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Abstract. In climatological research, the evaluation of climate models is one of the central research subjects.
As an expression of large-scale dynamical processes, global teleconnections play a major role in interannual to
decadal climate variability. Their realistic representation is an indispensable requirement for the simulation of
climate change, both natural and anthropogenic. Therefore, the evaluation of global teleconnections is of utmost
importance when assessing the physical plausibility of climate projections.

We present an application of the graph-theoretical analysis tool δ-MAPS, which constructs complex net-
works on the basis of spatio-temporal gridded data sets, here sea surface temperature and geopotential height at
500 hPa. Complex networks complement more traditional methods in the analysis of climate variability, like the
classification of circulation regimes or empirical orthogonal functions, assuming a new non-linear perspective.
While doing so, a number of technical tools and metrics, borrowed from different fields of data science, are
implemented into the δ-MAPS framework in order to overcome specific challenges posed by our target problem.
Those are trend empirical orthogonal functions (EOFs), distance correlation and distance multicorrelation, and
the structural similarity index.
δ-MAPS is a two-stage algorithm. In the first place, it assembles grid cells with highly coherent temporal

evolution into so-called domains. In a second step, the teleconnections between the domains are inferred by
means of the non-linear distance correlation. We construct 2 unipartite and 1 bipartite network for 22 historical
CMIP6 climate projections and 2 century-long coupled reanalyses (CERA-20C and 20CRv3). Potential non-
stationarity is taken into account by the use of moving time windows. The networks derived from projection data
are compared to those from reanalyses. Our results indicate that no single climate projection outperforms all
others in every aspect of the evaluation. But there are indeed models which tend to perform better/worse in many
aspects. Differences in model performance are generally low within the geopotential height unipartite networks
but higher in sea surface temperature and most pronounced in the bipartite network representing the interaction
between ocean and atmosphere.

1 Introduction

The evaluation of general circulation models (GCMs) is one
of the key topics of climate sciences. This evaluation is indis-
pensable in the assessment of uncertainties in the projection
of climate change. At the same time, it serves as a guideline
for further model development.

Established methods of climate model evaluation include
comparison of spatial and temporal means, and often also
the variability, of important climate parameters such as air

temperature, precipitation, wind speed, geopotential height,
radiation, and energy fluxes between model output and ob-
servational/reanalysis data (Zhang et al., 2021). More elab-
orate evaluation techniques assess the temporal evolution of
global mean/sea surface/hemispheric temperature (Papalex-
iou et al., 2020) with respect to increasing greenhouse gas
concentration or regional trends (Duan et al., 2021).

Acknowledging its importance for consistent climate sim-
ulation, Simpson et al. (2020) evaluate the atmospheric cir-
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culation in terms of mean atmospheric fields, in combination
with dynamical features like the jet stream, stationary waves,
and blocking. In contrast, Kristóf et al. (2020) evaluated the
positions of potential action centres of atmospheric telecon-
nections as a proxy for circulation.

Another approach is taken by Brands (2022) and Can-
non (2020), who both assess circulation biases in correspon-
dence to the representation of circulation types. Whereas
Brands (2022) uses Lamb weather types, the analysis in
Cannon (2020) is based on principal component analysis
(PCA)-derived modes of variability. Such modes of vari-
ability, extracted by eigentechniques from spatio-temporal
gridded data, have been the objective of evaluation efforts
in recent years as their spatial patterns are supposed to re-
flect large-scale dynamical processes in the climate system.
For example, Fasullo et al. (2020) and Coburn and Pryor
(2021) have assessed the representation of six oceanic and
atmospheric modes in terms of spatial and spectral accuracy,
including an evaluation of the interaction between modes.
Still, it has been recognised that eigenmethods suffer from
a number of limitations because geometric constraints such
as linearity and normality, orthogonality, and simultaneity do
not correspond to physical properties of the climate system
(Monahan et al., 2009; Fulton and Hegerl, 2021; Hynčica and
Huth, 2020; Lee et al., 2019) and hinder their interpretation.

Besides, the evaluation of climate modes, such as El
Niño–Southern Oscillation (ENSO) or North Atlantic Os-
cillation (NAO), is usually done at the component level.
But it is the coupling among those components which de-
fines the large-scale variability in climate at interannual and
decadal timescales (Tsonis et al., 2008; Steinhäuser and Tso-
nis, 2014).

Complex network methods are able to account for non-
linear, time-lagged, and high-order interactions in high-
dimensional data and were introduced in climate sciences by
the beginning of the 21st century (for an overview see Dijk-
stra et al., 2019). Such networks investigate the interdepen-
dencies between all their constituent components, thereby
unveiling dynamical features that could remain hidden to tra-
ditional analysis techniques. A rather fundamental property
of climate networks is their organisation in terms of commu-
nities – clusters of strongly connected nodes forming semi-
autonomous subcomponents of the climate system with non-
accidental similarity to many known modes of variability
(Steinhäuser et al., 2009; Tsonis et al., 2011; Tantet and Dijk-
stra, 2014) that interact dynamically in multiple ways. Such
an emergent property has been ascribed to the mismatch be-
tween spatial and temporal scales on a sphere, which allows
only a finite number of degrees of freedom (Yang et al.,
2021).

The comparison of such complex network-derived com-
munities between climate simulations and observation/re-
analysis data sets was used for evaluation purposes first by
Steinhäuser and Tsonis (2014). They assessed the commu-
nity structure in climatic fields finding rather low consistency

between the model runs and the reference data set. Likewise,
Fountalis et al. (2015) assessed the community structure of
model simulations but complemented it with an evaluation
of the interaction strength of the communities with ENSO.
The idea was further developed by Fountalis et al. (2018)
and Falasca et al. (2019) in their so-called δ-MAPS approach
to comprise a whole network of all communities, which is
evaluated with regards to the distribution and size of com-
munities, the interaction strength, and the distribution of the
links.

Note that there is another line of research into the evalua-
tion of causal networks (for instance Vázquez-Patiño et al.,
2019, or Nowack et al., 2020) which is somewhat different to
the approach followed here.

In the present article, we explain (Sect. 3) and apply
(Sect. 4) δ-MAPS (Fountalis et al., 2018) to construct func-
tional networks for sea surface temperature (SST) and geopo-
tential height at 500 hPa (Z500) fields, as well as a cross-
network between SST and Z500, using GCM output data
from the Coupled Model Intercomparison Project Phase 6
(CMIP6). We compare the derived networks to analogous
networks from reanalysis data, namely CERA-20C (Laloy-
aux et al., 2018) and 20CRv3 (Slivinski et al., 2019), to eval-
uate the capacity of the GCMs in reproducing complex non-
linear processes in the atmosphere and the ocean.

This assessment is all the more instructive as it is not pos-
sible to tune the teleconnections directly. In nature and in
models, teleconnections emerge from the interplay of the
governing equations under the condition of the boundaries.
A model gets them right if and only if the model specifica-
tions are sufficiently well approximated and well balanced
between model components.

2 Data

The objective of the present study is to compare the interac-
tion networks derived from CMIP6 GCM output from his-
torical simulations to reference networks derived from two
century-long reanalyses in order to account for uncertainties
in observations and differences in construction methods as
recommended by Hynčica and Huth (2020), Lee et al. (2019),
and others: (i) the Coupled Reanalysis for the 20th Century
(CERA-20C) provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF; Laloyaux et al., 2018;
10 ensemble members and ensemble mean) and (ii) the
NOAA–CIRES–DOE Twentieth Century Reanalysis version
3 (20CRv3) provided by the National Oceanic and Atmo-
spheric Administration (NOAA)/Physics Science Laboratory
(PSL) (Slivinski et al., 2019; best estimate).

The presented study is intended to help the selection
of physically plausible GCM runs for further dynamical
downscaling in the Coordinated Downscaling Experiment–
European Domain (https://www.euro-cordex.net/, last ac-
cess: 3 February 2022). Therefore, the CMIP6 model ensem-
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ble evaluated here follows the list of model runs under con-
sideration in EURO-CORDEX for which all necessary forc-
ing data had been provided at the time of writing, plus some
extra models (Table 1).

We consider the parameters sea surface temperature (SST)
and geopotential height at 500 hPa (Z500). These are rela-
tively well-observed and smoothly varying fields suitable for
the construction of networks. Steinhäuser et al. (2012) con-
firm good network properties for SST and Z500 with many
proximity-based correlation links as well as a large number
of teleconnections. In accordance, Donges et al. (2011) found
the maximal link density for geopotential height at about 4
to 6 km height, and Wiedermann et al. (2017) detected the
highest transitivity between SST and geopotential height at
500–300 hPa.

