Articles | Volume 6, issue 2
Earth Syst. Dynam., 6, 555–568, 2015
https://doi.org/10.5194/esd-6-555-2015
Earth Syst. Dynam., 6, 555–568, 2015
https://doi.org/10.5194/esd-6-555-2015

Research article 02 Sep 2015

Research article | 02 Sep 2015

Ice supersaturation and the potential for contrail formation in a changing climate

E. A. Irvine and K. P. Shine

Related authors

Aircraft routing with minimal climate impact: the REACT4C climate cost function modelling approach (V1.0)
V. Grewe, C. Frömming, S. Matthes, S. Brinkop, M. Ponater, S. Dietmüller, P. Jöckel, H. Garny, E. Tsati, K. Dahlmann, O. A. Søvde, J. Fuglestvedt, T. K. Berntsen, K. P. Shine, E. A. Irvine, T. Champougny, and P. Hullah
Geosci. Model Dev., 7, 175–201, https://doi.org/10.5194/gmd-7-175-2014,https://doi.org/10.5194/gmd-7-175-2014, 2014

Related subject area

Earth system change: climate prediction
Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020,https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Dating hiatuses: a statistical model of the recent slowdown in global warming and the next one
J. Isaac Miller and Kyungsik Nam
Earth Syst. Dynam., 11, 1123–1132, https://doi.org/10.5194/esd-11-1123-2020,https://doi.org/10.5194/esd-11-1123-2020, 2020
Short summary
Calibrating large-ensemble European climate projections using observational data
Christopher H. O'Reilly, Daniel J. Befort, and Antje Weisheimer
Earth Syst. Dynam., 11, 1033–1049, https://doi.org/10.5194/esd-11-1033-2020,https://doi.org/10.5194/esd-11-1033-2020, 2020
Short summary
Reduced global warming from CMIP6 projections when weighting models by performance and independence
Lukas Brunner, Angeline G. Pendergrass, Flavio Lehner, Anna L. Merrifield, Ruth Lorenz, and Reto Knutti
Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020,https://doi.org/10.5194/esd-11-995-2020, 2020
Short summary
Assessment of a full-field initialised decadal climate prediction system with the CMIP6 version of EC-Earth
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-66,https://doi.org/10.5194/esd-2020-66, 2020
Revised manuscript accepted for ESD
Short summary

Cited articles

Burkhardt, U., Kärcher, B., Ponater, M., Gierens, K., and Gettelman, A.: Contrail cirrus supporting areas in model and observations, Geophys. Res. Lett., 35, L16808, https://doi.org/10.1029/2008GL034056, 2008.
Davini, P. and Cagnazzo, C.: On the misinterpretation of the north Atlantic oscillation in CMIP5 models, Clim. Dynam., 43, 1497–1511, https://doi.org/10.1007/s00382-013-1970-y, 2013.
Deuber, O., Matthes, S., Sausen, R., Ponater, M., and Ling, L.: A physical metric-based framework for evaluating the climate trade-off between CO2 and contrails – the case of lowering flight trajectories, Environ. Sci. Policy, 25, 176–185, https://doi.org/10.1016/j.envsci.2012.10.004, 2013.
Download
Short summary
Aviation impacts on climate via contrails, which are often clearly visible in the sky. Contrail formation requires particular cold/moist atmospheric conditions at aircraft cruise altitudes. Climate change is expected to change these conditions. Using simulations from several climate models we conclude that, by 2100, the probability of contrail formation could decrease from 11 to 7%, mostly due to changing conditions in the tropics. There is no consensus on the likely change in mid-latitudes.
Altmetrics
Final-revised paper
Preprint