Articles | Volume 13, issue 1
https://doi.org/10.5194/esd-13-303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate change signal in the ocean circulation of the Tyrrhenian Sea
Environmental Sciences Institute, University of Castilla–La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
Departamento de Matemática Aplicada a la Ingeniería Industrial, E.T.S.I. Industriales, Universidad Politécnica de Madrid, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
Iván M. Parras-Berrocal
Department of Applied Physics, Faculty of Marine and Environmental Sciences, Marine Research Institute (INMAR), International Campus of Excellence of the Sea (CEIMAR), University of Cadiz, Puerto Real, 11510 Cadiz, Spain
Alfredo Izquierdo
Department of Applied Physics, Faculty of Marine and Environmental Sciences, Marine Research Institute (INMAR), International Campus of Excellence of the Sea (CEIMAR), University of Cadiz, Puerto Real, 11510 Cadiz, Spain
Dmitry V. Sein
Paleoclimate Dynamics group, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
St Petersburg Branch, P. P. Shirshov Institute of Oceanology RAS, Moscow, Russia
William Cabos
Departmento de Física y Matemáticas, Universidad de Alcalá, Madrid, 28801, Spain
Related authors
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Shunya Koseki, Rubén Vázquez, William Cabos, Claudia Gutiérrez, Dmitry V. Sein, and Marie-Lou Bachèlery
Earth Syst. Dynam., 15, 1401–1416, https://doi.org/10.5194/esd-15-1401-2024, https://doi.org/10.5194/esd-15-1401-2024, 2024
Short summary
Short summary
Using a high-resolution regionally coupled model, we suggest that Dakar Niño variability will be reinforced under the Representative Concentration Pathway (RCP) 8.5 scenario. This may be induced by intensified surface heat flux anomalies and, secondarily, by anomalies in horizontal and vertical advection. Increased sea surface temperature (SST) variability can be associated with stronger wind variability, attributed to amplified surface temperature anomalies between ocean and land.
Iván M. Parras-Berrocal, Rubén Vázquez, William Cabos, Dimitry V. Sein, Oscar Álvarez, Miguel Bruno, and Alfredo Izquierdo
Ocean Sci., 19, 941–952, https://doi.org/10.5194/os-19-941-2023, https://doi.org/10.5194/os-19-941-2023, 2023
Short summary
Short summary
Global warming may strongly affect dense water formation in the eastern Mediterranean, potentially impacting basin circulation and water properties. We find that at the end of the century dense water formation is reduced by 75 % for the Adriatic, 84 % for the Aegean, and 83 % for the Levantine Sea. This reduction is caused by changes in the temperature and salinity of surface and intermediate waters, which strengthen the vertical stratification, hampering deep convection.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
Cited articles
Artale, V., Astraldi, M., Buffoni, G., and Gasparini, G. P.: Seasonal variability of gyre-scale circulation in the northern Tyrrhenian Sea, J. Geophys. Res., 99, 14127–14137, https://doi.org/10.1016/j.dsr2.2003.08.004, 1994.
Astraldi, M. and Gasparini, G. P.: The seasonal characteristics of the circulation in the North Mediterranean basin and their relationship with the atmospheric-climatic conditions, J. Geophys. Res.-Oceans, 97, 9531–9540, https://doi.org/10.1029/92JC00114, 1992.
Astraldi, M., Balopoulos, S., Candela, J., Font, J., Gacic, M., Gasparini, G. P., Manca, B.,
Theocharis, A., and Tintoré, J.: The role of straits and channels in understanding the characteristics of Mediterranean circulation, Prog. Oceanogr., 44, 65–108, https://doi.org/10.1016/S0079-6611(99)00021-X, 1999.
Astraldi, M., Gasparini, G. P., Vetrano, A., and Vignudelli, S.: Hydrographic characteristics and interannual variability of water masses in the central Mediterranean: a sensitivity test for long-term changes in the Mediterranean Sea, Deep-Sea Res. Pt. I, 49, 661–680, https://doi.org/10.1016/S0967-0637(01)00059-0, 2002.
Béranger, K., Mortier, L., Gasparini, G. P., Gervasio, L., Astraldi, M., and Crépon, M.: The dynamics of the Sicily Strait: a comprehensive study from observations and models, Deep-Sea Res. Pt. II, 51, 411–440, https://doi.org/10.1016/j.pocean.2004.07.013, 2004.
Béranger, K., Mortier, L., and Crépon, M.: Seasonal variability of water transport through the Straits of Gibraltar, Sicily and Corsica, derived from a high-resolution model of the Mediterranean circulation, Prog. Oceanogr., 66, 341–364, https://doi.org/10.1016/j.pocean.2004.07.013, 2005.
