Articles | Volume 12, issue 4
https://doi.org/10.5194/esd-12-1169-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-12-1169-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Accounting for surface waves improves gas flux estimation at high wind speed in a large lake
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Bieito Fernández Castro
Physics of Aquatic Systems Laboratory, Margareth Kamprad Chair, Swiss Federal Institute of Technology Lausanne, Lausanne, 1015, Switzerland
Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, SO14 3ZH, UK
Nicolas Escoffier
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Thibault Lambert
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Damien Bouffard
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Surface Waters – Research and Management, Kastanienbaum, 6047, Switzerland
Marie-Elodie Perga
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Related authors
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Niek Kusters, Sjoerd Groeskamp, Bieito Fernandez Castro, and Hans van Haren
EGUsphere, https://doi.org/10.5194/egusphere-2025-3165, https://doi.org/10.5194/egusphere-2025-3165, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study compares both microstructure shear and thermistor data, and finds very weak dissipations rates down to O(10-12) W kg-1. The direct microstructure observations are compared to a finescale parameterization and Thorpe sorting method, for which we find good comparison. Insights into the relative roles between isoneutral and dianeutral mixing are obtained by using the triple decomposition framework.
Benedict V. A. Mittelbach, Margot E. White, Timo M. Y. Rhyner, Negar Haghipour, Marie-Elodie Perga, Nathalie Dubois, and Timothy I. Eglinton
EGUsphere, https://doi.org/10.5194/egusphere-2025-2891, https://doi.org/10.5194/egusphere-2025-2891, 2025
Short summary
Short summary
Lakes can emit carbon dioxide but also store carbon in their sediments. In hardwater lakes like Lake Geneva, calcite precipitates in the water column, releasing CO2 to the atmosphere, but upon sinking these particles also transport carbon to the sediment. Using sediment traps and radiocarbon isotopes, we show that much of the precipitated calcite is buried, highlighting an overlooked carbon sink that partly offsets the CO2 outgassing and should be included in lake carbon budgets.
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025, https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Short summary
Models simplify reality using assumptions, which can sometimes introduce flaws and affect their accuracy. Properly calibrating model parameters is essential, and although automated tools can speed up this process, they may occasionally produce incorrect values due to inconsistencies in the model. We demonstrate that by carefully applying automated tools, we were able to identify and correct a flaw in a widely used model for lake environments.
Thibault Lambert, Rémi Dupas, and Patrick Durand
Biogeosciences, 21, 4533–4547, https://doi.org/10.5194/bg-21-4533-2024, https://doi.org/10.5194/bg-21-4533-2024, 2024
Short summary
Short summary
This study investigates dissolved organic carbon (DOC) export in headwater catchments. Results show small links between DOC, nitrates, and the iron cycle throughout the year, calling into question our current conceptualization of DOC export at the catchment scale. Indeed, this study evidences that the winter period, referred as a non-productive period in our current conceptual model, acts as an active period for DOC production in riparian soils and DOC export toward stream waters.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023, https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022, https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Tomy Doda, Cintia L. Ramón, Hugo N. Ulloa, Alfred Wüest, and Damien Bouffard
Hydrol. Earth Syst. Sci., 26, 331–353, https://doi.org/10.5194/hess-26-331-2022, https://doi.org/10.5194/hess-26-331-2022, 2022
Short summary
Short summary
At night or during cold periods, the shallow littoral region of lakes cools faster than their deeper interior. This induces a cold downslope current that carries littoral waters offshore. From a 1-year-long database collected in a small temperate lake, we resolve the seasonality of this current and report its frequent occurrence from summer to winter. This study contributes to a better quantification of lateral exchange in lakes, with implications for the transport of dissolved compounds.
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Marco Toffolon, Luca Cortese, and Damien Bouffard
Geosci. Model Dev., 14, 7527–7543, https://doi.org/10.5194/gmd-14-7527-2021, https://doi.org/10.5194/gmd-14-7527-2021, 2021
Short summary
Short summary
The time when lakes freeze varies considerably from year to year. A common way to predict it is to use negative degree days, i.e., the sum of air temperatures below 0 °C, a proxy for the heat lost to the atmosphere. Here, we show that this is insufficient as the mixing of the surface layer induced by wind tends to delay the formation of ice. To do so, we developed a minimal model based on a simplified energy balance, which can be used both for large-scale analyses and short-term predictions.