From the coupled network perspective, it would be highly
desirable to include further parameters into the analysis like
sea surface salinity or, more interestingly, variables from the
stratosphere and the deep ocean. Unfortunately, the observa-
tions of such parameters have only recently become more re-
liable and less sparse, such that the fidelity of their reanalysis
fields is impossible to verify.

The SST (Z500) data were remapped to a common grid
of 2.25◦× 2.25◦ (2.5◦× 2.5◦) resolution. Regions with sea
ice are avoided in SST as well as circles of 5◦ radius around
the poles at Z500 because of possibly biased representation
of the polar vortices. The analysis is carried out for seasonal
anomalies in the overlapping time period from 1901 to 2010.

3 Methods

The procedure used to assign an assessment score to each
model run comprises a number of algorithmic stages that
build on each other. As they are not yet well known in the
climatological community, we present them in detail in the
following subsections:

– Detrending with trend EOF (Sect. 3.1)

– Network construction with δ-MAPS (Sect. 3.2)

– Domain identification (Sect. 3.2.1)

– Network of domains (Sect. 3.2.2)

– Distance covariance and distance correlation (Sect. 3.3)

– Distance multivariance and distance multicorrela-
tion (Sect. 3.3.1)

– Comparison of networks with structural similarity index
and multivariate network quality score (Sect. 3.4).

3.1 Detrending with trend EOF

Prior to the construction of the δ-MAPS networks, the data
have to be detrended to avoid the correlations being distorted
by long-term trends. Although it is still the most widely used

technique, linear detrending has been shown to be hardly ap-
propriate to remove the effects of external forcing (anthro-
pogenic and natural) from climatic time series (Frankignoul
et al., 2017), given its non-linear structure and the dynamical
response mechanisms including long-range memory. Con-
ventional empirical orthogonal function (EOF) decomposi-
tion is not well suited for trend detection either for a number
of reasons (Hannachi, 2007), which often cause the spread-
ing of long-term trends between several modes of internal
variability. Instead, we apply a non-parametric technique, so-
called trend EOF (Hannachi, 2007), which identifies spatial
patterns of trends defined as a common non-linear, but mono-
tone increase. The method is based on the singular value de-
composition (SVD) of the matrix of inverse ranks, instead
of the direct observations as in conventional EOF analysis.
Since sequences of inverse ranks provide a robust measure of
monotonicity, trend EOFs are able to separate patterns asso-
ciated with monotone (non-linear) trends, albeit small, from
patterns not associated with trends.

Trend EOFs have been applied since in a number of stud-
ies (e.g. Barbosa and Andersen, 2009, Li et al., 2011, Mee-
gan Kumar et al., 2021, among others). Fisher (2015) com-
pared trend EOFs, along with conventional EOFs, to a se-
lection of other PCA-based techniques, which are designed
to extract space–time patterns maximising criteria like per-
sistence, predictability, or autocorrelation. In contrast to con-
ventional EOFs, all the tested methods very robustly detect a
leading EOF pattern with a respective principal component
(PC) that presents a distinct non-linearly increasing trend.
We consider trend EOFs therefore to be an appropriate tech-
nique for identifying anthropogenic greenhouse gas (GHG)-
forced trends.

Let X= ((xit )) be the matrix of anomaly data at grid cells
i = 1. . .n (numbered consecutively) and times t = 1. . .T .
The time series xi at grid cell i is transformed to the vec-
tor of inverse ranks qi by setting qit equal to the time posi-
tion of the t th-largest value in xi . The sequence qi indeed
reflects the total monotonicity of xi : in monotone series the
inverse ranks are ordered according to the trend. The stronger
the trend in xi , the stronger the pattern in qi . By maximising
the correlation in Q= ((qit )), we find a common trend that is
shared (to some extent) by all grid cells, which makes sense
in light of GHG-forced warming.

After centring and cosine weighting of Q with respect
to the corresponding latitude, the principal components and
the loading patterns are obtained by SVD: Q= U6VT.
The trend is now concentrated in the first (few) principal
component(s), strongly distinguished by high eigenvalue(s)
standing out over the remaining low and slowly descend-
ing spectrum. If second- or third-order outstanding eigenval-
ues should be detected, they indicate additional, regionally
confined independent trends, which are generated by internal
dynamical feedback processes. For our purpose of identify-
ing regions with coherent time evolution, we would there-
fore want to retain such regional trends and eliminate only
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Table 1. CMIP6 models.

Model Historical Reference Model Historical Reference
experiment experiment

ACCESS-CM2 r1i1p1f1 Bi et al. (2020) ACCESS-ESM1-5 r1i1p1f1 Ziehn et al. (2020)
BCC-CSM2-MR r1i1p1f1 Wu et al. (2019) CanESM5 r1i1p2f1 Swart et al. (2019)
CESM2 r2i1p1f1 Danabasoglu et al. (2020) CMCC-CM2-SR5 r1i1p1f1 Cherchi et al. (2019)
CMCC-ESM2 r1i1p1f1 Cherchi et al. (2019) CNRM-CM6-1 r1i1p1f2 Voldoire et al. (2019)
CNRM-ESM2-1 r1i1p1f2 Séférian et al. (2019) EC-Earth3 r1i1p1f1 Döscher et al. (2022)
EC-Earth3-Veg r1i1p1f1 Döscher et al. (2022) HadGEM3-GC31-LL r1i1p1f3 Roberts et al. (2019)
IPSL-CM6A-LR r1i1p1f1 Boucher et al. (2020) MIROC6 r1i1p1f1 Tatebe et al. (2019)
MIROC-ES2L r1i1p1f2 Hajima et al. (2020) MPI-ESM1-2-LR r1i1p1f1 Gutjahr et al. (2019)
MPI-ESM1-2-HR r1i1p1f1 Müller et al. (2018) MRI-ESM2-0 r1i1p1f1 Yukimoto et al. (2019)
NorESM2-LM r1i1p1f1 Seland et al. (2020) NorESM2-MM r1i1p1f1 Seland et al. (2020)
TaiESM1 r1i1p1f1 Lee et al. (2020) UKESM1-0-LL r1i1p1f2 Sellar et al. (2019)

the trend associated with the first trend PC. Likewise, re-
gional trends caused by volcanic eruption are most probably
not filtered either by the first trend EOF. However, the im-
pacts of 20th-century eruptions lasted only for short time pe-
riods, and on the other hand they are not well represented in
surface-input reanalyses like CERA-20C and 20CRv3 (Fu-
jiwara et al., 2015). We therefore assume that our evalua-
tions remain valid. The first trend PC u1 is now transformed
back to physical space by projection w1 = Xu1, and the cor-
responding spatial pattern is composed of the regression co-
efficients between the trend PC w1 and the anomaly time se-
ries of the original field xi, i = 1. . .n.

To allow for an annual cycle in the trend patterns, we ex-
tend the trend EOFs in analogy to season-reliant EOFs (Wang
and An, 2005; see also cyclo-stationary EOFs in Yeo et al.,
2017), Q= (QMAM|QJJA|QSON|QDJF) (seasonally centred,
inverse ranks calculated for each season individually), which
extract a recurrent sequence of seasonal trend patterns with
one associated trend PC for the magnitude of the whole cy-
cle as opposed to one common pattern for all seasons as in
non-seasonal EOF analysis or four individual patterns with
their associated individual PCs as in seasonal EOFs, respec-
tively. At this stage it would be possible to apply a secondary
SVD to the seasonal warming patterns to obtain a smoother
annual cycle. While such a procedure seems undue for sea-
sonal data, it would be a reasonable approach in the case of
monthly data. Instead of applying two sequential EOFs to
Q, a tensor decomposition like higher-order singular value
decomposition (HOSVD; De Lathauwer et al., 2000) would
serve this purpose more elegantly.

After having detrended the time series, we are able to stan-
dardise the seasonal variances without the interference of the
seasonal trends, which would otherwise bias our estimates.
On their part, seasonally varying variances could degrade the
estimated correlations between grid cells in the first stage of
the δ-MAPS algorithm, giving increased weight to seasons
with higher variance. In turn, the spatial component of the
variance will be important in the second stage of δ-MAPS;

therefore we augment the deseasonalised time series again
with their overall (non-seasonal) variance.

3.2 Network construction with δ-MAPS

3.2.1 Domain identification

To infer the functional interactions within and between
spatio-temporal gridded data sets of climatological param-
eters, we adopt the δ-MAPS algorithm proposed by Foun-
talis et al. (2018). This algorithm is rooted in network sci-
ences/graphical modelling, in which graphs are used to ex-
press the dependence structure between random variables.
A graph or network consists of a set of nodes connected
by a set of edges, which describe the interactions between
the nodes. Networks can be classified depending on their
topology: simple networks like lattices and fully connected
networks or complex networks like scale-free and small-
world networks. Small-world networks are often observed
in climate and other earth sciences, in the human brain, and
in social networks. Their nodes are strongly clustered into
semi-autonomous components, and the average shortest path
length between any two nodes is small.