Bergamasco, A. and Malanotte-Rizzoli, P.: The circulation of the Mediterranean Sea: a historical review of experimental investigations, Adv. Oceanogr. Limnol., 1, 11–28, https://doi.org/10.1080/19475721.2010.491656, 2010.
Cabos, W., Sein, D. V., Pinto, J. G., Fink, A. H., Koldunov, N. V., Alvarez, F, Izquierdo, A.,
Keenlyside, N., and Jacob, D.: The South Atlantic Anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate model, Clim. Dynam., 48, 4051–4069, https://doi.org/10.1007/s00382-016-3319-9, 2017.
Cabos, W., Sein, D. V., Durán-Quesada, A., Liguori, G., Koldunov, N. K., Martínez-López, B., Alvarez, F., Sieck, K., Limareva, N., and Pinto, J. G.: Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model, Clim. Dynam., 52, 4305–4328, https://doi.org/10.1007/s00382-018-4381-2, 2018.
Cabos, W., de la Vara, A., Álvarez-García, F. J., Sánchez, E., Sieck, K., Pérez-Sanz, J. I.,
Limareva, N., and Sein, D. V.: Impact of ocean-atmosphere coupling on regional climate: the Iberian Peninsula case, Clim. Dynam., 54, 4441–4467, https://doi.org/10.1007/s00382-020-05238-x, 2020.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Narvaez, W., Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G. M., and Sein, D. V.: Future evolution of marine heat waves in the Mediterranean Sea, Clim. Dynam., 53, 1371–1392, https://doi.org/10.1007/s00382-019-04661-z, 2019.
Dastis, C., Bruno, M., Izquierdo, A., Reyes, E., Sofina, E. V., and Plink, N. L.: Influence of the atmospheric pressure fluctuations over the Mediterranean Sea on the mesoscale water dynamics of the Strait of Gibraltar and the Alboran Sea, Fundamentalnaya i Prikladnaya Gidrofizika, 11, 28–39, https://doi.org/10.7868/S2073667318010033, 2018.
de la Vara, A., Galan del Sastre, P., Arsouze, T., Gallardo, C., and Gaertner, M. A.: Role of atmospheric resolution in the long-term seasonal variability of the Tyrrhenian Sea circulation from a set of ocean hindcast simulations (1997–2008), Ocean Model., 134, 51–67, https://doi.org/10.1016/j.ocemod.2019.01.004, 2019.
de la Vara, A., Parras-Berrocal, I. M., Izquierdo, A., Sein, D. V., and Cabos, W.: Climate change signal in the ocean circulation of the Tyrrhenian Sea, Zenodo [data set], https://doi.org/10.5281/zenodo.5901640, 2022.
Déqué, M., Somot, S., Sanchez-Gomez, E., Goodess, C. M., Jacob, D., Lenderink, G., and Christensen, O. B.: The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability, Clim. Dynam., 38, 951–964, 2012.
Gasparini, G., Schroeder, K., and Sparnocchia, S.: Straits and Channels as key regions of an integrated marine observatory of the Mediterranean: our experience on their long-term monitoring, Towards an Integrated System of Mediterranean Marine Observatories 34, CIESM Workshop Monographs, 75–79, 2008.
Gérigny, O., Coudray, S., Lapucci, C., Tomasino, C., Bisgambiglia, P. A., and Galgani, F.: Small-scale variability of the current in the Strait of Bonifacio, Ocean Dynam., 65, 1165–1182, https://doi.org/10.1007/s10236-015-0863-5, 2015.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin,
V.,Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.D., Ilyina, T., Kinne,
S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F.,
Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K.
D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K. H., Claussen, M.,
Marotzke, J., and Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Giorgi, F.: Climate Change Hot-Spots, Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734, 2006.
Hagemann, S. and Dümenil Gates, L.: Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model, J. Geophys. Res., 106, 1503–1510, 2001.
Hayes, D. R., Schroeder, K., Poulain, P. M., Testor, P., Mortier, L., Bosse, A., and du Madron, X.: 18 Review of the Circulation and Characteristics of Intermediate Water Masses of the Mediterranean: Implications for Cold-Water Coral Habitats, in: Mediterranean Cold-Water Corals: Past, Present and Future, Coral Reefs of the World, vol. 9, edited by: Orejas, C. and Jiménez, C., Springer, Cham, https://doi.org/10.1007/978-3-319-91608-8_18, 2019.
