝑅(𝑡 − 𝛿𝑡) > 0, then we have a summation 

of 𝜆 from two components of radiative forcing, weighted by their respective relative contributions to 

radiative forcing as per (S7): the 𝜆 value for radiative forcing existing at the previous timestep plus the value 

for the radiative forcing since the last time-step. Considering (S7) and (S8) we write, 

 

𝜆(𝑡) =
L𝜆(𝑡 − 𝛿𝑡) + Y𝜆5BC2" − 𝜆(𝑡 − 𝛿𝑡)Z Y1 − exp

−𝛿𝑡
𝜏 ZN𝑅(𝑡 − 𝛿𝑡) + L𝜆5BC2" Y1 − exp

0
𝜏ZN 𝛿𝑅

𝑅(𝑡 − 𝛿𝑡) + 𝛿𝑅
 

 

            (S9) 

Noting that Y1 − exp <
I
Z = 0, and 𝑅(𝑡) = 𝑅(𝑡 − 𝛿𝑡) + 𝛿𝑅, this summation (S9) simplifies to, 

 

𝜆(𝑡) = [
𝑅(𝑡 − 𝛿𝑡)
𝑅(𝑡)

[ \𝜆(𝑡 − 𝛿𝑡) + A𝜆5BC2" − 𝜆(𝑡 − 𝛿𝑡)D F1 − exp
−𝛿𝑡
𝜏 J] 

            (S10) 

  

Supplementary Figure S7 shows this numerical scheme (eqns. S8 and S10) applied to two idealised step-

function scenarios in radiative forcing for a system with Planck, fast and multidecadal feedbacks each 

separately calculated using eqns. (S8) and (S10). For the single step-function scenario (Figure S7a) the fast 

and multidecadal feedback responses begin at 0 and continually increase in magnitude over their respective 

timescales (Figure 7b), with the overall feedback response evolving accordingly (Figure 7c). However, for 

the double-step function scenario (Figure 7d) the responses are altered, with both fast and multidecadal 

feedbacks reducing when the second step-function in radiative forcing is applied (Figure 7e,f) before 

evolving towards their equilibrium values afterwards.  

 

 

 



 5 

S4 The observational constraints to select posterior ensembles 

The WASP model selects prior ensemble members for inclusion into a posterior ensemble via comparison 

with observational constraints (Supplementary Table 2). These constraints include reconstructions of 

historical: Global mean surface temperature (HadCRUT5 or HadCRUT5 (no infill) in Supplementary Table 

S2); ocean heat content for depth layers or the whole ocean (Cheng et al. or NODC in Supplementary Table 

S2); global sea surface temperature anomaly (HadSST4 in Supplementary Table S2); and global ocean 

carbon uptake (The Global Carbon Budget in Supplementary Table S2).  

 

The WASP model contains one input parameter for the ratio of global sea-surface warming to global mean 

surface warming at equilibrium (Ratio 1 or r1 in Supplementary Table S1) and another for the ratio of global 

whole-ocean warming to global sea-surface warming at equilibrium (Ratio 2 or r2 in Supplementary Table 

S1). It is these input parameters that require the use of a separate observational constraint for sea surface 

temperatures (HadSST4 in Supplementary Table S2) and an observational constraint for ocean carbon uptake 

(The Global Carbon Budget in Supplementary Table S2) to be applied. As the r1 parameter is varied between 

prior ensemble members, simulated global mean surface warming and sea surface temperature warming vary 

differently (relative to each other) across the ensemble. Therefore, the observational constraints for both 

global surface temperature and sea surface temperature are required to help constrain the posterior values of 

r1 within the posterior ensembles. As the r2 parameter is varied between prior ensemble members, the relative 

ocean uptakes of heat and carbon are varied across the ensemble members. Therefore, observational 

constraints for both ocean heat and carbon uptake are required to constrain the values of r2 in the posterior 

ensembles. 
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Supplementary Tables: 

 

Model input parameter Prior Distribution Notes 

𝜆!"#$%&, Planck climate feedback Normal, 𝜇= 3.2 Wm-2; 

𝜎 = 0.2 Wm-2 

Estimated from global energy 

budget (Trenberth et al., 2014) 

and global mean temperature 

(Jones and Harpham, 2013). 

