Articles | Volume 12, issue 4
https://doi.org/10.5194/esd-12-1275-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-1275-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles
Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
Andrey Ganopolski
Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
Related authors
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Christine Kaufhold, Matteo Willeit, Bo Liu, and Andrey Ganopolski
Biogeosciences, 22, 2767–2801, https://doi.org/10.5194/bg-22-2767-2025, https://doi.org/10.5194/bg-22-2767-2025, 2025
Short summary
Short summary
This study simulates long-term future climate scenarios to assess the persistence of CO2 emissions in the atmosphere. Results show that the land stores 4 %–13 % of emissions after 100 kyr and that the removal timescale of CO2 for silicate weathering is shorter than previously expected. Our study highlights the importance of adding model complexity to the global carbon cycle in Earth system models for improved predictions of long-term atmospheric CO2 concentration.
Matteo Willeit, Andrey Ganopolski, Neil R. Edwards, and Stefan Rahmstorf
Clim. Past, 20, 2719–2739, https://doi.org/10.5194/cp-20-2719-2024, https://doi.org/10.5194/cp-20-2719-2024, 2024
Short summary
Short summary
Using an Earth system model that can simulate Dansgaard–Oeschger-like events, we show that conditions under which millennial-scale climate variability occurs are related to the integrated surface buoyancy flux over the northern North Atlantic. This newly defined buoyancy measure explains why millennial-scale climate variability arising from abrupt changes in the Atlantic meridional overturning circulation occurred for mid-glacial conditions but not for interglacial or full glacial conditions.
Matteo Willeit and Andrey Ganopolski
Earth Syst. Dynam., 15, 1417–1434, https://doi.org/10.5194/esd-15-1417-2024, https://doi.org/10.5194/esd-15-1417-2024, 2024
Short summary
Short summary
Using a fast Earth system model we trace the stability landscape of the Atlantic meridional overturning circulation in the combined freshwater forcing–atmospheric CO2 space. We find four different Atlantic meridional overturning circulation states that are stable under different conditions and a generally increasing equilibrium Atlantic meridional overturning circulation strength with increasing CO2 concentrations.
Stefanie Talento, Matteo Willeit, and Andrey Ganopolski
Clim. Past, 20, 1349–1364, https://doi.org/10.5194/cp-20-1349-2024, https://doi.org/10.5194/cp-20-1349-2024, 2024
Short summary
Short summary
To trigger glacial inception, the summer maximum insolation at high latitudes in the Northern Hemisphere must be lower than a critical value. This value is not constant but depends on the atmospheric CO2 concentration. Paleoclimatic data do not give enough information to derive the relationship between the critical threshold and CO2. However, knowledge of such a relation is important for predicting future glaciations and the impact anthropogenic CO2 emissions might have on them.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Andrey Ganopolski
Clim. Past, 20, 151–185, https://doi.org/10.5194/cp-20-151-2024, https://doi.org/10.5194/cp-20-151-2024, 2024
Short summary
Short summary
Despite significant progress in modelling Quaternary climate dynamics, a comprehensive theory of glacial cycles is still lacking. Here, using the results of model simulations and data analysis, I present a framework of the generalized Milankovitch theory (GMT), which further advances the concept proposed by Milutin Milankovitch over a century ago. The theory explains a number of facts which were not known during Milankovitch time's, such as the 100 kyr periodicity of the late Quaternary.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Christine Kaufhold and Andrey Ganopolski
Saf. Nucl. Waste Disposal, 2, 89–90, https://doi.org/10.5194/sand-2-89-2023, https://doi.org/10.5194/sand-2-89-2023, 2023
Short summary
Short summary
A repository in Germany must be secure for a period of at least 1 million years. We argue that the deep-future climate should be considered in the site selection process. A suite of possible future climates will be provided, using different emission scenarios. In low-emission scenarios, glacial cycles will quickly resume, changing subterranean stress and permafrost. In high-emission scenarios, the sea level will rise. Both regimes should be of interest to those working on nuclear waste disposal.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Cited articles
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi,
K., and Blatter, H.: Insolation-driven 100,000-year glacial cycles and
hysteresis of ice-sheet volume, Nature, 500, 190–193, https://doi.org/10.1038/nature12374, 2013.
Annan, J. D. and Hargreaves, J. C.: A new global reconstruction of temperature changes at the Last Glacial Maximum, Clim. Past, 9, 367–376, https://doi.org/10.5194/cp-9-367-2013, 2013.
Archer, D. and Brovkin, V.: The millennial atmospheric lifetime of
anthropogenic CO2, Clim. Change, 90, 283–297, https://doi.org/10.1007/s10584-008-9413-1, 2008.
Archer, D. and Ganopolski, A.: A movable trigger: Fossil fuel CO2 and
the onset of the next glaciation: Next Glaciation, Geochem. Geophys.