In contrast to structural networks or flow networks, where
the edges are physically observable (like wired connections
or trajectories of particles, respectively), functional networks
are inferred from the behaviour of the nodes. We consider
the grid cells of a selected climatological field as the nodes
of the graph. The spatial embedding is naturally given by
the locations of the grid cells. In Fountalis et al. (2018) the
edges of a fully connected grid-cell-level network are defined
using the unpruned Pearson correlation % of the time series
as an association measure between any pair of nodes. Based
on this weighted network, the δ-MAPS algorithm identifies
semi-autonomous components D1. . .DK , called domains. A
domain is a spatially contiguous set of grid cells with highly
correlated temporal activity. Fountalis et al. (2018) propose
an iterative algorithm that alternately expands and merges a
preliminary set of domain seeds S (neighbourhoods with lo-
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cally maximal correlation, 3× 3 grid cells in our case) so as
to find the maximum possible sets of grid cells that satisfy
the homogeneity constraint δ: letD be a spatially contiguous
set of grid cells with cardinality |D|

δ ≤ %D :=
1

|D|(|D| − 1)

∑
i 6=j∈D

%ij , (1)

where %ij is the correlation between the time series at grid
cells i and j , and δ is a chosen parameter to regulate the
number and size of the domains. The domains are expanded
to neighbouring grid cells (one at a time) as long as %D ≤ δ.
Two domains Di and Dj are merged if they contain at least
one pair of adjacent grid cells, and their union still satisfies
the threshold δ. The algorithm stops when no more domains
can be merged or expanded.

The number of domains K generated by this algorithm
is not predefined. Overlapping domains are allowed in δ-
MAPS because grid cells might be influenced by more than
one physical process. If a grid cell does not satisfy the ho-
mogeneity constraint with any of its neighbours, it remains
unassigned. Deviating from Fountalis et al. (2018), we use
Spearman’s rank correlation to determine the similarity be-
tween grid cells to allow for monotone, yet non-linear as-
sociation. Furthermore, we set the threshold δ for minimal
average correlation within a domain to equal a selected high
quantile of all pairwise correlations (our δ is not based on
a significance test; therefore there is no need to correct for
auto-correlation). Lower thresholds allow the domains to ex-
pand and merge, further resulting in a smaller number of spa-
tially larger domains, which means lower parcellation, and
vice versa. In Sect. 4, we choose δ so as to produce “intu-
itive” domains evocative of known teleconnection patterns.

In Falasca et al. (2020), the identification of domains was
further refined: grid cells are assigned to a common domain if
their time-varying complexity (quantified by recurrence en-
tropy) evolves coherently. Coherent evolution of complex-
ity reflects coherent dynamical evolution and is thus an even
stronger indicator of semi-autonomous component organisa-
tion than correlation between the original climatological time
series. But for complexity time series to be constructed, the
proposed recurrence measure has to be evaluated on mov-
ing time windows (100-year windows over 6000 years of
monthly values in Falasca et al., 2020). Unfortunately, our
time series are not long enough to detect complexity changes
by means of recurrence entropy (nor to actually occur in the
real climatological fields), so we have to stick to the original
definition of δ-MAPS in Fountalis et al. (2018).

The first stage of δ-MAPS is a local community detection
algorithm, where the criterion to maximise is the number of
grid cells assigned to a minimum number of communities
under the conditions (i) %D ≥ δ, (ii) D being spatially con-
tiguous, and (iii) D containing a seed s ∈ S (Fortunato and
Hric, 2016). As this problem is NP-hard (solvable in poly-
nomial time; Fountalis et al., 2018), the greedy algorithm of

Fountalis et al. (2018) only approximates one possible solu-
tion. Despite this, it is able to detect meaningful communities
of any size (no preferred scale) and independently from the
network structure in other spatial regions.

3.2.2 Network of domains

Subsequently, the domains identified above serve as super-
nodes in the second stage of δ-MAPS. A functional weighted
network is inferred between the domains on the basis of a
dependence measure (in Fountalis et al., 2018, the lagged
Pearson correlation is used; we use distance correlation; see
Sect. 3.3). The time series of a domain is defined as

xD = (xD1. . .xDT ), xDt =
1∑

i∈D cosϕi

∑
i∈D

xit cosϕi , (2)

where ϕi is the latitude of grid cell i. In contrast to Falasca
et al. (2019), we use the means instead of the sums of the grid
cells for domain time series. We do so because otherwise the
variances of the domains would grow with their size, some-
thing that would hinder interpretation. On the other hand, the
spatial correlation within the domains, the precondition for
grid cells to form a domain, impedes the decrease in the vari-
ance of the domain mean following the central limit theo-
rem at the rate of

√
|D|. Instead, the variances of the domain

means are of comparable magnitude regardless of the domain
size.

Every possible link with every possible lag −L≤ l ≤ L is
tested for significance, which constitutes a multiple-testing
problem such that the cumulative probability of type I er-
rors increases. One way to control the false discovery rate
FDR to be smaller than a predefined level α was proposed by
Benjamini (2010): the p levels of the individual tests are in
ascending order, p(1) ≤ . . .≤ p( 1

2K(K−1)(2L+1)), and the hy-
pothesis (H0; link is insignificant) is rejected only for those
tests where p(k) <

2kα
K(K−1)(2L+1) .

The network consists of two maps, D (D: set of nodes
(grid cells)−→ power set of domainsP (D1. . .DK ), which
assigns one/several/no domains to every grid cell) andW (W :
set of pairs of domains {D1. . .DK}× {D1. . .DK} −→ max-
imal (lagged) dependence ∈ R, which assigns every pair of
domains a link that equals the maximal (lagged) dependency
between them; we allow lags up to 10 seasons).

The distinction between grid cells that are dependent
within the same domain and grid cells that are dependent
across two different domains allows δ-MAPS to differentiate
between local diffusion phenomena and remote interactions
as for instance an atmospheric bridge or an oceanic tunnel
(Liu and Alexander, 2007).

Since the techniques to construct the δ-MAPS network are
statistical, long time series are convenient in order to obtain
robust estimates of the dependence measures. In the case of
non-stationarity, such estimates would be biased and reflect
only a temporal average connectivity between the compo-
nents of the network. The time dependence can be addressed
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using evolving networks, which are constructed over sliding
time windows (see for instance Kittel et al., 2021, and Novi
et al., 2021). The present study considers a time-constant net-
work for the period 1901–2010 and a shorter-period network
for 1951–2010, where more observations are available for
assimilation into the reanalyses. To investigate the temporal
evolution, a third network is constructed for 1901–1955.

The complex network framework offers a lot more ap-
proaches in order to exploit the richness of the data, as
for instance multi-scale, causal, and multi-layer networks.
Wavelet multi-scale networks were proposed for investigat-
ing interactions in the climate system simultaneously at dif-
ferent temporal scales, revealing features which usually re-
main hidden when looking at one particular timescale only
(Agarwal et al., 2018, 2019). Interactions between processes
evolving on different timescales are investigated by Jajcay
et al. (2018). Moreover, as the number of identified domains
within a climatological field is drastically smaller than the
number of original grid cells, this also opens up the possi-
bility of investigating the causal relationships between them
(Nowack et al., 2020), although the basic assumption of
causal network inference that the dependence structure can
be represented by a directed acyclic graph is questionable in
the climate context. The construction of both dependence-
based and causal networks can naturally be extended to
cross-networks, which include multiple fields (Feng et al.,
2012; Ekhtiari et al., 2021).

3.3 Distance covariance and distance correlation

As physical processes in climate are highly dynamical and
mostly non-linear (Donges et al., 2009), we decided to sub-
stitute the Pearson correlation in the second step of network
inference by a non-linear dependence measure: distance cor-
relation proposed by Székely et al. (2007). To begin with,
distance covariance, calculated from the pairwise Euclidean
distances within each sample, is an analogue to the product-
moment covariance, but it is zero if and only if the random
vectors are independent. The intuition of distance covariance
is that if there exists a dependence between the random vari-
ables X and Y , then for two similar realisations of X, say xs
and xt , the two corresponding realisations of Y , ys and yt ,
should be similar as well. Note that the opposite (xs , xt un-
similar H⇒ ys , yt unsimilar) is true for linear dependence,
but not true in general.

Unlike the widely used information measures, distance co-
variance has a compact representation, is computationally
fast, and is reliable in a statistical sense for sample sizes com-
mon in climatology because it is not necessary to estimate
the density of the samples. We use the unbiased version of
distance covariance given in Székely and Rizzo (2014). Let
(xt ), (yt ), t = 1. . .T be a statistical sample from a pair of real
or vector-valued random variables X and Y . First, compute

all pairwise Euclidean distances:

ast = ‖xs − xt‖2 and bst = ‖ys − yt‖2 .

