Articles | Volume 14, issue 1
https://doi.org/10.5194/esd-14-17-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-17-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of global teleconnections in CMIP6 climate projections using complex networks
Clementine Dalelane
CORRESPONDING AUTHOR
Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany
Kristina Winderlich
Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany
Andreas Walter
Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany
Related authors
Clementine Dalelane, Andreas Paxian, Martín Senande, Sabela Sanfiz, Estéban Rodríguez Guisado, Jan Wandel, and Abhinav Tyagi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3664, https://doi.org/10.5194/egusphere-2025-3664, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
We propose a statistical technique for the construction of targeted teleconnection patterns, which maximizes the predictability of a user-selected impact variable in terms of large-scale atmospheric circulation. The implementation of targeted teleconnections into the statistical postprocessing of climate predictions can considerably increase the forecast skill compared to postprocessing based on EOF modes of variability.
Kristina Winderlich, Clementine Dalelane, and Andreas Walter
Earth Syst. Dynam., 15, 607–633, https://doi.org/10.5194/esd-15-607-2024, https://doi.org/10.5194/esd-15-607-2024, 2024
Short summary
Short summary
We develop a new classification method for synoptic circulation patterns. Its unique novelty is the use of the modified structural similarity index metric (SSIM). We demonstrate an exemplary application of the synoptic circulation classes obtained with the new classification method for evaluating historical climate simulations. We introduce a distance metric to measure the match in frequency and duration of synoptic classes between a climate simulation and the reference.
Kristina Winderlich, Clementine Dalelane, and Andreas Walter
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-29, https://doi.org/10.5194/esd-2022-29, 2022
Preprint withdrawn
Short summary
Short summary
This paper presents a new classification method for synoptic circulation patterns and its application on ERA-Interim reanalysis data. The output fields of the CMIP6 models are assigned to the reanalysis-derived classes and a new quality index, built on the statistics between each model and the reference, is introduced to quantify the “quality” of the respective model. CMIP6 models are ranked according to the new quality score.
Clementine Dalelane, Andreas Paxian, Martín Senande, Sabela Sanfiz, Estéban Rodríguez Guisado, Jan Wandel, and Abhinav Tyagi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3664, https://doi.org/10.5194/egusphere-2025-3664, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
We propose a statistical technique for the construction of targeted teleconnection patterns, which maximizes the predictability of a user-selected impact variable in terms of large-scale atmospheric circulation. The implementation of targeted teleconnections into the statistical postprocessing of climate predictions can considerably increase the forecast skill compared to postprocessing based on EOF modes of variability.
Kristina Winderlich, Clementine Dalelane, and Andreas Walter
Earth Syst. Dynam., 15, 607–633, https://doi.org/10.5194/esd-15-607-2024, https://doi.org/10.5194/esd-15-607-2024, 2024
Short summary
Short summary
We develop a new classification method for synoptic circulation patterns. Its unique novelty is the use of the modified structural similarity index metric (SSIM). We demonstrate an exemplary application of the synoptic circulation classes obtained with the new classification method for evaluating historical climate simulations. We introduce a distance metric to measure the match in frequency and duration of synoptic classes between a climate simulation and the reference.
Kristina Winderlich, Clementine Dalelane, and Andreas Walter
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-29, https://doi.org/10.5194/esd-2022-29, 2022
Preprint withdrawn
Short summary
Short summary
This paper presents a new classification method for synoptic circulation patterns and its application on ERA-Interim reanalysis data. The output fields of the CMIP6 models are assigned to the reanalysis-derived classes and a new quality index, built on the statistics between each model and the reference, is introduced to quantify the “quality” of the respective model. CMIP6 models are ranked according to the new quality score.
Cited articles
Agarwal, A., Maheswaran, R., Marwan, N., Caesar, L., and Kurths, J.:
Wavelet-based multiscale similarity measure for complex networks, Eur. Phys.