𝜆(#)*
5BC2", climate feedback from fast 

processes at equilibrium 

Uniform, min. = -3.0 Wm-2, max. 

= +1.0 Wm-2 

Assume equal prior likelihood 

from -3.0 to +1.0 Wm-2 

𝜏(#)*, e-folding timescale of fast 

climate feedback processes 

Normal, 𝜇 =8.9 days , 𝜎 = 0.4 

days 

Set to residence timescale for 

water vapour in the atmosphere 

(van der Ent and Tuinenberg, 

2017) 

𝜆JC"*215%#1#"
5BC2" , climate feedback 

from slow processes at 

equilibrium 

Uniform, min. = -3.0 Wm-2, max. 

= +3.0 Wm-2. 

Assume equal prior likelihood 

from -3.0 to +3.0 Wm-2 

𝜏JC"*215%#1#", e-folding timescale 

of slow climate feedback 

processes 

Uniform, min. = 20 years, max. = 

45 years 

Linked to the minimum time 

window over which slow climate 

feedbacks are evaluated (20 years) 

in climate models by Andrews et 

al. (2015) and the ventilation 

timescale of the upper 

thermocline (45 years) identified 

by Fine et al. (2017). 

𝑎-./, the radiative forcing 

coefficient for a log change in 

CO2 

Normal, 𝜇 = 5.35 Wm-2, 𝜎 = 0.27 

Wm-2 

IPCC (2013) 

Dimensionless uncertainty in N2O 

radiative forcing 

Normal, 𝜇 = 1.0, 𝜎 = 0.05. To represent percentage 

uncertainty of Etminan et al. 

(2016) 
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Dimensionless uncertainty in CH4 

radiative forcing 

Normal, 𝜇 = 1.0, 𝜎 = 0.07. To represent percentage 

uncertainty of Etminan et al. 

(2016) 

Dimensionless uncertainty in 

Halocarbon radiative forcing 

Normal, 𝜇 = 1.0, 𝜎 = 0.05. To represent percentage 

uncertainty of Myhre et al. (2013) 

Coefficient of radiative forcing 

from volcanic aerosols 

Normal, 𝜇 = -19.0 Wm-2,  

𝜎 = -0.5 Wm-2. 

Relates volcanic AOD to radiative 

forcing after Gregory et al. (2016) 

Radiative forcing from SOX 

aerosols in 2010, 𝛾7.!𝐸7.! 

Normal, 𝜇 = -0.31 Wm-2,  

𝜎 = 0.11 Wm-2 

From AeroCom experiment, 

Myhre et al. (2013) 

Radiative forcing from Black 

Carbon (BC) aerosols in 2010, 

𝛾6-𝐸6-  

Normal, 𝜇 = 0.18 Wm-2,  

𝜎 = 0.07 Wm-2 

From AeroCom experiment, 

Myhre et al. (2013) 

Radiative forcing from Nitrous 

Oxide (NOX) aerosols in 2010, 

𝛾8.!𝐸8.! 

Normal, 𝜇 = -0.032 Wm-2,  

𝜎 = 0.016 Wm-2 

From AeroCom experiment, 

Myhre et al. (2013) with 40% 

weighting 

Radiative forcing from Volatile 

Organic Compound (NMVOC) 

aerosols in 2010, 𝛾7.;𝐸8K:.-  

Normal, 𝜇 = -0.06 Wm-2,  

𝜎 = 0.09 Wm-2 

From AeroCom experiment, 

Myhre et al. (2013) 

Radiative forcing from Organic 

Carbon (OC) aerosols in 2010, 

𝛾.-𝐸.-  

Normal, 𝜇 = -0.03 Wm-2,  

𝜎 = 0.01 Wm-2 

From AeroCom experiment, 

Myhre et al. (2013) 

Radiative forcing from NH3 

aerosols in 2010, 𝛾89"𝐸89" 

Normal, 𝜇 = -0.048 Wm-2,  

𝜎 = 0.024 Wm-2 

From AeroCom experiment, 

Myhre et al. (2013) 

The radiative forcing from 

indirect aerosol effects in 2010, 

−𝑅#%2:/<== 

Skew-normal, 𝜇 = -0.55 Wm-2, 𝜎 

= 0.37 Wm-2, skew = -2.0. 