Then perform a double centring for all s 6= t :

Ast = ast −
1

T − 1

∑
u

asu−
1

T − 1

∑
v

avt +
1

(T − 1)(T − 2)

∑
uv

auv

Bst = bst −
1

T − 1

∑
u

bsu−
1

T − 1

∑
v

bvt +
1

(T − 1)(T − 2)

∑
uv

buv .

Then distance covariance dCov is defined as

dCov(X,Y )=
1

T (T − 3)

∑
st

AstBst . (3)

Distance variance dVar and distance correlation dCor are de-
fined analogously to moment variance and moment correla-
tion, respectively:

dVar(X)= dCov(X,X)

and

dCor(X,Y )=
dCov(X,Y )

√
dVar(X)dVar(Y )

. (4)

Distance correlation has a number of desirable properties:

1. 0≤ dCor(X,Y )≤ 1;

2. dCor(X,Y )= 0⇐⇒X, Y independent;

3. dCor(X,Y )= 1⇐⇒ Y is a linear transformation of X.

Distance correlation is furthermore robust against auto-
dependence (Fokianos and Pitsillou, 2018), which eliminates
the need to correct for autocorrelation, as was done in Foun-
talis et al. (2018). The correction of autocorrelation involves
the estimation of a rather large number of autocorrelation co-
efficients. This might add to statistical uncertainty, and its
expendability is therefore statistically advantageous.

An efficient test of distance correlation based on the χ2

distribution was proposed by Shen et al. (2022), which is uni-
versally consistent and valid for α ≤ 0.05:

8(X,Y )=

{
1 if T dCor(X,Y )≥ F−1

χ2
1−1

(1−α)

0 otherwise
.

(5)

Distance correlation is defined between vectors of arbitrary
dimension. One way to take advantage of this property in the
construction of networks would be to assign the measure-
ment of more than one climatological variable to every node,
e.g. sea surface temperature and salinity or 500 hPa geopo-
tential height and temperature.

We apply distance correlation in the network inference be-
tween the domains, but not in the construction of the do-
mains. The reason is that in domain construction we are look-
ing for similar temporal behaviour between grid cells. We

Earth Syst. Dynam., 14, 17–37, 2023 https://doi.org/10.5194/esd-14-17-2023



C. Dalelane et al.: Global teleconnections using complex networks 23

choose Spearman’s rank correlation because it accounts for
non-linear, yet monotone association. In contrast, in network
inference we are expressly interested in non-linear depen-
dence including non-monotonicity.

3.3.1 Distance multivariance and distance
multicorrelation

Distance correlation has also been generalised to distance
multivariance/multicorrelation by Böttcher et al. (2019) to
measure the dependence between an arbitrary number n of
random variables in the sense of Lancaster interaction (Lan-
caster, 1969; Streitberg, 1990). The Lancaster interaction
1F quantifies the fraction of dependence between them that
is not explained by factorisation, their synergy. For n= 3, let
F123 be the three-dimensional joint distribution function of
X1,X2, andX3; F12, F13, and F23 the pairwise joint distribu-
tions; and F1, F2, and F3 the marginal distribution functions.
Then the Lancaster interaction is defined as

1F = F123−F1F23−F2F13−F3F12+ 2F1F2F3 ,

the fraction of F123 that is not explained by pairwise depen-
dence. Lancaster interaction excludes, in particular, linear de-
pendence as this is indeed explained by pairwise dependence.

The concept of higher-order dependence is related to joint
cumulants and higher-order moments in that κn(X1. . .Xn)=∫
x1. . .xnd1F (Streitberg, 1990). Joint cumulants are tra-

ditionally applied in multiple-point statistics and hyper-
spectral analysis to describe non-linear interaction and non-
Gaussian multidimensional distributions. Climate science
has seen only a small number of implementations, includ-
ing the contributions of Carlos A. L. Pires related to telecon-
nections (e.g. Pires and Hannachi, 2017, 2021). As a feature
of complex systems, higher-order interactions have already
been recognised as critical for the emergence of complex be-
haviour such as synchronisation and bifurcation in scientific
fields as diverse as social networks science, ecology, molec-
ular biology, quantum physics, neurosciences, epidemics,
geodesy, image processing, and genetics (Battiston et al.,
2020), and tools for the construction of hypergraphs (graphs
with links that comprise more than two nodes) are increas-
ingly available. To our knowledge, hypergraphs have not yet
been introduced in climatology.

Distance multivariance is defined analogously to distance
variance (Eq. 1) and is a strongly consistent estimator of Lan-
caster interaction (Böttcher et al., 2019). For n= 3 and Cst
the analogue to Ast and Bst for a third random variable Z is

dMvar(X,Y,Z)=
1

T (T − 3)

∑
st

AstBstCst . (6)

Distance multicorrelation is defined likewise, with a slightly
different normalisation:

dVar3(X)= dMvar(X,X,X)

and

dMcor(X,Y,Z)=
dMvar(X,Y,Z)(

dVar3(X) · dVar3(Y ) · dVar3(Z)
)1/3 .

(7)

Obviously, distance covariance between two random vari-
ables is covered by distance multivariance for n= 2. Sig-
nificance tests for distance multivariance are also given in
Böttcher et al. (2019). As the asymptotic test is conserva-
tive, and furthermore, in the case of non-zero pairwise de-
pendence, the test statistic is not guaranteed to diverge, it is
convenient to choose a larger FDR level than the usually em-
ployed significance levels between 0.1 and 0.01.

3.4 Comparison of networks with structural similarity
index and multivariate network quality score

This study aims at comparing the interaction networks de-
rived from CMIP6 model output to the selected reference net-
works. Our metric of comparison netSSIM is a modification
of the netCorr criterion for functional networks developed by
Falasca et al. (2019). The netCorr is a sophisticated metric
which evaluates the differences in topology and connectiv-
ity, combined in the adjacency matrix M of each network,
simultaneously. Let M=

((
Mij

))n
i,j=1 be a square matrix of

dimension n (number of grid cells) with

Mij :=


0 if D(xi )=∅ or D(xj )=∅

1
|{W (D(xi ),D(xj ))>0}|

∑
Dk∈D(xi ),Dl∈D(xj )

W (Dk ,Dl ) if ∅ 6=D(xi ) 6=D(xj ) 6=∅

(8)

where we setW (Dk,Dl)= dCor(xDk ,xDl ). Alternatively, M
could be rearranged in a four-modal hypermatrix or tensor
made of the Kronecker product of the lat–long field times
itself containing the dependencies between the grid cells.

Apart from replacing Pearson with distance correlation,
our definition of M differs from the one in Falasca et al.
(2019) in three aspects. Firstly, our links are undirectional
because distance correlation is much less sensitive to tempo-
ral lag than Pearson correlation. The distance correlation co-
efficients for lags −10≤ L≤ 10 differ only marginally from
the value for L= 0. So although we do construct M using
maximum lagged distance correlation, we do not venture to
infer the direction of the interaction from it. Secondly, we
have defined W (Dk,Dk)= 1, causing Mij = 1 if xi and xj
pertain to the same domain (and no other) to emphasise that
grid cells within one domain are more strongly linked to each
other than to the grid cells of other domains. Thirdly, we set
Mij the average of the links between domains that xi and xj
belong to instead of the maximum as a means to account for
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overlapping domains. We do not apply any weighting to this
average because the mean internal rank correlation within
each domain, i.e. the bond of a grid cell to its domains, is
equally ≈ δ by construction.

The netCorr between two networks measures the spatial
correlation between the respective adjacency matrices, not
considering the overall level and variability within the net-
works. We propose to augment netCorr to netSSIM. SSIM is
the structural similarity index, a measure very popular in im-
age processing, which combines terms for brightness (mean),
contrast (variance), and structure (pattern correlation) of im-
ages (Wang et al., 2004). It was introduced to the hydrolog-
ical/meteorological community by Mo et al. (2014). Let X
and Y be two gridded fields:

SSIM(X,Y )=
2µXµY + c1

µ2
X
+µ2

Y
+ c1
·

2σXσY + c2

σ 2
X
+ σ 2

Y
+ c2

·
σXY + c3
σXσY + c3

, (9)

where µX and µY are the means, σ 2
X and σ 2

Y , are the vari-
ances, σXY is the Pearson covariance between X and Y , and
small constants c1 = c2 = c3 (we choose 0.00001) ensure
regularity. The SSIM ranges from −1 to 1; it equals 1 only
in the case of identity and −1 for an anti-analogue (equal
mean and variance, but correlation =−1). SSIM = 0 means
no similarity. Note that the SSIM is not invariant under trans-
lation and rotation, which corresponds to our requirements
because we want the teleconnections to sit in the right place.
SSIM is not a distance metric, but a distance metric can be
constructed from it (Brunet et al., 2011).

