Articles | Volume 7, issue 2
https://doi.org/10.5194/esd-7-371-2016
https://doi.org/10.5194/esd-7-371-2016
Research article
 | 
22 Apr 2016
Research article |  | 22 Apr 2016

Atmospheric rivers moisture sources from a Lagrangian perspective

Alexandre M. Ramos, Raquel Nieto, Ricardo Tomé, Luis Gimeno, Ricardo M. Trigo, Margarida L. R. Liberato, and David A. Lavers

Related authors

Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Climatology and trends of concurrent temperature extremes in the global extratropics
Gabriele Messori, Antonio Segalini, and Alexandre M. Ramos
Earth Syst. Dynam., 15, 1207–1225, https://doi.org/10.5194/esd-15-1207-2024,https://doi.org/10.5194/esd-15-1207-2024, 2024
Short summary
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
The Record-Breaking Precipitation Event of December 2022 in Portugal
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-130,https://doi.org/10.5194/nhess-2024-130, 2024
Revised manuscript accepted for NHESS
Short summary
How to mitigate flood events similar to the 1979 catastrophic floods in the lower Tagus
Diego Fernández-Nóvoa, Alexandre M. Ramos, José González-Cao, Orlando García-Feal, Cristina Catita, Moncho Gómez-Gesteira, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 24, 609–630, https://doi.org/10.5194/nhess-24-609-2024,https://doi.org/10.5194/nhess-24-609-2024, 2024
Short summary

Related subject area

Dynamics of the Earth system: interactions
Continental heat storage: contributions from the ground, inland waters, and permafrost thawing
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023,https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
The rate of information transfer as a measure of ocean–atmosphere interactions
David Docquier, Stéphane Vannitsem, and Alessio Bellucci
Earth Syst. Dynam., 14, 577–591, https://doi.org/10.5194/esd-14-577-2023,https://doi.org/10.5194/esd-14-577-2023, 2023
Short summary
Evaluation of global teleconnections in CMIP6 climate projections using complex networks
Clementine Dalelane, Kristina Winderlich, and Andreas Walter
Earth Syst. Dynam., 14, 17–37, https://doi.org/10.5194/esd-14-17-2023,https://doi.org/10.5194/esd-14-17-2023, 2023
Short summary
On the additivity of climate responses to the volcanic and solar forcing in the early 19th century
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022,https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Exploring the relationship between temperature forecast errors and Earth system variables
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022,https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary

Cited articles

Bao, J-W., Michelson, S. A., Neiman, P. J., Ralph, F. M., and Wilczak, J. M.: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture, Mon. Weather Rev., 134, 1063–1080, 2006.
Castillo, R., Nieto R., Drumond, A., and Gimeno, L.: Estimating the temporal domain when the discount of the net evaporation term affects the resulting net precipitation pattern in the moisture budget using a 3-D Lagrangian approach, PLoS ONE, 9, e99046, https://doi.org/10.1371/journal.pone.0099046, 2014.
Couto, F. T., Salgado, R., and Costa, M. J.: Analysis of intense rainfall events on Madeira Island during the 2009/2010 winter, Nat. Hazards Earth Syst. Sci., 12, 2225–2240, https://doi.org/10.5194/nhess-12-2225-2012, 2012.
Couto, F. T., Salgado, R., Costa, M. J., and Prior, V.: Precipitation in the Madeira Is- land over a 10-year period and the meridional water vapour transport during the winter seasons, Int. J. Climatol., 35, 3748–3759, https://doi.org/10.1002/joc.4243, 2015.
Dacre, H., Clark, P., Martinez-Alvarado, O., Stringer, M., and Lavers, D.: How do atmospheric rivers form?, B. Am. Meteorol. Soc., 96, 1243–1255, https://doi.org/10.1175/BAMS-D-14-00031.1, 2015.
Download
Short summary
An atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs that affected western European coasts between 1979 and 2014. A Lagrangian analysis was then applied in order to identify the main sources of moisture of the ARs that reach western European coasts. Results confirm not only the advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical one.
Altmetrics
Final-revised paper
Preprint