To approximate indirect aerosol 

radiative forcing distribution of 

AR5 (IPCC., 2013). 

Carbon exchange e-folding 

timescale between atmosphere 

and surface ocean mixed layer 

Uniform, min. = 0.5 yrs,  

max. = 1.0 yrs 

As used in WASP prior ensemble 

of Goodwin (2018). 
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Tracer exchange e-folding 

timescale surface ocean mixed 

layer to upper thermocline 

Uniform, min. = 5 yrs,  

max. = 40 yrs 

Tracer exchange e-folding 

timescale surface ocean mixed 

layer to intermediate water 

Uniform, min. = 15 yrs,  

max. = 60 yrs 

Tracer exchange e-folding 

timescale surface ocean mixed 

layer to deep water 

Uniform, min. = 100 yrs,  

max. = 500 yrs 

Tracer exchange e-folding 

timescale surface ocean mixed 

layer to bottom water 

Uniform, min. = 400 yrs,  

max. = 1500 yrs 

The atmosphere-ocean buffered 

carbon inventory, Ib 

Uniform, min. = 3100 PgC, max. 

= 3500 PgC 

Ratio of surface warming global 

near surface to global sea surface 

at equilibrium, ratio 1 (r1) 

Uniform, min. = 0.20,  

max. = 1.5 

Ratio of global whole-ocean 

warming to global sea surface 

warming at equilibrium, ratio 2 

(r2) 

Uniform, min. = 0.1,  

max. = 1.0 

 

Table S1: Prior distributions of the 25 varied model input parameters. 
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Historic observational 

constraint 

Mean and standard deviation of likelihood used for the ensembles 

Surface warming anomalies, 

relative to 2000-2018 

HadCRUT5 ensembles HadCRUT5 (no infill) ensemble 

DT during 1850-1899  𝜇 = -0.973 °C; 𝜎 = 0.074 °C. 𝜇 = -0.904 °C; 𝜎 = 0.096 °C. 

DT during 1900-1919  𝜇 = -1.042 °C; 𝜎 = 0.067 °C. 𝜇 = -1.012 °C; 𝜎 = 0.081 °C. 

DT during 1920-1939  𝜇 = -0.820 °C; 𝜎 = 0.061 °C. 𝜇 = -0.792 °C; 𝜎 = 0.073 °C. 

DT during 1940-1959  𝜇 = -0.666 °C;  𝜎 = 0.064 °C. 𝜇 = -0.653 °C; 𝜎 = 0.076 °C. 

DT during 1960-1979  𝜇 = -0.706 °C; 𝜎 = 0.027 °C. 𝜇 = -0.679 °C; 𝜎 = 0.049 °C. 

DT during 1980-1999  𝜇 = -0.374 °C;  𝜎 = 0.023 °C. 𝜇 = -0.343 °C;  𝜎 = 0.048 °C. 

SST anomaly relative to 1961-

1990  

All ensembles (HadSST4) 

DSST during 1850-1899 𝜇 = -0.281 °C, 𝜎 = 0.105 °C 

Heat content anomaly Cheng et al. ensembles NODC ensemble 

DOHC upper 700m, 1960-1969 to 

2006-2015 

𝜇 = 177.8×1021 J;  

𝜎 = 13.8×1021 J 

- 

DOHC from 700m to 2000m, 

1960-1969 to 2006-2015 

𝜇 = 75.6×1021 J;  

𝜎 = 12.3×1021 J 

- 

DOHC for whole ocean, 1960-

1969 to 2006-2015 

𝜇 = 360×1021 J;  

𝜎 = 35×1021 J 

- 

DOHC upper 700m, from 1955-

1959 to 2015-2019 

- 𝜇 = 211.9×1021 J;  

𝜎	 = 18.5×1021 J 

DOHC upper 2000m, from 1955-

1959 to 2015-2019 

- 𝜇 = 314.5×1021 J;  

𝜎 = 20.3×1021 J 

Total Earth System heat content 

anomaly, 1971 to 2010 

- 𝜇 = 274×1021 J;  

𝜎 = 48×1021 J 

Ocean carbon uptake  All ensembles (Global Carbon Budget) 
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Whole ocean carbon content 

increase, 1982 to start of 2018 

𝜇= 71.2 PgC, 𝜎= 24.3 PgC 

 

Table S2: Historic likelihood distributions applied as constraints to extract the posterior ensemble 

from the prior ensemble. Quantities are derived from observational-reconstruction datasets 

HadCRUT5 (Morice et al., 2019); HadCRUT5 (no infill); NODC (Levitus et al., 2012); Cheng et al. 