Nadia Burgoa, Francisco Machín, Ángel Rodríguez-Santana, Ángeles Marrero-Díaz, Xosé Antón Álvarez-Salgado, Bieito Fernández-Castro, María Dolores Gelado-Caballero, and Javier Arístegui
Ocean Sci., 17, 769–788, https://doi.org/10.5194/os-17-769-2021, https://doi.org/10.5194/os-17-769-2021, 2021
Short summary
Short summary
The circulation patterns in the confluence of the North Atlantic subtropical and tropical gyres delimited by the Cape Verde Front were examined during a field cruise in summer 2017. The collected hydrographic data, O2 and inorganic nutrients along the perimeter of a closed box embracing the Cape Verde Frontal Zone allowed for the independent estimation of the transport of these properties.
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021, https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary
Short summary
When solar radiation penetrates the frozen surface of lakes, shallower zones underneath warm faster than deep interior waters. This numerical study shows that the transport of excess heat to the lake interior depends on the lake circulation, affected by Earth's rotation, and controls the lake warming rates and the spatial distribution of the heat flux across the ice–water interface. This work contributes to the understanding of the circulation and thermal structure patterns of ice-covered lakes.
Harriet L. Wilson, Ana I. Ayala, Ian D. Jones, Alec Rolston, Don Pierson, Elvira de Eyto, Hans-Peter Grossart, Marie-Elodie Perga, R. Iestyn Woolway, and Eleanor Jennings
Hydrol. Earth Syst. Sci., 24, 5559–5577, https://doi.org/10.5194/hess-24-5559-2020, https://doi.org/10.5194/hess-24-5559-2020, 2020
Short summary
Short summary
Lakes are often described in terms of vertical layers. The
epilimnionrefers to the warm surface layer that is homogeneous due to mixing. The depth of the epilimnion can influence air–water exchanges and the vertical distribution of biological variables. We compared various methods for defining the epilimnion layer and found large variability between methods. Certain methods may be better suited for applications such as multi-lake comparison and assessing the impact of climate change.
Cited articles
Amini, A., Dhont, B., and Heller, P.:
Wave atlas for Swiss lakes: modeling design waves in mountainous lakes,
Journal of Applied Water Engineering and Research,
5, 103–113, https://doi.org/10.1080/23249676.2016.1171733, 2016.
Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., and Gålfalk, M.: Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers, Biogeosciences, 12, 3849–3859, https://doi.org/10.5194/bg-12-3849-2015, 2015.
Borges, A. V., Vanderborght, J.-P., Schiettecatte, L.-S., Gazeau, F., Ferron-Smith, S., Delille, B., and Frankignoulle, M.:
Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt),
Estuaries,
27, 593–603, https://doi.org/10.1007/BF02907647, 2004.
Bouffard, D., Sukys, J., Runnals, J., and Odermatt, D.: Datalakes: Heterogeneous data platform for operational modelling and forecasting of Swiss lakes, available at: https://www.datalakes-eawag.ch, last access: 23 February 2021.
Carter, D. J. T.:
Prediction of wave height and period for a constant wind velocity using the JONSWAP results,
Ocean Eng.,
9, 17–33, https://doi.org/10.1016/0029-8018(82)90042-7, 1982.
Cole, J. J. and Caraco, N. F.:
Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6,
Limnol. Oceanogr.,
43, 647–656, https://doi.org/10.4319/lo.1998.43.4.0647, 1998.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J.:
Plumbing the Global carbon cycle: Integrating inland waters into the terrestrial carbon budget,
Ecosystems,
10, 172–185, https://doi.org/10.1007/s10021-006-9013-8, 2007.
Cole, J. J., Bade, D. L., Bastviken, D., Pace, M. L., and de Bogert, M. V.:
Multiple approaches to estimating air–water gas exchange in small lakes,
Limnol. Oceanogr.-Meth.,
8, 285—293, https://doi.org/10.4319/lom.2010.8.285, 2010.