Falasca et al. (2019) recommend the use of their netCorr
criterion always in combination with a criterion comparing
the strength of the interaction, which they define as the sum
of the links of a particular domain in terms of covariance. We
argue that the strength is a criterion that intermingles the dis-
tribution of interactions between the domains with the vari-
ances of the domains, which, in turn, are determined by the
size of the domains and the variances of the included nodes.
We therefore prefer to evaluate the interactions on their own
using the netSSIM. The evaluation of the variances (or stan-
dard deviations) of model output data is a task that is already
routinely performed in conventional evaluation set-ups.

We apply the (latitude-weighted) SSIM to two adjacency
matrices M (Eq. 8) constructed from the significant distance
correlations in two reference and/or model networks. In this
way, we calculate netSSIM indices for the unipartite net-
works for SST and Z500 and for the cross-networks between
the SST and Z500 domains.

Alternatively, we could calculate the SSIM between adja-
cency matrices in a pointwise manner, comparing the slices
of the four-modal hypermatrices that correspond to the links
of one individual grid cell to all others and then taking the
weighted mean of all pointwise SSIMs.

Finally, we define a network quality score (NQS) by apply-
ing an exponential transform to the netSSIMs, which projects
them to the interval [0,1] (recall that the netSSIM lives on
[−1,1]). The same transform was used in Sanderson et al.

(2015) and Brunner et al. (2020) to construct quality scores
from error measures, which are later fed into a model selec-
tion algorithm.

NQS := exp
{
−(1− netSSIM)2

}
(10)

In order to combine the three NQSs with respect to SST,
Z500, and SST–Z500, we take the geometric mean (equal to
the exponential of the arithmetic mean of the squared differ-
ences (1−netSSIM)2). This shall be the multivariate network
quality score MNQS:

MNQS :=(NQSSST ·NQSZ500 ·NQSSST-Z500)
1
3

=exp
{
−

1
3
‖1− netSSIM‖2

}
. (11)

The MNQS corresponds to the exponential transform of the
squared Euclidean distance between the three-dimensional
vector-netSSIM and the ideal vector-netSSIM value (1,1,1),
which would be attained by a network identical to the ref-
erence, normalised with the distance between (1,1,1) and
(0,0,0), (0,0,0) being the value which indicates no similar-
ity.

Any other vector norm could be utilised for the construc-
tion of MNQS, for instance an Lp-norm with p 6= 2 or some
weighting of the directions. The netSSIMs for additional pa-
rameters can be incorporated into the MNQS in a straightfor-
ward way. Finally, the considered models can be ranked with
respect to these scores.

The netSSIM is also useful when exploring the differences
between networks in more detail. As mentioned above, the
slices of M with respect to a single grid cell or domain can
be compared one by one. It is further possible to calculate the
netSSIM for all pairwise links in a certain region, excluding
the rest of the globe, or for all links from one region to an-
other. This way, differences across models or time periods
can be tracked down directly to their origin.

4 Results and discussion

We demonstrate the functioning of every sub-procedure con-
sidering the CERA-20C ensemble mean over the whole pe-
riod 1901–2010 as an example. All procedures are further-
more applied to the periods 1901–1955 and 1951–2010. In-
dividual runs of CERA-20C as well as 20CRv3 and CMIP6
model realisations are discussed depending on special inter-
est.

4.1 Detrending with trend EOF

Trend EOFs (Hannachi, 2007), as introduced in Sect. 3.1,
produce time series of common change (in SST and Z500)
generated from the trend PCs in the inverse-rank space
and the respective trend-loading patterns (four seasonal
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trend-loading patterns per trend PC in the case of season-
reliant/cyclo-stationary trend EOFs), indicating regions of
stronger/weaker change. As expected, the increase in SST is
concentrated in the first trend PC (the leading eigenvalues are
30 to 50 times higher than the trailing ones), the other trend
PCs showing no secular trend. Figure 1a depicts the global
mean sea surface temperature anomaly (GMSSTa) (with re-
spect to the base period 1961–1990) in the CERA-20C en-
semble mean, the forced temperature increase estimated by
the first trend EOF and the detrended anomalies. For com-
parison, we show the same plot for linearly detrended SSTs
in Fig. S1 in the Supplement. The grid-cell-wise detrended
anomalies are deseasonalised with regard to variance.

The GMSSTa derived from trend EOFs in all runs of
CERA-20C (not shown) as well as in the ensemble mean
show a very similar evolution among each other and to Zhu
et al. (2018), the breakpoints in temperature increase pos-
tulated therein at 1942, 1975, and 2004 clearly discernible.
Likewise, the physical space-loading patterns of the ensem-
ble mean (Fig. 1b) and all runs of CERA-20C are very similar
to each other and resemble the leading modes extracted using
slow feature analysis and dynamical mode decomposition in
Fulton and Hegerl (2021), identified as warming trends.

Analogous plots for geopotential height anomalies at
500 hPa for the CERA-20C ensemble mean can be found in
Fig. 1c and d. Unfortunately, we were not able to find any
comparable study in the literature, where Z500 was analysed
for trend over the 20th century. Gillett et al. (2013), Knutson
and Ploshay (2021), Garreaud et al. (2021), and Raible et al.
(2005) considered sea level pressure (SLP) trends over differ-
ent time periods and regions. Although not fully comparable,
there is a certain similarity.

The projected trends as well as the loading patterns in the
20CRv3 best estimate are somewhat different for the period
1901–2010 (Fig. S2) but agree much better for 1951–2010
(not shown). This might well be related to low observational
coverage during the first half of the century; we thus take this
disagreement as a signal for caution.

When subject to the same procedure, the CMIP6 model
output SST and Z500 anomalies produce trend EOFs and
loading patterns roughly similar to CERA-20C and 20CRv3
(not shown). Differences are more or less obvious, though,
such that an evaluation of the GMSSTa time series in the
spirit of Papalexiou et al. (2020) would be an obvious choice
but is out of the scope of this paper.

4.2 δ-MAPS for CERA-20C on 1901–2010

4.2.1 Domain identification

Our algorithm, presented in Sect. 3.2.1, combines grid cells
with highly rank-correlated time evolution into domains. Do-
mains have to be contiguous but may overlap; grid cells
may remain unassigned. Average mutual rank correlation
within a domain has to be higher than a selected thresh-

old δ; we examined the quantiles q0.9(%ij |i 6= j = 1. . .n)≤
δ ≤ q0.99(%ij |i 6= j = 1. . .n) of all pairwise rank correlations.
The plots included in this paper refer to thresholds q0.95 for
SST and δ = q0.93 for Z500, chosen for their intuitive par-
cellation of the fields evocative of known teleconnection pat-
terns. As varying the threshold affects the networks for dif-
ferent data sets in a similar way, the choice of δ changes the
results only marginally.

The domains constructed this way from the detrended,
deseasonalised SST anomalies of the CERA-20C ensemble
mean include all important SST teleconnection patterns with
interannual to decadal timescales (see for example Messié
and Chavez, 2011). The map of the CERA-20C SST domains
(Fig. 2a) resembles the corresponding maps for COBEv2 and
HadISST in Falasca et al. (2019) reasonably well, taking into
account the differing data sets and time periods. Their main
domains are clearly identifiable: El Niño–Southern Oscilla-
tion (ENSO; o11, for its broad extension also reminiscent of
region 2 of the Interdecadal Pacific Oscillation (IPO) tripole
in Henley et al., 2015), the horseshoe pattern (o7), the South
Pacific (o9), the Indian Ocean (o3), the North Tropical At-
lantic (o15, with extension to the extratropics), the South
Tropical Atlantic (o1). Furthermore there are domains in the
extra-tropical southern (o2) and eastern Indian Ocean (o4),
the extra-tropical southern (o12) and north-eastern (o14) At-
lantic and the Norwegian Sea (o16), the Gulf Stream (o13),
the North Pacific Current (o8, region 1 of the IPO tripole), a
domain corresponding to region 3 of the IPO tripole (o10),
the Kuroshio Extension (o5), and a domain south of Aus-
tralia including the Great Australian Bight (o6). Areas where
sea ice occurs are omitted because of the confounding effect
on SST.

In the CERA-20C Z500 map of domains (Fig. 2b), the
seasonally migrating Tropical Belt (TB; a15) formed by the
Hadley circulation and the two polar cells (Arctic a1 and a13
largely overlapping and Antarctic a3) stand out, stretching
around the whole globe. The mid-latitudes are populated by
numerous domains with more (over ocean) or less (over land)
pronounced zonal extension (cyclone tracks). The missing
segmentation of the tropical belt into several domains proba-
bly results from the seasonal time resolution.