J. B, 91, 296, https://doi.org/10.1140/epjb/e2018-90460-6, 2018. a
Agarwal, A., Caesar, L., Marwan, N., Maheswaran, R., Merz, B., and Kurths, J.:
Network-based identification and characterization of teleconnections on
different scales, Sci. Rep., 9, 8808, https://doi.org/10.1038/s41598-019-45423-5, 2019. a
Barbosa, S. M. and Andersen, O. B.: Trend patterns in global sea surface
temperature, Int. J. Climatol., 29, 2049–2055, https://doi.org/10.1002/joc.1855,
2009. a
Battiston, F., Cencetti, G., Iacopini, I., Latora, V., M., L., Patania, A.,
Young, J.-G., and Petri, G.: Networks beyond pairwise interactions: Structure
and dynamics, Phys. Rep., 874, 1–92, https://doi.org/10.1016/j.physrep.2020.05.004,
2020. a
Benjamini, Y.: Discovering the false discovery rate, J. R. Statist. Soc. B,
72, 405–416, https://doi.org/10.1111/j.1467-9868.2010.00746.x, 2010. a
Bi, D., Dix, M., Marsland, S., O’Farrell, S., Sullivan, A., Bodman, R., Law,
R., Harman, I., Srbinovsky, J., Rashid, H. A., Dobrohotoff, P., Mackallah,
C., Yan, H., Hirst, A., Savita, A., Boeira Dias, F., Woodhouse, M., Fiedler,
R., and Heerdegen, A.: Configuration and spin-up of ACCESS-CM2, the new
generation Australian Community Climate and Earth System Simulator Coupled
Model, J. South. Hemisphere Earth Syst. Sci., 70, 225–251,
https://doi.org/10.1071/ES19040, 2020. a
Böttcher, B., Keller-Ressel, M., and Schilling, R.: Distance multivariance:
New dependence measures for random vectors, Ann. Stat., 47, 2757–2789,
https://doi.org/10.1214/18-AOS1764, 2019. a, b, c
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, L. E.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur,
G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y.,
Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A.,
Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial,
J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of
the IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Sy., 12,
e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a
Brands, S.: A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the Northern Hemisphere mid-to-high latitudes, Geosci. Model Dev., 15, 1375–1411, https://doi.org/10.5194/gmd-15-1375-2022, 2022. a, b
Brunet, D., Vrscay, E. R., and Wang, Z.: A Class of Image Metrics Based on the
Structural Similarity Quality Index, in: Image Analysis and Recognition,
edited by: Kamel, M. and Campilho, A., vol. 6753 Part 1, 100–110,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-21593-3_11, 2011. a
Brunner, L., Pendergrass, A. G., Lehner, F., Merrifield, A. L., Lorenz, R., and Knutti, R.: Reduced global warming from CMIP6 projections when weighting models by performance and independence, Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, 2020. a
Cannon, A. J.: Reductions in daily continental-scale atmospheric circulation
biases between generations of global climate models: CMIP5 to CMIP6, Environ.
Res. Lett., 15, 064006, https://doi.org/10.1088/1748-9326/ab7e4f, 2020. a, b
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S.,
Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.:
Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled
Model, J. Adv. Model. Earth Sy., 11, 185–209,
https://doi.org/10.1029/2018MS001369, 2019. a, b
Coburn, J. and Pryor, S. C.: Differential Credibility of Climate Modes in
CMIP6, J. Climate, 34, 8145–8164, https://doi.org/10.1175/JCLI-D-21-0359.1,
2021. a
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E.,
Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch,
P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916,
2020. a
De Lathauwer, L., De Moor, B., and Vandewalle, J.: A Multilinear Singular Value
Decomposition, SIAM J. Matrix Anal. A., 21, 1253–1278,
https://doi.org/10.1137/S0895479896305696, 2000. a
Deutsches Klimarechenzentrum: ESGF-Data, [data set], https://esgf-node.llnl.gov/search/cmip6/, last access: 6 December 2021. a
Dijkstra, H. A., Hernández-García, E., Masoller, C., and Barreiro, M.:
Networks in Climate, Cambridge University Press, Cambridge,
https://doi.org/10.1017/9781316275757, 2019. a
Donges, F. J., Zou, Y., Marwan, N., and Kurths, J.: Complex networks in climate
dynamics: Comparing linear and nonlinear network construction methods, Eur.