Crusius, J. and Wanninkhof, R.:
Gas transfer velocities measured at low wind speed over a lake,
Limnol. Oceanogr.,
48, 1010–1017, https://doi.org/10.4319/lo.2003.48.3.1010, 2003.
Danckwerts, P. V.:
Significance of liquid-film coefficient in gas absorption,
Ind. Eng. Chem.,
43, 1460–1467, https://doi.org/10.1021/ie50498a055, 1951.
Deike, L. and Melville, W. K.:
Gas transfer by breaking waves,
Geophys. Res. Lett.,
45, 482–492, https://doi.org/10.1029/2018GL078758, 2018.
Dugan, H. A., Woolway, R. I., Santoso, A. B., Corman, J. R., Jaimes, A., Nodine, E. R., Patil, V. P., Zwart, J. A., Brentrup, J. A., Hetherington, A. L., Oliver, S. K., Read, J. S., Winters, K. M., Hanson, P. C., Read, E. K., Winslow, L. A., and Weathers, K. C.:
Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes,
Inland Waters,
6, 581–592, https://doi.org/10.1080/IW-6.4.836, 2016.
Engel, F., Farrell, K. J., McCullough, I. M., Scordo, F., Denfeld, B. A., Dugan, H. A., de Eyto, E., Hanson, P. C., McClure, R. P., Nõges, P., Nõges, T., Ryder, E., Weathers, K. C., and Weyhenmeyer, G. A.:
A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters,
Sci. Nat.-Heidelberg,
105, 25, https://doi.org/10.1007/s00114-018-1547-z, 2018.
Erkkilä, K.-M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J. J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., and Mammarella, I.: Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method, Biogeosciences, 15, 429–445, https://doi.org/10.5194/bg-15-429-2018, 2018.
Esters, L., Landwehr, S., Sutherland, G., Bell, T. G., Christensen, K. H., Saltzman, E. S., Miller, S. D., and Ward, B.:
Parameterizing air-sea gas transfer velocity with dissipation: Dissipation-based k-parametrization,
J. Geophys. Res.-Oceans,
122, 3041–3056. https://doi.org/10.1002/2016JC012088, 2017.
Esters, L., Rutgersson, A., Nilsson, E., and Sahlée, E.:
Non-local impacts on eddy-covariance air-lake CO2 fluxes,
Bound.-Lay. Meteorol.,
178, 283–300, https://doi.org/10.1007/s10546-020-00565-2, 2021.
Eugster, W., Kling, G. W., Jonas, T., McFadden, J. P., Wüest, A., MacIntyre, S., and Chapin, F. S.:
CO2 exchange between air and water in an Artic Alaskan and midlatitude Swiss lake: Importance of convective mixing,
J. Geophys. Res.,
108, D12, https://doi.org/10.1029/2002JD002653, 2003.
Fairall, C. W., Yang, M., Bariteau, L., Edson, J. B., Helmig, D., McGillis, W., Pezoa, S., Hare, J. E., Huebert, B., and Blomquist, B.:
Implementation of the Coupled Ocean-Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3,
J. Geophys. Res.,
116, C00F09, https://doi.org/10.1029/2010JC006884, 2011.
Finlay, K., Vogt, R. J., Simpson, G. L., and Leavitt, P. R.:
Seasonality of pCO2 in a hard-water lake of the northern Great Plains: The legacy effects of climate and limnological conditions over 36 years,
Limnol. Oceanogr.,
64, 118–129, https://doi.org/10.1002/lno.11113, 2019.
Frost, T. and Upstill-Goddard, R. C.:
Meteorological controls of gas exchange at a small English lake,
Limnol. Oceanogr.,
47, 1165–1174, https://doi.org/10.4319/lo.2002.47.4.1165, 2002.
Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., and Varfalvy, L.:
Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream,
J. Marine Syst.,
66, 161–172, https://doi.org/10.1016/j.jmarsys.2006.03.019, 2007.
Hasselmann K., Barnett T. P., Bouws, E., Carlson, H, Cartwright D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H.:
Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JON- SWAP),
Dtsch. Hydrog. Z. Suppl. A,
8, 1–95, 1973.
Heiskanen, J. J., Mammarella, I., Haapanala, S., Pumpanen, J., Vesala, T., MacIntyre, S., and Ojala, A.:
Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake,
Tellus B,
66, 22827, https://doi.org/10.3402/tellusb.v66.22827, 2014.