Geosyst., 6, Q05003, https://doi.org/10.1029/2004GC000891,
2005.
Archer, D., Kheshgi, H., and Maier-Reimer, E.: Multiple timescales for
neutralization of fossil fuel CO2, Geophys. Res. Lett., 24,
405–408, https://doi.org/10.1029/97GL00168, 1997.
Berger, A. and Loutre, M. F.: An exceptionally long interglacial ahead?, Science, 297, 1287–1288, 2002.
Berger, A., Li, X. S., and Loutre, M. F.:
Modelling northern hemisphere ice volume over the last 3Ma,
Quaternary Sci. Rev., 18, 1–11,
https://doi.org/10.1016/S0277-3791(98)00033-X, 1999.
Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of
glacial atmospheric CO 2 in response to changes in oceanic circulation
and marine biogeochemistry: Mechanisms of lowering glacial pCO2,
Paleoceanography, 22, PA4202, https://doi.org/10.1029/2006PA001380, 2007.
Brovkin, V., Ganopolski, A., Archer, D., and Munhoven, G.: Glacial CO2 cycle as a succession of key physical and biogeochemical processes, Clim. Past, 8, 251–264, https://doi.org/10.5194/cp-8-251-2012, 2012.
Calov, R. and Ganopolski, A.: Multistability and hysteresis in the
climate-cryosphere system under orbital forcing, Geophys. Res. Lett.,
32, L21717, https://doi.org/10.1029/2005GL024518, 2005.
Cochelin, A.-S. B., Mysak, L. A., and Wang, Z.: Simulation of long-term
future climate changes with the green McGill paleoclimate model: the next
glacial inception, Clim. Change, 79, 381–401, https://doi.org/10.1007/s10584-006-9099-1, 2006.
Crucifix, M.: Oscillators and relaxation phenomena in Pleistocene climate
theory, Phil. Trans. R. Soc. A., 370, 1140–1165, https://doi.org/10.1098/rsta.2011.0315, 2012.
Crucifix, M.: Why could ice ages be unpredictable?, Clim. Past, 9, 2253–2267, https://doi.org/10.5194/cp-9-2253-2013, 2013.
Crucifix, M. and Rougier, J.: On the use of simple dynamical systems for
climate predictions, The European Physical Journal Special Topics, 174,
11–31, https://doi.org/10.1140/epjst/e2009-01087-5 ,2009.
Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K. J., and
Weaver, A. J.: Lifetime of Anthropogenic Climate Change: Millennial Time
Scales of Potential CO2 and Surface Temperature Perturbations, J.
Climate, 22, 2501–2511, https://doi.org/10.1175/2008JCLI2554.1, 2009.
Eppley, R. W.: Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 1063–1085, 1972.
Friedrich, T., Timmermann, A., Tigchelaar, M., Elison Timm, O., and
Ganopolski, A.: Nonlinear climate sensitivity and its implications for
future greenhouse warming, Sci. Adv., 2, e1501923, https://doi.org/10.1126/sciadv.1501923, 2016.
Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity, Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017.
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.
Ganopolski, A., Petoukhov, V., Rahmstorf, S., Brovkin, V., Claussen, M.,
Eliseev, A., and Kubatzki, C.: CLIMBER-2: a climate system model of
intermediate complexity. Part II: Model sensitivity, Clim. Dynam., 17,
735–751, 2001.
Ganopolski, A., Calov, R., and Claussen, M.: Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity, Clim. Past, 6, 229–244, https://doi.org/10.5194/cp-6-229-2010, 2010.
Ganopolski, A., Winkelmann, R., and Schellnhuber, H. J.: Critical
insolation–CO2 relation for diagnosing past and future glacial inception,
Nature, 529, 200–203, https://doi.org/10.1038/nature16494, 2016.
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F., and Winkelmann, R.:
The hysteresis of the Antarctic ice sheet, Nature, 585, 538–544,
https://doi.org/10.1038/s41586-020-2727-5, 2020.
Gottschalk, J., Battaglia, G., Fischer, H., Frölicher, T. L., Jaccard,
S. L., Jeltsch-Thömmes, A., Joos, F., Köhler, P., Meissner, K. J.,
Menviel, L., Nehrbass-Ahles, C., Schmitt, J., Schmittner, A., Skinner, L. C.,
and Stocker, T. F.: Mechanisms of millennial-scale atmospheric CO2 change in
numerical model simulations, Quaternary Sci. Rev., 220, 30–74,
https://doi.org/10.1016/j.quascirev.2019.05.013, 2019.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's
Orbit: Pacemaker of the Ice Ages, Science, 194, 1121–1132, https://doi.org/10.1126/science.194.4270.1121, 1976.
Imbrie, J., and Imbrie, J.: Modeling the climatic response to orbital
variations, Science, 207, https://doi.org/10.1126/science.207.4434.943, 1980.