4.2.2 Network of domains

The domains of SST and Z500 are now ready for net-
work construction (see Sect. 3.2.2). Figure 2c illustrates
the maximum lagged (−10≤ L≤ 10) distance correlations
(Sect. 3.3) for all pairs of SST domains in the CERA-20C
ensemble mean, omitting the geographic information for
enhanced clarity. Only significant links to the FDR level
α = 0.05 (Sect. 3.2.2) are shown. However, even weak links
are assessed as significant because the time series are long
enough (4 seasons× 110 years) to allow the distance correla-
tion to be estimated accurately. The darkest shades (except of
the self links) correspond to the links between ENSO (o11),
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Figure 1. Season-reliant trend EOF of the CERA-20C SST and Z500 fields over the time period 1901–2010. Global mean SST (a) and global
mean Z500 (c) anomaly with respect to base period 1961–1990 (blue), forced component thereof (black), and residual (red). (b, d) Respective
seasonal trend-loading patterns in physical space (arbitrary units normalised to [−1,1] over all seasons).

the horseshoe (o7), and IPO3 (o10): o11↔o7, o11↔o10,
o7↔o10. We see enhanced connectivity of o7, o10, and o11
to the northern and southern Pacific Ocean (o8, o9) and from
the Pacific to the Indian Ocean (o7/o10/o11↔o3), corre-
sponding to known ENSO teleconnections, but not to the
Kuroshio Extension (o5). The southern Indian Ocean domain
is furthermore linked to the South Atlantic (o2↔o12).

The intra-Atlantic links are much weaker: o14, o15,
and o16 are largely overlapping domains and together
conceivably form the Atlantic Multidecadal Oscillation
(AMO); the Gulf Stream is linked to the north-eastern
Atlantic (o13↔o14) as well as the tropical to the extra-
tropical South Atlantic (o1↔o12). The South Atlantic
is also weakly connected to all North Atlantic domains
(o12↔o13/o14/o15/o16), but there is no link between the
North Atlantic and the South Tropical Atlantic (o1). It might
be hypothesised that this bypass is related to the thermoha-
line circulation that tunnels the shallow subtropical cell (Liu
and Alexander, 2007). According to the network, the At-
lantic is connected to the other oceans only via the Southern
Ocean, with links o12/o13/o14/o16↔o9, o14/o15/o16↔o6,
o1/o12↔o2, and o16↔o2 that appear rather weak, although
visible against their virtually zero background. A link be-
tween the South Tropical Atlantic (o1) and ENSO (o11) as
proposed in Falasca et al. (2019) and Rodríguez-Fonseca
et al. (2009) is not apparent in our network. This absence
is likely caused by the non-stationarity of this link, which
was not observed before 1970. Nevertheless, it does appear

when a network is constructed for the period 1971–2010 (not
shown).

Note that allowing for lagged dependence changes the net-
work only marginally compared to a network with only in-
stantaneous links. Few connections are increased in strength
of distance correlation by more than 0.05 and none by more
than 0.1. All links already exist in the instantaneous network,
and the structure of the network remains unchanged.

The network between CERA-20C Z500 domains (Fig. 2e)
is considerably weaker than the SST network, possibly a
consequence of the stronger high-frequency variability in
the Z500 time series in response to seasonally varying so-
lar forcing combined with weaker low-frequency variabil-
ity caused by stronger mixing of the freely flowing air
masses. Moreover, many of the known atmospheric tele-
connections vary considerably throughout the year, which
weakens the all-season dependence between the involved do-
mains. Apart from the overlapping domains a1/a13, a9/a10,
and a7/a12, the Tropical Belt (a15) is the most strongly
connected domain with links to the mid-latitudinal Fer-
rel cell domains, enveloping the cyclone tracks, over all
oceans (a15↔a4/a7/a9/a10/a12/a14), to which the undis-
turbed Hadley circulation releases a substantial amount of
energy. Domains over land have fewer and weaker links.
Known atmospheric teleconnections are clearly identifi-
able: the Pacific North America Pattern (PNA) with links
a10↔a11, a10↔a14, but interestingly not a11↔a14, and the
North Atlantic Oscillation (NAO) with a link a13↔a14 (and
much weaker a1↔a14). Other complex teleconnections also
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Figure 2. Domains of the CERA-20C ensemble mean (a) SST and (b) Z500 fields over the time period 1901–2010 (arbitrary colours).
Maximum lagged distance correlation links between (c) SST and (e) Z500 domains and (d) cross-links.

seem to involve the Arctic domains: a1↔a2/a6/a8/a16 and
a13↔a8. In contrast, the Antarctic domain (a3) is largely au-
tonomous, as discussed in Spensberger et al. (2020). Lagged
dependence is irrelevant in the Z500 network.

We notice that many known atmospheric teleconnections
are defined as higher-order modes of some EOF decomposi-
tion. As such they exist only as additive modulations of their
corresponding leading modes. We would therefore not expect
to find many of them in our networks.

Network methods allow the investigation of interactions
between different climatological fields in a straightforward
way, constructing cross-networks between (in our case)
SST and Z500 domains that describe the coupled ocean–
atmosphere variability (Liu and Alexander, 2007). We no-
tice that the inference of links between the domains of two
unipartite networks is different from the construction of bi-
partite communities in multi-layer networks as in Ekhtiari
et al. (2021). Here, we just calculate the distance corre-
lations between pairs of one SST and one Z500 domain.
The inferred CERA-20C SST–Z500 cross-links are shown
in Fig. 2d. The connectivity is mostly quite weak, ex-
cept for the cross-links from the Tropical Belt (a15) and
the northern and southern Pacific Z500 domains (a9, a10,
a12) to the ENSO-related SST domains (o7, o8, o9, o10,

o11) and the tropical Indian Ocean (o3), but also the Great
Australian Bight (o6). This feature was also observed by
Feng et al. (2012), who related it to the Walker circula-
tion. Z500 domains a4 and a7 participate in this pattern,
but to a lesser extent. Z500 domains over oceans are usu-
ally connected to their underlying SST counterparts (a4↔o2,
a7↔o6, a9/a10↔o8, a14↔o13 (SST modulating the NAO),
a15↔o3/o11), although in the Atlantic this dependence is
exceptionally weak (a15↔o1/o15, a16↔o14, a3↔o12). But
teleconnections to more distant SST domains are, in some
instances, as strong as or even stronger than those proximate
cross-links (a4↔o3/o10/o11/o12, a7↔o12, a14↔o15). In-
terestingly, the Arctic Z500 domain (a13) is weakly linked to
the AMO domain (o15), but not to the North Pacific. Except
for slightly increased overall connectivity levels, supposedly
mediated by the SST, allowing for lagged dependence does
not change the network.

The analogous plot for 20CRv3 can be found in Fig. S3.

4.2.3 Third-order interactions

As before, this subsection presents only results for CERA-
20C over the time period 1901–2010. The overall high level
of connectivity between SST domains motivated us to take
a deeper look into the dependence structure of the climate
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system. In a modest first attempt, we search for interacting
triples in the sense of Lancaster, in graph theory termed as
2-hyperedges, taking all combinations of three SST domains
and calculating their third-order distance multicorrelation as
introduced in Eq. (7) in Sect. 3.3.1. As discussed there, we
choose a large FDR level α = 0.2 in order to not suppress
too many distance multicorrelations. To avoid cumbersome
evaluations with different lag combinations, we stick to in-
stantaneous networks.

Only a small number (13) of significant third-order depen-
dencies are detected (we list them in Table 2 instead of plot-
ting them), all somehow related to the ENSO phenomenon,
one of them the IPO tripole itself. The hyperedges also in-
clude the tropical Indian Ocean (o3) and the Great Australian
Bight (o6). As the nature of Lancaster interaction is inher-
ently non-linear, this concentration on ENSO corresponds to
the findings in Hlinka et al. (2014), who detect substantial
non-linear contributions to mutual information in SST (apart
from trends and seasonal variance) mainly in the central trop-
ical Pacific. Likewise, Pires and Hannachi (2017) find syn-
chronised extremes of uncorrelated PCs of SST in the Pacific
that cannot be explained by linear interaction. Despite this,
one distance multicorrelation is also detected in the North
Atlantic: the SST triple (o14, o15, o16), which corresponds
to the AMO.