Iacono, R., Napolitano, E., Marullo, S., Artale, V., and Vetrano, A.: Seasonal variability of the Tyrrhenian Sea surface geostrophic circulation as assessed by altimeter data, J. Phys. Oceanogr., 43, 1710–1732, https://doi.org/10.1175/JPO-D-12-0112.1, 2013.
Izquierdo A. and Mikolajewicz, U.: The role of tides in the spreading of Mediterranean Outflow waters along the southwestern Iberian margin, Ocean Model., 133, 27–43, https://doi.org/10.1016/j.ocemod.2018.08.003, 2019.
Jacob, D.: A note to the simulation of the annual and interannual variability of the water budget over the Baltic Sea drainage basin, Meteorol. Atmos. Phys., 77, 61–73, https://doi.org/10.1007/s007030170017, 2001.
Jacob, D. and Podzun, R.: Sensitivity studies with the regional climate model REMO, Meteorol. Atmos. Phys., 63, 119–129, https://doi.org/10.1007/BF01025368, 1997.
Jiménez-Guerrero, P., Montávez, J. P., Domínguez, M., Romera, R., Fita, L., Fernández, J., Cabos,
W., Liguori, G., and Gaertner M. A.: Mean fields and interannual variability in RCM simulations over Spain: the ESCENA project, Clim. Res., 57, 201–220, https://doi.org/10.3354/cr01165, 2013.
Jordà, G., Von Schuckmann, K., Josey, S. A., Caniaux, G., García-Lafuente, J., Sammartino, S., Özsoy, E., Polcher, J., Notarstefano, G., Poulain, P. M., Adloff, A., Salat, J., Naranjo, C., Schroeder, K., Chiggiato, J., Sannino, G., and Macías, D.: The Mediterranean Sea heat and mass budgets: estimates, uncertainties and perspectives, Prog. Oceanogr., 156, 174–208, https://doi.org/10.1016/j.pocean.2017.07.001, 2017.
Jungclaus, J. H., Keenlyside, N., Botzet, M., Haak, H., Luo, J. J., Latif, M., Marotzke, J.,
Mikolajewicz, U., and Roeckner, E.: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM, J. Climate, 19, 3952–3972, https://doi.org/10.1175/JCLI3827.1, 2006.
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-Earth system model, J. Adv. Model. Earth Sy., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013.
Korres, G., Pinardi, N., and Lascaratos, A.: The ocean response to low-frequency interannual atmospheric variability in the Mediterranean Sea. Part I: sensitivity experiments and energy analysis, J. Climate, 13, 705–731, https://doi.org/10.1175/1520-0442(2000)013<0705:TORTLF>2.0.CO;2, 2000.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Krivosheya, V. G. and Ovchinnikov, I. M.: Peculiarities in geostrophic circulation of waters of the Tyrrhenian Sea, Oceanology-USSR, 13, 822–827, 1973.
Lascaratos, A., Williams, R. G., and Tragou, E.: A mixed-layer study of the formation of Levantine Intermediate Water, J. Geophys. Res., 98, 14739–14749, https://doi.org/10.1016/0967-0645(93)90064-T, 1993.
Levang, S. J. and Schmitt, R. W.: What Causes the AMOC to Weaken in CMIP5?, J. Climate, 33, 1535–1545, https://doi.org/10.1175/JCLI-D-19-0547.1, 2020.
Limareva, N. S., Cabos, W., Izquierdo, A., and Sein,
D. V.: The climate change of the Caucasus as a result of the global
warming, Sovremennaa nauka i innovacii, 2, 15–26, 2017.
Liu, F., Mikolajewicz, U., and Six, K.: Drivers of the decadal variability of the North Ionian Gyre upper layer circulation during 1910–2010: a regional modelling study, Clim. Dynam., https://doi.org/10.1007/s00382-021-05714-y, 2021.
Maier-Reimer, E.: Design of a closed boundary regional model of the Arctic Ocean, B. Am. Meteorol. Soc.: Workshop on polar processes in global climate, Cancun, Mexico, 13–15 November 1996, 72–73, 1997.
Margirier, F., Testor, P., Heslop, E., Mallil, K., Bosse, A., Houpert, L., Mortier, L., Bouin, M. N.,
Coppola, L., D’Ortenzio, F., Durrieu de Madron, X., Mourre, B., Prieur, L., Raimbault, P., and
Taillandier, V.: Abrupt warming and salinification of intermediate waters interplays with decline of deep convection in the Northwestern Mediterranean Sea, Sci. Rep., 10, 1–11, https://doi.org/10.1038/s41598-020-77859-5, 2020.
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., and Röske, F.: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates, Ocean Model., 5, 91–127, https://doi.org/10.1016/S1463-5003(02)00015-X, 2003.