Phys. J. Spec. Top., 174, 157–179, https://doi.org/10.1140/epjst/e2009-01098-2, 2009. a
Donges, J., Schultz, H., Marwan, N., Zou, Y., and Kurths, J.: Investigating the
topology of interacting networks: Theory and application to coupled climate
subnetworks, Eur. Phys. J. B, 84, 635–651,
https://doi.org/10.1140/epjb/e2011-10795-8, 2011. a
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022. a, b
Duan, Y., Kumar, S., and Kinter, J. L.: Evaluation of Long-Term Temperature
Trend and Variability in CMIP6 Multimodel Ensemble, Geophys. Res. Lett.,
48, e2021GL093227, https://doi.org/10.1029/2021GL093227, 2021. a
European Centre for Medium-Range Weather Forecasts: CERA-20C, [data set], https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/cera-20c, last access: 9 May 2020. a
Ekhtiari, N., Ciemer, C., Kirsch, C., and Donner, R.: Coupled network analysis
revealing global monthly scale co-variability patterns between sea-surface
temperatures and precipitation in dependence on the ENSO state, Eur. Phys.
J.-Spec. Top., 230, 3019–3032, https://doi.org/10.1140/epjs/s11734-021-00168-z,
2021. a, b
Falasca, F.: delta-MAPS, [code], https://github.com/FabriFalasca/delta-MAPS, last access: 10 May 2020. a
Falasca, F., Bracco, A., Nenes, A., and Fountalis, I.: Dimensionality reduction
and network inference for climate data using δ-MAPS: Application to
the CESM Large Ensemble sea surface temperature, J. Adv. Model. Earth Sy.,
11, 1479–1515, https://doi.org/10.1029/2019MS001654, 2019. a, b, c, d, e, f, g
Falasca, F., Crétat, J., and Braconnot, P. Bracco, A.: Spatiotemporal
complexity and time-dependent networks in sea surface temperature from mid-
to late Holocene, Eur. Phys. J. Plus, 135, 392,
https://doi.org/10.1140/epjp/s13360-020-00403-x, 2020. a, b
Fasullo, J. T., Phillips, A. S., and Deser, C.: Evaluation of Leading Modes of
Climate Variability in the CMIP Archives, J. Climate, 33, 5527–5545,
https://doi.org/10.1175/JCLI-D-19-1024.1, 2020. a
Feng, A., Gong, Z., Wang, Q., and Feng, G.: Three-dimensional air–sea
interactions investigated with bilayer networks, Theor. Appl. Climatol.,
109, 635–643, https://doi.org/10.1007/s00704-012-0600-7, 2012. a, b
Fisher, M. J.: Predictable Components in Australian Daily Temperature Data, J.
Climate, 28, 5969–5984, https://doi.org/10.1175/JCLI-D-14-00713.1, 2015. a
Fortunato, S. and Hric, D.: Community detection in networks: A user guide,
Phys. Rep., 659, 1–44, https://doi.org/10.1016/j.physrep.2016.09.002, 2016. a
Fountalis, I., Bracco, A., and Dovrolis, C.: ENSO in CMIP5 simulations: network
connectivity from the recent past to the twenty-third century, Clim. Dynam.,
45, 511–538, https://doi.org/10.1007/s00382-014-2412-1, 2015. a
Frankignoul, C., Gastineau, G., and Kwon, Y.-O.: Estimation of the SST Response
to Anthropogenic and External Forcing and Its Impact on the Atlantic
Multidecadal Oscillation and the Pacific Decadal Oscillation, J. Climate,
30, 9871–9895, https://doi.org/10.1175/JCLI-D-17-0009.1, 2017. a
Fujiwara, M., Hibino, T., Mehta, S. K., Gray, L., Mitchell, D., and Anstey, J.: Global temperature response to the major volcanic eruptions in multiple reanalysis data sets, Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, 2015. a
Fulton, D. J. and Hegerl, G. C.: Testing Methods of Pattern Extraction for
Climate Data Using Synthetic Modes, J. Climate, 34, 7645–7660,
https://doi.org/10.1175/JCLI-D-20-0871.1, 2021. a, b
Garreaud, R., Clem, K., and Veloso, J.: The south pacific pressure trend dipole
and the southern blob, J. Climate, 34, 7661–7676,
https://doi.org/10.1175/JCLI-D-20-0886.1, 2021. a
Gillett, N. P., Fyfe, J. C., and Parker, D.: Attribution of observed sea level
pressure trends to greenhouse gas, aerosol, and ozone changes, Geophys. Res.