Note that not every triple with strong pairwise dependen-
cies also has a significant third-order dependence. Table 2
shows the hyperedges along with their distance multicorrela-
tion and the sum of their pairwise distance correlations. As
distance multicorrelation is symmetric, every significant hy-
peredge is listed only once in the table. Note also that the
sum of pairwise distance correlations is not bounded by 1 be-
cause the pairwise dependencies are not mutually exclusive.
Although the detected distance multicorrelations are signifi-
cant, they are at most 20 % of the sum of the respective pair-
wise distance correlations. That means third-order interac-
tions complement but not outweigh pairwise dependence in
the three-dimensional joint dependence.

The same comments essentially apply to cross-hyperedges
consisting of two SST domains and one Z500 domain or one
SST domain and two Z500 domains. We detected 15 and
5 significant cross-hyperedges, respectively, in the Pacific,
which all resemble some ENSO interaction. The Z500 do-
mains a13 and a14 (NAO) have no notable distance multicor-
relation with North Atlantic SST domains, indicating that the
North Atlantic is linked to the NAO domains on a pairwise
basis (o15↔a13/a14), but no higher-order interaction is tak-
ing place. There is no hyperedge of three Z500 domains with
significant multicorrelation. Known atmospheric tripoles like
the Arctic Oscillation (a9, a13, a14) and the Pacific North
America Pattern (a10, a11, a14) apparently lack significant
third-order dependence.

We believe that the construction of higher-order networks
including hyperedges by means of distance multicorrelation
might well be one step towards understanding the synergies

emerging from multivariate coupling of large-scale ocean-
ic/atmospheric teleconnections.

4.3 Comparison of networks

4.3.1 Reference networks

We turn to the comparison of reference networks in terms
of the NQS and MNQS criteria (see Sect. 3.4), calculated
from the adjacency matrices M containing the regionally dis-
tributed distance correlation links between all pairs of do-
mains (Eq. 8). As CERA-20C was produced as a 10-member
ensemble representing the inevitable sampling and modelling
uncertainty inherent in the production process, we take this
opportunity to construct the δ-MAPS networks individually
for each member. The results are matched to the networks
derived for the CERA-20C ensemble mean.

The CERA-20C individual networks for the complete
time period 1901–2010 are very similar to each other, with
average NQSs close to 1 for all three parameters (aver-
age NQS_SST= 0.98, average NQS_Z500= 0.94, average
NQS_SST–Z500= 0.96), such that the MNQSs have a mean
of 0.96 with only a small spread. The average MNQS be-
tween the individual CERA-20C runs and the CERA-20C
ensemble mean is 0.96. The small differences are brought
about by the pattern correlation factor in netSSIM, the mean
and variance factor being virtually equal to 1.

The networks for the shorter periods 1901–1955 and
1951–2010 are equally similar with average MNQS= 0.95
and 0.95 between runs and 0.95 and 0.96 for the ensem-
ble mean, respectively. Because the networks for individ-
ual CERA-20C runs and the CERA-20C ensemble mean are
nearly indistinguishable, we only take the CERA-20C en-
semble mean networks for reference in the following com-
parisons.

When analysing the temporal evolution of the con-
nectivity in the CERA-20C ensemble mean, we find
good agreement between the first and second half of
the century (MNQS= 0.87; Table 3), resulting from
comparable differences in the SST and SST–Z500 net-
works and higher similarity at Z500 (NQS_SST= 0.84,
NQS_Z500= 0.93, NQS_SST–Z500= 0.84). In contrast,
the full period is more similar to the first half in all networks
(MNQS= 0.96, NQS_SST= 0.95, NQS_Z500= 0.96,
NQS_SST–Z500= 0.95) than to the second half because
especially the SST–Z500 networks bear more differences
(MNQS= 0.92, NQS_SST= 0.92, NQS_Z500= 0.94,
NQS_SST–Z500= 0.89). We emphasise that the networks
contain only information about the strength of the depen-
dencies between the domains and not about their functional
form.

Because of deviating domain extension and numbering,
comparing the networks by means of the rectangular net-
work plots (like in Fig. 2c–e) is cumbersome. In Fig. 3 we
have plotted two-modal slices of the spatially distributed ad-
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Table 2. Significant interaction strength between domain triples in CERA-20C over 1901–2010; dMcor: distance multicorrelation;
∑

dCor:
sum of pairwise distance correlations.

SST SST Z500 dMcor
∑

dCor SST SST SST dMcor
∑

dCor SST Z500 Z500 dMcor
∑

dCor

o3 o7 a15 0.188 1.080 o3 o7 o10 0.183 1.179 o7 a12 a15 0.188 1.349
o3 o10 a15 0.200 1.140 o3 o7 o11 0.150 1.159 o8 a9 a10 0.236 1.268
o3 o11 a15 0.193 1.156 o3 o10 o11 0.160 1.099 o10 a12 a15 0.246 1.442
o7 o11 a10 0.174 1.108 o6 o7 o11 0.119 0.869 o11 a10 a15 0.191 1.081
o7 o10 a12 0.242 1.552 o6 o10 o11 0.130 0.867 o11 a12 a15 0.274 1.580
o7 o11 a12 0.283 1.655 o7 o8 o10 0.162 1.108
o7 o8 a15 0.183 0.935 o7 o8 o11 0.199 1.209
o7 o10 a15 0.281 1.529 o7 o9 o10 0.150 1.301
o7 o11 a15 0.300 1.601 o7 o9 o11 0.195 1.359
o8 o10 a15 0.165 0.899 o7 o10 o11 0.403 1.902
o8 o11 a15 0.186 1.037 o8 o10 o11 0.173 1.054
o9 o11 a15 0.146 1.023 o9 o10 o11 0.165 1.211
o10 o11 a10 0.184 1.028 o14 o15 o16 0.118 0.968
o10 o11 a12 0.313 1.627
o10 o11 a15 0.327 1.585

Table 3. Multivariate network quality scores between reanalyses in various time periods.

CERA-20C 20CRv3

1901–1955 1951–2010 1901–2010 1901–1955 1951–2010 1901–2010

CERA-20C

1901–1955 0.87 0.96 0.88
1951–2010 0.87 0.92 0.89
1901–2010 0.96 0.92 0.82

20CRv

1901–1955 0.88 0.81 0.84
1951–2010 0.89 0.81 0.90
1901–2010 0.82 0.84 0.90

jacency hypermatrices M with respect to grid cells in the
ENSO domain, in the AMO domain and in the Tropical Belt,
respectively. The comparison of these slices is evidently not
exhaustive but may give a hint regarding the nature of the
differences between the networks.

The domains in the three CERA-20C SST network slices
for the ENSO domain (Fig. 3a–c) are very similar in shape
and size, but the links between the domains are differently
distributed. The networks most obviously disagree in link
strength from ENSO to the tropical Indian Ocean, but also
from ENSO to the North Tropical Atlantic, to the North Pa-
cific, and to the Southern Ocean. The same is visible in the
network slices for the AMO domain (Fig. 3d–f).

In contrast, the CERA-20C Z500 network slices for the
Tropical Belt (Fig. 3g–i) bear more apparent similarity than
the SST network slices, which was already apparent in the
network quality scores above. Although the shape of the trop-
ical belt differs slightly more than the shape of the ENSO do-
main, the links to the rest of the globe resemble each other

more strongly. However, the domains over the North Pacific
and the southern Indian Ocean seem somewhat ambiguous.

The cross-links from ENSO to the Z500 domains (Fig. 3j–
l) and from the Tropical Belt to the SST domains (not shown)
show differences similar to the unipartite networks. Yet, the
stabilising effect of the self-links (large patches with dis-
tance correlation 1) does not apply to the SST–Z500 cross-
networks, such that the network scores may turn out a little
lower.

As regards the second reanalysis 20CRv3, we observe
strong similarity to the CERA-20C ensemble mean in
the two shorter time periods 1951–2010 and 1901–1955
(MNQS= 0.89 and MNQS= 0.88; Table 3 and Fig. S4),
where disagreement within the same time period is mainly
restricted to higher southern latitudes (remember that the
SSIM includes an area weighting). But dissimilarities be-
tween the first and the second half of the century are
stronger in 20CRv3 than in CERA-20C (MNQS= 0.81 and
MNQS= 0.87; Table 3). Notably, in 1901–1955 20CRv3
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Figure 3. Spatially distributed maximum lagged distance correlation links and cross-links between SST and/or Z500 domains in CERA-20C.
(a–c) ENSO (black) to SST domains; (d–f) North Tropical Atlantic (AMO; black) to SST domains; (g–i) Tropical Belt (TB; black) to Z500
domains; (j–l) ENSO (contoured) to Z500 domains. (a, d, g, j) Time period 1901–1955, (b, e, h, k) time period 1901–2010, (c, f, i, l), time
period 1951–2010.

shows the same strong connection between SST domains
around the whole tropics as CERA-20C, which is lost in
1951–2010 in both reanalyses. In contrast, the similarity be-
tween 20CRv3 and CERA-20C is slightly reduced in 1901–
2010 (MNQS= 0.82; Table 3 and Fig. S4) mainly due to dif-
fering atmospheric interactions and the weaker cross-links
in 20CRv3 compared to CERA-20C (NQS_SST= 0.94,
NQS_Z500= 0.81, NQS_SST–Z500= 0.72). In all three
networks (SST, Z500, SST–Z500) we observe that regional
unsimilarity increases with latitude. Table S1 shows pairs
of most similar domains between CERA-20C and 20CRv3
along with their domain-wise network quality score.