(2017); HadSST4 (Kennedy et al., 2019); and the Global Carbon Budget (le Quéré et al., 2018). The 

mean values (𝝁) for each multi-year average quantity (aside from NODC) are calculated as the time-

average of the annual means for the relevant period. NODC already provides the 5-year time average. 

The standard deviation (𝝈) is provided by over the relevant 5-year time-period for the NODC dataset, 

while 𝝈 in the ocean carbon budget refers to an instantaneous cumulative change and is calculated 

from the 2 times the standard deviation of observation-constrained ocean models used within the 

Global Carbon Budget (le Quéré et al., 2018); where we multiply the standard deviation of the 

observation-constrained models by 2 since this small sample of 7 models may not be dispersive enough 

to capture the full uncertainty in ocean carbon uptake. For all other datasets where a multi-year time 

average is used, the value of 𝝈 for the time-average periods considered is estimated as the time-average 

of the annual values of 𝝈. In the HadCRUT5 and HadCRUT5 (no infill) datasets the annual 𝝈 is 

assumed to be given by the annual 95% range in temperature anomaly divided by 4. This method of 

estimating the multi-year time-average from annual values of 𝝈 is equivalent to assuming perfect 

correlation between where the true value lies within the uncertainty distribution from one year to the 

next, and provides a larger value of 𝝈 for the relevant time-period than assumptions involving reduced 

correlation.  
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Supplementary Figures: 

 

 
Figure S1: Correlations between model parameter posteriors and model outputs for the weighted metaensemble. Rows and 

columns 1-25 correspond to the parameters listed in Supplementary Figures S2-S6 in the order they appear in the x-axis of 

those figures (e.g. 1 is 𝝀𝑷𝒍𝒂𝒏𝒄𝒌, 2 is 𝝀𝒇𝒂𝒔𝒕
𝒆𝒒𝒖𝒊𝒍, …); rows and columns 26-30 are ECS20, ECS50, ECS100 ECS140, and TCR 

respectively. Red indicates positive correlation and blue indicates negative correlation. 

 

 

5 10 15 20 25 30

5

10

15

20

25

30



 14 

Figure S2. Principle component 1 of the varied model parameters within the posterior model ensembles. 
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Figure S3. Principle Component 2 of the posterior model ensembles.   



 16 

 
Figure S4. Principle Component 3 of the posterior model ensembles. 
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Figure S5. Principle Component 4 of the posterior model ensembles. 
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Figure S6. Principle Component 5 of the posterior model ensembles. 
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Figure S7: Example climate feedback responses to two idealised step-function radiative forcing scenarios in the WASP model 

equations. Panels (a), (b) and (c) shows radiative forcing for an idealised single step-function scenarios (a: black). the 

responses of fast (b: black) and multidecadal (b: red) feedback terms and the overall effective climate feedback response 

from the Planck, fast and multidecadal feedbacks (c: black). Panels (d), (c) and (f) show the corresponding values for a 

double step-function idealised radiative forcing. Values of climate feedback terms calculated using equations S8 and S10 with 

example values used 𝝀𝑷𝒍𝒂𝒏𝒄𝒌 = 𝟑. 𝟐 Wm-2K-1; 𝝀𝒇𝒂𝒔𝒕
𝒆𝒒𝒖𝒊𝒍 = -1.0 Wm-2K-1 ; 𝝀𝒎𝒖𝒍𝒕𝒊𝒅𝒆𝒄𝒂𝒅𝒂𝒍𝒕

𝒆𝒒𝒖𝒊𝒍 = −𝟏. 𝟎  Wm-2K-1; 𝝉𝒇𝒂𝒔𝒕 = 𝟏𝟎 days and 

𝝉𝒎𝒖𝒍𝒕𝒊𝒅𝒆𝒄𝒂𝒅𝒂𝒍 = 𝟑𝟎	years and using 12 time-steps per year. 
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