Lett., 40, 2302–2306, https://doi.org/10.1002/grl.50500, 2013. a
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019. a
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020. a
Hannachi, A.: Pattern hunting in climate: a new method for finding trends in
gridded climate data, Int. J. Climatol., 27, 1–15, https://doi.org/10.1002/joc.1375, 2007. a, b, c
Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., and Folland,
C. K.: A Tripole Index for the Interdecadal Pacific Oscillation, Clim.
Dynam., 45, 3077–3090, https://doi.org/10.1007/s00382-015-2525-1, 2015. a, b
Hlinka, J., Hartman, D., Vejmelka, M., Novotná, D., and Paluš, M.:
Non-linear dependence and teleconnections in climate data: sources,
relevance, nonstationarity, Clim. Dynam., 42, 1873–1886,
https://doi.org/10.1007/s00382-013-1780-2, 2014. a
Hynčica, M. and Huth, R.: Modes of atmospheric circulation variability in
the Northern Extratropics: A comparison of five reanalyses, J. Climate,
33, 10707–10726, https://doi.org/10.1175/JCLI-D-19-0904.1, 2020. a, b
Jajcay, N., Kravtsov, S., Sugihara, G., Tsonis, A. A., and Paluš, M.:
Synchronization and causality across time scales in El Niño Southern
Oscillation, npj Clim. Atmos. Sci., 1, 33, https://doi.org/10.1038/s41612-018-0043-7,
2018. a
Fokianos, K. and Pitsillou, M.: Testing independence for multivariate
time series via the auto-distance correlation matrix, Biometrika, 105,
337–352, https://doi.org/10.1093/biomet/asx082, 2018. a
Kittel, T., Ciemer, C., Lotfi, N., Peron, T., Rodrigues, F., Kurths, J., and
Donner, R.: Evolving climate network perspectives on global surface air
temperature effects of ENSO and strong volcanic eruptions, Eur. Phys. J.-Spec.
Top., 230, 3075–3100, https://doi.org/10.1140/epjs/s11734-021-00269-9, 2021. a
Knutson, T. R. and Ploshay, J.: Sea Level Pressure Trends: Model-Based
Assessment of Detection, Attribution, and Consistency with CMIP5 Historical
Simulations, J. Climate, 34, 327–346, https://doi.org/10.1175/JCLI-D-19-0997.1,
2021. a
Kristóf, E., Barcza, Z., Hollós, R., Bartholy, J., and Pongrácz, R.:
Evaluation of Historical CMIP5 GCM Simulation Results Based on Detected
Atmospheric Teleconnections, Atmosphere, 11, 723,
https://doi.org/10.3390/atmos11070723, 2020. a
Laloyaux, P., Balmaseda, M., Bidlot, J.-R., Broennimann, S., Buizza, R.,
Boisseson, E., Dalhgren, P., Dee, D., Haimberger, L., Hersbach, H., Kosaka,
Y., Martin, M., Poli, P., Rayner, N., Rustemeier, E., and Schepers, D.:
CERA-20C: A coupled reanalysis of the twentieth century, J. Adv. Model. Earth
Sy., 10, 1172–1195, https://doi.org/10.1029/2018MS001273, 2018. a, b
Lancaster, H. O.: The Chi-squared Distribution, Wiley & Sons, Inc., New York, ISBN 9780471512301,
1969. a
Lee, J., Sperber, K., Gleckler, P., Bonfils, C., and Taylor, K.: Quantifying
the agreement between observed and simulated extratropical modes of
interannual variability, Clim. Dynam., 52, 4057–4089,
https://doi.org/10.1007/s00382-018-4355-4, 2019. a, b
Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., and Hsu, H.-H.: Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, 2020. a
Li, G., Ren, B., Zheng, J., and Yang, C.: Trend Singular Value Decomposition
Analysis and Its Application to the Global Ocean Surface Latent Heat Flux and
SST Anomalies, J. Climate, 24, 2931–2948, https://doi.org/10.1175/2010JCLI3743.1,
2011. a
Liu, Z. and Alexander, M.: Atmospheric bridge, oceanic tunnel, and global
climatic teleconnections, Rev. Geophys., 45, RG2005,
https://doi.org/10.1029/2005RG000172, 2007. a, b, c
Meegan Kumar, D., Tierney, J. E., Bhattacharya, T., Zhu, J., McCarty, L., and
Murray, J. W.: Climatic drivers of deglacial SST variability in the eastern
Pacific, Paleoceanogr. Paleoclimatol., 36, e2021PA004264,
https://doi.org/10.1029/2021PA004264, 2021. a
Messié, M. and Chavez, F.: Global Modes of Sea Surface Temperature
Variability in Relation to Regional Climate Indices, J. Climate, 24,
4314–4331, https://doi.org/10.1175/2011JCLI3941.1, 2011. a
Mo, R., Ye, C., and Whitfield, P. H.: Application Potential of Four
Nontraditional Similarity Metrics in Hydrometeorology, J. Hydrometeorol.,