Besides, the similarity between the different time peri-
ods in 20CRv3 is not the same as in CERA-20C, with
1901–2010 more similar to 1951–2010 than to 1901–1955
(MNQS= 0.84 and MNQS= 0.90; Table 3 and Fig. S4). For
example, in contrast to CERA-20C, the link between ENSO

and the South Pacific vanishes after 1950 in 20CRv3. This
might be a consequence of sparse observations in the first
half of the century and thus a stronger dynamical heritage
from the models used to produce the reanalyses. On the
other hand, there might have been changes in connectivity
driven by increasing GHG levels, which are not equally re-
flected in CERA-20C and 20CRv3 (they are model results af-
ter all). Caution leads us therefore to restrict the comparison
of CMIP6 data sets to reanalyses in the period 1951–2010.

4.3.2 CMIP6 networks

The networks belonging to the CMIP6 historical projections
(listed in Table 1) are compared in Fig. 4 to the CERA-
20C ensemble mean (bold black cross marks) and to the
20CRv3 best estimate (bold red cross marks) in the time pe-
riod 1951–2010 in terms of individual network NQSs (for
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Figure 4. Network quality scores (bold) and pointwise network quality scores (thin) of CMIP6 models with respect to CERA-20C (black)
and 20CRv3 (red) over the time period 1951–2010. (a) Networks for SST fields, (b) networks for Z500 fields, (c) cross-networks between
SST and Z500 fields. (d) Multivariate network quality scores, (e) average of the two multivariate network quality scores for CERA-20C and
for 20CRv3.

SST networks (a), for Z500 networks (b), and for the cross-
networks (c)) and in terms of MNQSs for each reference,
respectively (d). Finally we take the average of both MN-
QSs to account for the uncertainty inherent in the reanaly-
ses: 1/2(MNQS(CERA-20C)+MNQS(20CRv3)) ((e), bold
cross marks). As expected, the similarity between models
and references is generally weaker than between references,
although in the Z500 networks some models reach a com-
parable level. Network quality scores are highest for Z500,
followed by SST and SST–Z500. SST–Z500 cross-networks
show the greatest deviations across models as well as across
references. The seemingly contradictory scores for Z500
with respect to CERA-20C and 20CRv3 have to be put into
perspective with their very high values and can be traced
back to the differences between the reanalyses.

When applying the alternative, pointwise SSIM calcula-
tion (Fig. 4, thin black and red cross marks), the final average
MNQS values are somewhat lower in their overall level, but
similar in spread, and the model ranking suffers only minor
changes.

The differences between the reanalyses are also reflected
in the MNQSs of the models, where the reanalyses agree
very well upon some models (HadGEM3-GC31-LL, IPSL-
CM6A-LR, MPI-ESM11-2-HR, MIROC-ES2L, MIROC6)
but less upon others (MRI-ESM2-0, TaiESM1, CNRM-
CM6-1, CNRM-ESM2-1). But altogether, a tendency to dif-
ferentiate between more/less similar models with respect to
reanalyses is clearly visible. We conclude that, when com-
bining several references from independent sources, the av-
erage MNQS over these references is a valid evaluation in-
strument for assessing whether the teleconnections between
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large climate components in a general circulation model are
realistically represented. Still, as our evaluation is restricted
to a single run per model, we are not able to differentiate
between good runs and good models as such.

Using the example of four of the highest-ranking GCM
runs with respect to MNQS, we illustrate in short the op-
portunities offered by the δ-MAPS approach to detect model
deficiencies. We examine some of the pointwise adjacency
maps of EC-Earth3, UKESM1-0-LL, MPI-ESM1-2-HR, and
IPSL-CM6A-LR in comparison to CERA-20C and 20CRv3
over 1951–2010 (Figs. S5–S9). In the SST networks, we
notice that differences are not restricted to higher latitudes,
as was the case for the two reanalyses. Even in the main
feature of interannual variability, ENSO, spatial connectiv-
ity deviates significantly. In all models the tropical Indian
Ocean depends much more strongly, although to varying
degrees, on ENSO than in both reanalyses (Fig. S5). EC-
Earth3 and IPSL-CM6A-LR do not at all reproduce the
northern extension of the ENSO domain seen in both reanal-
yses (Fig. S5a, d, e, f), which reflects the widely recognised
low-frequency interdependency between ENSO and the Pa-
cific Decadal Oscillation (PDO) (Henley et al., 2015). The
links to the southern Indian Ocean and the South Atlantic
differ considerably across models, but no model shows better
performance in all domains. In MPI-ESM1-2-HR the depen-
dence between AMO and ENSO is exaggerated, whereas in
IPSL-CM6A-LR the Norwegian Sea is nearly disconnected
from the Tropical North Atlantic, which is not consistent
with AMO (Fig. S6c and d). As regards Z500, UKESM1-
0-LL shows an unrealistic link between the Tropical Belt
and the Antarctic domain (Fig. S7b). At the same time,
the dependence of the Arctic domain is matched well only
in UKESM1-0-LL (Fig. S8b). In contrast, the cross-links
from ENSO to Z500 are well represented in all four models
(Fig. S9).

Continuing the analysis of all pointwise adjacency maps, it
would be possible to identify regions/climate phenomena of
higher and lower confidence in any model, an exercise that
might be instructive for both modelling groups and down-
stream users of climate projections.

5 Conclusions

In order to evaluate the physical plausibility of CMIP6 GCM
output, we have constructed functional interaction networks
within and between the SST and Z500 multivariate time se-
ries of 2 reanalyses (CERA-20C and 20CRv3) and 22 GCM
output data sets using the δ-MAPS procedure. In response to
several theoretical challenges related to the nature of long-
term climate data, a number of innovations were introduced
into δ-MAPS:

– detrending with season-reliant trend EOFs

– network construction using distance correlation

– distance multicorrelation for higher-order interactions

– network comparison with the structural similarity index

– construction of a multi-reference multivariate network
quality score.

First of all, the two reanalyses were compared to one an-
other in considerable detail, including the temporal evolu-
tion of the interactions in the course of the 20th century. It
could not be excluded that inconsistencies between the first
and second half of the century arise at least partly from data
uncertainty. The evaluation of CMIP6 model output against
the references revealed a very high general similarity of the
atmospheric connectivity, though with gradual differences.
Oceanic teleconnections are less accurately reflected and the
model differences more pronounced. The strongest devia-
tions are found in the cross-networks between Z500 and SST,
which co-occur sometimes, but not always, with lower net-
work quality scores in the unipartite networks. We combined
the three network quality scores for each CMIP6 model on
an equal basis, emphasising the equivalent importance of all
considered geophysical subsystems in the generation of the
earth’s climate. Taking into account the uncertainty inher-
ent in any reference, the average multivariate network qual-
ity score over several, preferably independent, references can
certainly be considered a suitable criterion to assess the sim-
ilarity of physical interactions between climate components
in a model to those in observations.

In addition, the proposed complex network framework
combined with the distance correlation measure offers many
promising multivariate extensions of δ-MAPS as, for exam-
ple, node definition based on multivariate time series, consid-
eration of higher-order dependence, interactions on multiple
timescales, and time-evolving networks. Such comparisons
could be very useful to investigate subtle differences between
various reanalyses. Besides, the characterisation of network
evolution from past to future could add a new facet to the
understanding of climate change.

Code and data availability. The δ-MAPS software can be ob-
tained in https://github.com/FabriFalasca/delta-MAPS (last access:
10 May 2020, Falasca, 2020). The GCM data used in this study
are part of the World Climate Research Programme’s (WCRP)
6th Coupled Model Intercomparison Project (CMIP6) open-access
data. It was accessed through the Earth System Grid Federation
(ESGF; https://esgf-node.llnl.gov/search/cmip6/, last access: 6 De-
cember 2021, Deutsches Klimarechenzentrum, 2021). CERA-20C
data are available at https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/cera-20c (last access: 9 May 2020, European
Centre for Medium-Range Weather Forecasts, 2020). The 20CRv3
data are available at https://psl.noaa.gov/data/gridded/data.20thC_
ReanV3.html (last access: 21 April 2021, NOAA Physics Science
Laboratory, 2021).
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