Mathis, M., Elizalde, A., and Mikolajewicz, U.: Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European shelf, Clim. Dynam., 50, 2637–2659, https://doi.org/10.1007/s00382-017-3761-3, 2018.
MEDOC Group: Observation of formation of deep water in the Mediterranean Sea, Nature, 227, 1037–1040, 1970.
Millot, C.: Some features of the Algerian Current, J. Geophys. Res.-Oceans, 90, 7169–7176, https://doi.org/10.1029/JC090iC04p07169, 1985.
Millot, C.: Another description of the Mediterranean Sea outflow, Progr. Oceanogr., 82, 101–124, https://doi.org/10.1016/j.Pocean.2009.04.016, 2009.
Millot, C.: Comments about computations about the Mediterranean Outflow composition, B. Geofis. Teor. Appl., 60, 517–630, https://doi.org/10.4430/bgta0266, 2019.
Napolitano, E., Iacono, R., Sorgente, R., Fazioli, L., Olita, A., Cucco, A., Oddo, P., and Guarnieri, A.: The regional forecasting systems of the Italian seas, J. Oper. Oceanogr., 9, 66–76, https://doi.org/10.1080/1755876X.2015.1117767, 2016.
Ovchinnikov, I. M.: Circulation in the surface and intermediate layers of the Mediterranean, Oceanology, 6, 48–59, 1966.
Parras-Berrocal, I., Vazquez, R., Cabos, W., Sein, D., Alvarez, O., Bruno, M., and Izquierdo, A.: Will deep water formation collapse in the North Western Mediterranean Sea by the end of the 21st century?, Earth and Space Science Open Archive, https://doi.org/10.1002/essoar.10507698.1, 2021.
Parras-Berrocal, I. M., Vazquez, R., Cabos, W., Sein, D., Mañanes, R., Perez-Sanz, J., and Izquierdo, A.: The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model, Ocean Sci., 16, 743–765, https://doi.org/10.5194/os-16-743-2020, 2020.
Renault, L., Molemaker, M. J., McWilliams, J. C., Shchepetkin, A. F., Lemarié, F., Chelton, D., Illig, S., and Hall, A.: Modulation of wind work by oceanic current interaction with the atmosphere, J. Phys. Oceanogr., 46, 1685–1704, 2016.
Rinaldi, E., Buongiorno Nardelli, B., Zambianchi, E., Santoleri, R., and Poulain, P. M.: Lagrangian and Eulerian observations of the surface circulation in the Tyrrhenian Sea, J. Geophys. Res., 115, C04024, https://doi.org/10.1029/2009JC005535, 2010.
Rio, M. H., Poulain, P. M., Pascual, A., Mauri, E., Larnicol, G., and Santoleri, R.: A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model, J. Marine Syst., 65, 484–508, https://doi.org/10.1016/j.jmarsys.2005.02.006, 2007.
Rummukainen, M.: Added value in regional climate modeling, WIREs Clim. Change, 7, 145–159, https://doi.org/10.1002/wcc.378, 2016.
Sathyanarayanan, A., Köhl, A., and Stammer, D.: Ocean Salinity Changes in the Global Ocean under Global Warming Conditions. Part I: Mechanisms in a Strong Warming Scenario, J. Climate, 34, 8219–8236, https://doi.org/10.1175/JCLI-D-20-0865.1, 2021.
Schroeder, K., Josey, S., Herrmann, M., Grignon, L., Gasparini, G., and Bryden, H.: Abrupt warming and salting of the Western Mediterranean deep water after 2005: atmospheric forcings and lateral advection, J. Geophys. Res.-Oceans, 115, C08029, https://doi.org/10.1029/2009JC005749, 2010.
Schulzweida, U.: CDO User Guide (Version 2.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.5614769, 2020.
Sciascia, R., Magaldi, M. G., and Vetrano, A.: Current reversal and associated variability within the Corsica Channel: The 2004 case study, Deep-Sea Res. Pt. I, 144, 39–51, https://doi.org/10.1016/j.dsr.2018.12.004, 2019.
Sein, D. V., Koldunov, N. K., Pinto, J. G., and Cabos, W.: Sensitivity of simulated regional Arctic climate to the choice of coupled model domain, Tellus A, 66, 23966, https://doi.org/10.3402/tellusa.v66.23966, 2014.
Sein, D. V., Mikolajewicz, U., Gröger, M., Fast, I., Cabos, W., Pinto, J. G., Hagemann, S., Semmler, T., Izquierdo, A., and Jacob, D.: Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1, J. Adv. Model. Earth Sy., 7, 268–304, https://doi.org/10.1002/2014MS000357, 2015.