15, 1862–1880, https://doi.org/10.1175/JHM-D-13-0140.1, 2014. a
Monahan, A. H., Fyfe, J. C., Ambaum, M. H. P., B., S. D., and North, G. R.:
Empirical Orthogonal Functions: The Medium is the Message, J. Climate,
22, 6501–6514, https://doi.org/10.1175/2009JCLI3062.1, 2009. a
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M.,
Budich, R., Esch, F. B. M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T.,
Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E.,
Stemmler, I., Tian, F., and Marotzke, J.: A Higher-resolution Version of the
Max Planck Institute Earth System Model (MPI-ESM1.2-HR), J. Adv. Model. Earth
Sy., 10, 1383–1413, https://doi.org/10.1029/2017MS001217, 2018. a
NOAA Physics Science Laboratory: 20CRv3, [data set], https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html, last access: 21 April 2021. a
Novi, L., Bracco, A., and Falasca, F.: Uncovering marine connectivity through
sea surface temperature, Sci. Rep., 11, 8839,
https://doi.org/10.1038/s41598-021-87711-z, 2021. a
Nowack, P., Runge, J., Eyring, V., and Haigh, J. D.: Causal networks for
climate model evaluation and constrained projections, Nat. Commun., 11,
1415, https://doi.org/10.1038/s41467-020-15195-y, 2020. a, b
Papalexiou, S. M., Rajulapati, C. R., Clark, M. P., and F., L.: Robustness of
CMIP6 Historical Global Mean Temperature Simulations: Trends, Long-Term
Persistence, Autocorrelation, and Distributional Shape, Earth's Future,
8, e2020EF001667, https://doi.org/10.1029/2020EF001667, 2020. a, b
Pires, C. A. L. and Hannachi, A.: Independent subspace analysis of the sea
surface temperature variability: Non-Gaussian sources and sensitivity to
sampling and dimensionality, Complexity, 3076810, https://doi.org/10.1155/2017/3076810,
2017. a, b
Pires, C. A. L. and Hannachi, A.: Bispectral analysis of nonlinear interaction,
predictability and stochastic modelling with application to ENSO, Tellus A,
73, 1–30, https://doi.org/10.1080/16000870.2020.1866393, 2021. a
Raible, C., Stocker, T., Yoshimori, M., Renold, M., Beyerle, U., Casty, C., and
Luterbacher, J.: Northern Hemispheric trends of pressure indices and
atmospheric circulation patterns in observations, reconstructions, and
coupled GCM simulations, J. Climate, 18, 3968–3982,
https://doi.org/10.1175/JCLI3511.1, 2005. a
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019. a
Rodríguez-Fonseca, B., Polo, I., García-Serrano, J., Losada, T., Mohino,
E., Mechoso, C. R., and Kucharski, F.: Are Atlantic Ninños enhancing
Pacific ENSO events in recent decades?, Geophys. Res. Lett., 36,
L20705, https://doi.org/10.1029/2009GL040048, 2009. a
Sanderson, B. M., Knutti, R., and Caldwell, P.: A Representative Democracy to
Reduce Interdependency in a Multimodel Ensemble, J. Climate, 28,
5171–5194, https://doi.org/10.1175/JCLI-D-14-00362.1, 2015. a
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin,
J., Decharme, B., Delire, C., Berthet, S., Chevallier, M., Sénési, S.,
Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O.,
Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A., Rocher, M., Roehrig,
R., Salas-y Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R.,
Aumont, O., Bopp, L., Deshayes, J., Éthé, C., and Madec, G.: Evaluation
of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in
Present-Day and Future Climate, J. Adv. Model. Earth Sy., 11, 4182–4227,
https://doi.org/10.1029/2019MS001791, 2019. a
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020. a, b
Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A.,
O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora,
L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E.,
Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T., Archibald, A. T.,
Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J.,
Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A.,
Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat,
S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A.,
Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.:
UKESM1: Description and Evaluation of the U.K. Earth System Model, J. Adv.