International Atomic Energy Agency, Spent Fuel and High Level Waste: Chemical Durability and Performance under Simulated Repository Conditions, TECDOC Series, Vienna (Austria), ISBN 978-92-0-106007-5, ISSN 1011-4289, 2007.
Kim, J.-S., Kwon, S.-K., Sanchez, M., and Cho, G.-C.: Geological storage of
high level nuclear waste, KSCE J. Civ. Eng., 15, 721–737, https://doi.org/10.1007/s12205-011-0012-8, 2011.
Kobayashi, H., Abe-Ouchi, A., and Oka, A.: Role of Southern Ocean
stratification in glacial atmospheric CO2 reduction evaluated by a
three-dimensional ocean general circulation model: CO2 Response to
Glacial Stratification, Paleoceanography, 30, 1202–1216, https://doi.org/10.1002/2015PA002786, 2015.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, A&A, 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and McCarthy, J.
J.: Temperature effects on export production in the open ocean, Global
Biogeochem. Cycles, 14, 1231–1246, https://doi.org/10.1029/1999GB001229, 2000.
Lenton, T. M. and Britton, C.: Enhanced carbonate and silicate weathering
accelerates recovery from fossil fuel CO 2 perturbations: Weathering
accelerates removal of fossil fuel CO2, Global Biogeochem. Cycles, 20,
GB3009, https://doi.org/10.1029/2005GB002678, 2006.
Lenton, T. M., Marsh, R., Price, A. R., Lunt, D. J., Aksenov, Y., Annan, J.
D., Cooper-Chadwick, T., Cox, S. J., Edwards, N. R., Goswami, S.,
Hargreaves, J. C., Harris, P. P., Jiao, Z., Livina, V. N., Payne, A. J.,
Rutt, I. C., Shepherd, J. G., Valdes, P. J., Williams, G., Williamson, M. S.,
and Yool, A.: Effects of atmospheric dynamics and ocean resolution on
bi-stability of the thermohaline circulation examined using the Grid ENabled
Integrated Earth system modelling (GENIE) framework, Clim. Dynam., 29,
591–613, https://doi.org/10.1007/s00382-007-0254-9, 2007.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records:
Pliocene-Pleistocene Benthic Stack, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005.
Livadiotis, G. and McComas, D. J.: Fitting method based on correlation
maximization: Applications in space physics, J. Geophys.
Res.-Space Phys., 118, 2863–2875, https://doi.org/10.1002/jgra.50304, 2013.
Lord, N. S., Ridgwell, A., Thorne, M. C., and Lunt, D. J.: An impulse
response function for the “long tail” of excess atmospheric CO2 in
an Earth system model, Global Biogeochem. Cycles, 30, 2–17, https://doi.org/10.1002/2014GB005074, 2016.
Lord, N. S., Lunt, D., and Thorne, M.: Modelling changes in climate over the
next 1 million years, Svensk Kärnbränslehantering AB/Swedish Nuclear
Fuel and Waste Management Company, ISSN 1404-0344, 2019.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650 000–800 000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008.
Martin, J. H.: Glacial-interglacial CO2 change: The Iron Hypothesis,
Paleoceanography, 5, 1–13, https://doi.org/10.1029/PA005i001p00001, 1990.
McGlade, C. and Ekins, P.: The geographical distribution of fossil fuels
unused when limiting global warming to 2 ∘C, Nature, 517,
187–190, https://doi.org/10.1038/nature14016, 2015.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Clim. Change,
109, 213–241, https://doi.org/10.1007/s10584-011-0156-z,
2011.
Menviel, L., Joos, F., and Ritz, S. P.: Simulating atmospheric CO2, 13C and
the marine carbon cycle during the Last Glacial–Interglacial cycle:
possible role for a deepening of the mean remineralization depth and an
increase in the oceanic nutrient inventory, Quaternary Sci. Rev., 56,
46–68, https://doi.org/10.1016/j.quascirev.2012.09.012, 2012.
Milankovitch, M.: Kanon der Erdbestrahlung und Seine Andwendung auf das
Eiszeitenproblem, R. Serbian Acad. Spec. Publ. 132, 33, 633 pp.,
Belgrade, 1941.
Nijsse, F. J. M. M., Cox, P. M., and Williamson, M. S.: Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models, Earth Syst. Dynam., 11, 737–750, https://doi.org/10.5194/esd-11-737-2020, 2020.
Paillard, D.: The timing of Pleistocene glaciations from a simple
multiple-state climate model, Nature, 391, 378–381, https://doi.org/10.1038/34891, 1998.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin,
L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric
history of the past 420,000 years from the Vostok ice core, Antarctica,
Nature, 399, 429–436, https://doi.org/10.1038/20859,
1999.