Sein, D. V., Gröger, M., Cabos, W., Alvarez-Garcia, F. J., Hagemann, S., Pinto, J. G., Izquierdo, A.,
de la Vara, A., Koldunov, N., Dvornikov, A., Limareva, N., Alekseeva, E., Martinez-Lopez, B., and
Jacob, D.: Regionally coupled atmosphere-ocean-marine biogeochemistry model ROM: 2. Studying the climate change signal in the North Atlantic and Europe, J. Adv. Model. Earth Sy., 12, e2019MS001646, https://doi.org/10.1029/2019MS001646, 2020.
Ser-Giacomi, E., Jordá-Sánchez, G., Sotto-Navarro, J., Thomsen, S., Mignot, J., Sevault, F., and Rossi, V.: Impact of climate change on surface stirring and transport in the Mediterranean Sea, Geophys. Res. Lett., 47, e2020GL089941, https://doi.org/10.1029/2020GL089941, 2020.
Serravall, R. and Cristofalo, G. C.: On the presence of a coastal current of Levantine intermediate water in the central Tyrrhenian Sea, Oceanol. Acta, 22, 281–290, 1999.
Somot, S., Sevault, F., and Déqué, M.: Transient climate change scenario simulation of the Mediterranean Sea for the 21st century using a high resolution ocean circulation model, Clim. Dynam., 27, 851–879, 2006.
Soto-Navarro, J., Jordá, G., Amores, A., Cabos, W., Somot, S., Sevault, F., Macías, D., Djurdjevic,
V., Sannino, G., Li, L., and Sein, D.: Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble, Clim. Dynam., 54, 2135–2165, https://doi.org/10.1007/s00382-019-05105-4, 2020.
Taylor, K., Stouffer, R., and Meehl, G.: An overview of CMIP5 and the experiments design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
The LIWEX Group: The Levantine Intermediate Water Experiment (LIWEX) Group: Levantine Basin – a laboratory for multiple water mass formation processes, J. Geophys. Res., 108, 8101, https://doi.org/10.1029/2002JC001643, 2003.
Valcke, S., Caubel, A., Declat, D., and Terray, L.: OASIS3 ocean atmosphere
sea ice soil user’s guide, 2, CERFACS, Toulouse, France, available at: https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/02/GLOBC_TR_oasis3_UserGuide.pdf (last access: 27 January 2022), 2003.
Vargas-Yáñez, M., Plaza, F., Garcıa-Lafuente, J., Sarhan, T., Vargas, J.M, and Vélez-Belchí, P.: About the seasonal variability of the Alboran Sea circulation, J. Marine Syst., 35, 229–248, https://doi.org/10.1016/S0924-7963(02)00128-8, 2002.
Vetrano, A., Gasparini, G. P., Molcard, R., and Astraldi, M.:
Water flux estimates in the central Mediterranean Sea from an inverse box model, J. Geophys.
Res., 109, C01019, https://doi.org/10.1029/2003JC001903, 2004.
Vetrano, A., Napolitano, E., Iacono, R., Schroeder, K., and Gasparini, G. P.: Tyrrhenian Sea circulation and water mass fluxes in spring 2004: observations and model results, J. Geophys. Res., 115, C06023, https://doi.org/10.1029/2009JC005680, 2010.
Vigo, M. I., Sempere, M. D., Chao, B. F., and Trottini, M.: Mediterranean Surface
Geostrophic Circulation from Satellite Gravity and Altimetry Observations, Meteorology and
Climatology of the Mediterranean and Black Seas, 269–285, Birkhäuser, Basel, Switzerland,
https://doi.org/10.1007/978-3-030-11958-4_16, 2019.
Wüst, G.: On the vertical circulation of the Mediterranean Sea, J. Geophys. Res., 66, 3261–3271, https://doi.org/10.1029/JZ066i010p03261, 1961.
Zavatarelli, M. and Mellor, G. L.: A numerical study of the Mediterranean Sea circulation, J. Phys. Oceanogr., 25, 1384–1414, https://doi.org/10.1175/1520-0485(1995)025<1384:ANSOTM>2.0.CO;2, 1995.
Short summary
We study with the regionally coupled climate model ROM the impact of climate change on the Tyrrhenian Sea circulation, as well as the possible mechanisms and consequences in the NW Mediterranean Sea. Our results show a shift towards the summer circulation pattern by the end of the century. Also, water flowing via the Corsica Channel is more stratified and smaller in volume. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions in the future.
We study with the regionally coupled climate model ROM the impact of climate change on the...
Altmetrics
Final-revised paper
Preprint