Model. Earth Sy., 11, 4513–4558, https://doi.org/10.1029/2019MS001739, 2019. a
Shen, C., Panda, S., and Vogelstein, J.: The Chi-Square Test of Distance
Correlation, J. Comput. Graph. Stat., 31, 254–262,
https://doi.org/10.1080/10618600.2021.1938585, 2022. a
Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A.,
Garcia, R. R., Lauritzen, P. H., Marsh, D. R., Mills, M. J., Medeiros, B.,
and Richter, J. B.: An Evaluation of the Large‐Scale Atmospheric
Circulation and Its Variability in CESM2 and Other CMIP Models, J. Geophys.
Res.-Atmos., 125, e2020JD032835, https://doi.org/10.1029/2020JD032835, 2020. a
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese,
B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J.,
Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D.,
Cornes, R., Cram, T. A., Crouthamel, R., Domínguez-Castro, F., Freeman,
J. E., Gergis, J., Hawkins, E., Jones, P. D., Jourdain, S., Kaplan, A.,
Kubota, H., Le Blancq, F., Lee, T.-C., Lorrey, A., Luterbacher, J., Maugeri,
M., Mock, C. J., Moore, G. W. K., Przybylak, R., Pudmenzky, C., Reason, C.
nd Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente, M. A., Wang,
X. L., Wilkinson, C., Wood, K., and Wyszyński, P.: Towards a more reliable
historical reanalysis: Improvements for version 3 of the Twentieth Century
Reanalysis system, Q. J. Roy. Meteor. Soc., 145, 2876–2908,
https://doi.org/10.1002/qj.3598, 2019. a, b
Spensberger, C., Reeder, M. J., Spengler, T., and Patterson, M.: The Connection
between the Southern Annular Mode and a Feature-Based Perspective on Southern
Hemisphere Midlatitude Winter Variability, J. Climate, 33, 115–129,
https://doi.org/10.1175/JCLI-D-19-0224.1, 2020. a
Steinhäuser, K. and Tsonis, A.: A climate model intercomparison at the
dynamics level, Clim. Dynam., 42, 1665–1670,
https://doi.org/10.1007/s00382-013-1761-5, 2014. a, b
Steinhäuser, K., Chawla, N. V., and Ganguly, A. R.: An Exploration of
Climate Data Using Complex Networks, in: Proceedings of the Third
International Workshop on Knowledge Discovery from Sensor Data, SensorKDD'09,
23–31, Association for Computing Machinery, Paris,
https://doi.org/10.1145/1601966.1601973, 2009. a
Steinhäuser, K., Ganguly, A. R., and Chawla, N. V.: Multivariate and
multiscale dependence in the global climate system revealed through complex
networks, Clim. Dynam., 39, 889–895, https://doi.org/10.1007/s00382-011-1135-9, 2012. a
Streitberg, B.: Lancaster Interactions Revisited, Ann. Stat., 18, 1878–1885,
https://doi.org/10.1214/aos/1176347885, 1990. a, b
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019. a
Székely, G. J. and Rizzo, M. L.: Partial distance correlation with methods
for dissimilarities, Ann. Stat., 42, 2382–2412, https://doi.org/10.1214/14-AOS1255,
2014. a
Székely, G. J., Rizzo, M. L., and Bakirov, N. K.: Measuring and Testing
Dependence by Correlation of Distances, Ann. Stat., 35, 2769–2794,
https://doi.org/10.1214/009053607000000505, 2007. a
Tantet, A. and Dijkstra, H. A.: An interaction network perspective on the relation between patterns of sea surface temperature variability and global mean surface temperature, Earth Syst. Dynam., 5, 1–14, https://doi.org/10.5194/esd-5-1-2014, 2014. a
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019. a
Tsonis, A. A., Swanson, K. L., and Wang, G.: On the Role of Atmospheric
Teleconnections in Climate, J. Climate, 21, 2990–3001,
https://doi.org/10.1175/2007JCLI1907.1, 2008. a
Tsonis, A. A., Wang, G., Swanson, K. L., Rodrigues, F. A., and
da Fontura Costa, L.: Community structure and dynamics in climate networks,
Clim. Dynam., 37, 933–940, https://doi.org/10.1007/s00382-010-0874-3, 2011. a
Vázquez-Patiño, A., Campozano, L., Mendoza, D., and Samaniego, E.: A causal
flow approach for the evaluation of global climate models, Int. J. Climatol.,
40, 4497–4517, https://doi.org/10.1002/joc.6470, 2019. a
Voldoire, A., Saint‐Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., Colin, J., Guérémy, J., Michou, M., Moine, M., Nabat, P.,
Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I.,
Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville,
H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G.,
Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez‐Gomez, E., Terray, L., and
Waldman, R.: Evaluation of CMIP6 DECK Experiments With CNRM‐CM6-1, J.