Petoukhov V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A.,
Kubatzki, C., and Rahmstorf, S.: CLIMBER-2: a climate system model of
intermediate complexity. Part I: model description and performance for
present climate, Clim. Dynam., 16, 1–17, 2000.
Pollard, D.: A coupled climate-ice sheet model applied to the Quaternary Ice
Ages, J. Geophys. Res., 88, 7705, https://doi.org/10.1029/JC088iC12p07705, 1983.
Prentice, I. C., Meng, T., Wang, H., Harrison, S. P., Ni, J., and Wang, G.:
Evidence of a universal scaling relationship for leaf CO2 drawdown along an
aridity gradient, New Phytologist, 190, 169–180, https://doi.org/10.1111/j.1469-8137.2010.03579.x, 2011.
Ridgwell, A. and Hargreaves, J. C.: Regulation of atmospheric CO2 by
deep-sea sediments in an Earth system model: Regulation of CO2 by deep-sea
sediments, Global Biogeochem. Cycles, 21, GB2008, https://doi.org/10.1029/2006GB002764, 2007.
Saltzman, B.: carbon dioxide and the δ18O record of
late-Quaternary climatic change: a global model, Clim. Dynam., 1, 77–85, 1987.
Saltzman, B. and Verbitsky, M. Y.: Multiple instabilities and modes of
glacial rhythmicity in the plio-Pleistocene: a general theory of late
Cenozoic climatic change, Clim. Dynam., 9, 1–15, https://doi.org/10.1007/BF00208010, 1993.
Schneider von Deimling, T., Ganopolski, A., Held, H., and Rahmstorf, S.: How
cold was the last glacial maximum?, Geophys. Res. Lett., 33, L14709,
https://doi.org/10.1029/2006GL026484, 2006.
Snyder, C. W.: Evolution of global temperature over the past two million
years, Nature, 538, 226–228, https://doi.org/10.1038/nature19798, 2016.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C.,
Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix,
M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., and
Schellnhuber, H. J.: Trajectories of the Earth System in the Anthropocene,
P. Natl. Acad. Sci. USA, 115, 8252–8259, https://doi.org/10.1073/pnas.1810141115, 2018.
Stone, M.: Cross-Validatory Choice and Assessment of Statistical
Predictions, J. Roy. Stat. Soc. B, 36, 111–133, https://doi.org/10.1111/j.2517-6161.1974.tb00994.x, 1974.
Tabor, C. R. and Poulsen, C. J.: Simulating the mid-Pleistocene transition
through regolith removal, Earth Planet. Sc. Lett., 434, 231–240,
https://doi.org/10.1016/j.epsl.2015.11.034, 2016.
Talento, S.: Data: Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles, OSFHome [data set and code], https://doi.org/10.17605/OSF.IO/KB76G, 2021.
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen,
C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584,
569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020.
Tzedakis, P. C., Raynaud, D., McManus, J. F., Berger, A., Brovkin, V., and
Kiefer, T.: Interglacial diversity, Nat. Geosci., 2, 751–755,
https://doi.org/10.1038/ngeo660, 2009.
Tziperman, E., Raymo, M. E., Huybers, P., and Wunsch, C.: Consequences of
pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to
Milankovitch forcing: HOW TO PACE AN ICE AGE, Paleoceanography, 21, PA4206,
https://doi.org/10.1029/2005PA001241, 2006.
Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W., and Law, C.
S.: Effect of iron supply on Southern Ocean CO2 uptake and implications for
glacial atmospheric CO2, Nature, 407, 730–733, https://doi.org/10.1038/35037561, 2000.
Watson, A. J., Vallis, G. K., and Nikurashin, M.: Southern Ocean buoyancy
forcing of ocean ventilation and glacial atmospheric CO2, Nat. Geosci.,
8, 861–864, https://doi.org/10.1038/ngeo2538, 2015.
Willeit, M., Ganopolski, A., Calov, R., and Brovkin, V.: Mid-Pleistocene
transition in glacial cycles explained by declining CO 2 and regolith
removal, Sci. Adv., 5, eaav7337, https://doi.org/10.1126/sciadv.aav7337, 2019.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in seawater: equilibrium, kinetics, isotopes, Elsevier Oceanography Book Series (No. 65), Amsterdam,
2001.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Short summary
We propose a model for glacial cycles and produce an assessment of possible trajectories for the next 1 million years. Under natural conditions, the next glacial inception would most likely occur ∼50 kyr after present. We show that fossil-fuel CO2 releases can have an extremely long-term effect. Potentially achievable CO2 anthropogenic emissions during the next centuries will most likely provoke ice-free conditions in the Northern Hemisphere landmasses throughout the next half a million years.
We propose a model for glacial cycles and produce an assessment of possible trajectories for the...
Altmetrics
Final-revised paper
Preprint