Adv. Model. Earth Sy., 11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019. a
Wang, B. and An, S.-I.: A method for detecting season-dependent modes of
climate variability: S-EOF analysis, Geophys. Res. Lett., 32, L15710,
https://doi.org/10.1029/2005GL022709, 2005. a
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.: Image quality
assessment: From error visibility to structural similarity, IEEE T. Image
Process., 13, 600–612, https://doi.org/10.1109/TIP.2003.819861, 2004. a
Wiedermann, M., Donges, J. F., Handorf, D., Kurths, J., and Donner, R. V.:
Hierarchical structures in Northern Hemispheric extratropical winter
ocean–atmosphere interactions, Int. J. Climatol., 37, 3821–3836,
https://doi.org/10.1002/joc.4956, 2017. a
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X.: The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6, Geosci. Model Dev., 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019, 2019. a
Yang, P., Wang, G., Xiao, Z., Tsonis, A. A., Feng, G., Liu, S., and Zhou, X.:
Climate: a dynamical system with mismatched space and time domains, Clim.
Dynam., 56, 3305–3311, https://doi.org/10.1007/s00382-021-05646-7, 2021. a
Yeo, S.-R., Yeh, S.-W., Kim, K.-Y., and Kim, W.-M.: The role of low-frequency
variation in the manifestation of warming trend and ENSO amplitude, Clim.
Dynam., 49, 1197–1213, https://doi.org/10.1007/s00382-016-3376-0, 2017. a
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0:
Description and Basic Evaluation of the Physical Component, J. Meteorol. Soc. Jpn., 97, 931–965,
https://doi.org/10.2151/jmsj.2019-051, 2019. a
Zhang, M.-Z., Xu, Z., Han, Y., and Guo, W.: An improved multivariable integrated evaluation method and tool (MVIETool) v1.0 for multimodel intercomparison, Geosci. Model Dev., 14, 3079–3094, https://doi.org/10.5194/gmd-14-3079-2021, 2021. a
Zhu, X., Dong, W., Wei, Z., Guo, Y., Gao, X., Wen, X., Yang, S., Zheng, Z.,
Yan, D., Zhu, Y., and Chen, J.: Multi-decadal evolution characteristics of
global surface temperature anomaly data shown by observation and CMIP5
models, Int. J. Climatol., 38, 1533–1542, https://doi.org/10.1002/joc.5264, 2018. a
Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M.,
Stevens, L., Wang, Y.-P., and Srbinovsky, J.: The Australian Earth System
Model: ACCESS-ESM1.5, J. South. Hemisphere Earth Syst. Sci.,
70, 193–214, https://doi.org/10.1071/ES19035, 2020. a
Short summary
The realistic representation of global teleconnections is an indispensable requirement for the reliable simulation of low-frequency climate variability and climate change. We present an application of the complex network framework to quantify and evaluate large-scale interactions within and between ocean and atmosphere in 22 historical CMIP6 climate projections with respect to two century-long reanalyses.
The realistic representation of global teleconnections is an indispensable requirement for the...
Altmetrics
Final-revised paper
Preprint