Hubertz, J. M., Driver, D. B., and Reinhard, R. D.:
Wind waves on the Great Lakes: A 32 year hindcast,
J. Coastal Res.,
7, 945–967, 1991.
Huotari, J., Ojala, A., Peltomaa, E., Nordbo, A., Launiainen, S., Pumpanen, J., Rasilo, T., Hari, P., and Vesala, T.:
Long-term direct CO2 flux measurements over a boreal lake: Five years of eddy covariance data,
Geophys. Res. Lett.,
38, L18401, https://doi.org/10.1029/2011GL048753, 2011.
Karlsson, J., Giesler, R., Persson, J., and Lundin, E.:
High emission of carbon dioxide and methane during ice thaw in high latitude lakes,
Geophys. Res. Lett.,
40, 1123–1127, https://doi.org/10.1002/grl.50152, 2013.
Katul, G. and Liu, H.:
Multiple mechanisms generate a universal scaling with dissipation for the air–water gas transfer velocity,
Geophys. Res. Lett.,
44, 1892–1898, https://doi.org/10.1002/2016GL072256, 2017.
Katul, G., Mammarella, I., Grönholm, T., and Vesala, T.:
A structure function model recovers the many formulations for air–water gas transfer velocity,
Water Resour. Res.,
54, 5905–5920, https://doi.org/10.1029/2018WR022731, 2018.
Keeling, R. F., Najjar, R. P., Bender, M. L., and Tans, P. P.:
What atmospheric oxygen measurements can tell us about the global carbon cycle,
Global Biogeochem. Cy.,
7, 37–67, https://doi.org/10.1029/92GB02733, 1993.
Klaus, M. and Vachon, D.:
Challenges of predicting gas transfer velocity from wind measurements over global lakes,
Aquat. Sci.,
82, 53, https://doi.org/10.1007/s00027-020-00729-9, 2020.
Lamont, J. C. and Scott, D. S.:
An eddy cell model of mass transfer into the surface of a turbulent liquid,
AIChE J.,
16, 513–519, https://doi.org/10.1002/aic.690160403, 1970.
Lombardo, C. P. and Gregg, M. C.:
Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer.
J. Geophys. Res.,
94, 6273–6284, https://doi.org/10.1029/jc094ic05p06273, 1989.
Lorke, A. and Peeters, F.:
Toward a unified scaling relation for interfacial fluxes,
J. Phys. Oceanogr., 36, 955–961, https://doi.org/10.1175/JPO2903.1, 2006.
Maberly, S. C., Barker, P. A., Stott, A. W., and De Ville, M. M.:
Catchment productivity controls CO2 emissions from lakes,
Nat. Clim. Change,
3, 391–394, https://doi.org/10.1038/nclimate1748, 2013.
MacIntyre, S., Eugster, W., and Kling, G. W.:
The critical importance of buoyancy flux for gas flux across the air–water interface,
in: Geophysical Monograph Series,
edited by: Donelan, M. A., Drennan, W. M., Saltzman, E. S., and Wanninkhof, R.,
American Geophysical Union, Washington, DC, https://doi.org/10.1029/GM127p0135, pp. 135–139, 2001.
MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., and Miller, S. D.:
Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake: Turbulence and gas evasion in lakes,
Geophys. Res. Lett.,
37, L24604, https://doi.org/10.1029/2010GL044164, 2010.
Mammarella, I., Nordbo, A., Rannik, Ü., Haapanala, S., Levula, J., Laakso, H., Ojala, A., Peltola, O., Heiskanen, J., Pumpanen, J., and Vesala, T.:
Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland: CO2 and Energy Fluxes Over Lake,
J. Geophys. Res.-Biogeo.,
120, 1296–1314, https://doi.org/10.1002/2014JG002873, 2015.
Perga, M.-E., Maberly, S. C., Jenny, J.-P., Alric, B., Pignol, C., and Naffrechoux, E.:
A century of human-driven changes in the carbon dioxide concentration of lakes: 150 years of human impacts on lakes CO2,
Global Biogeochem. Cy.,
30, 93–104, https://doi.org/10.1002/2015GB005286, 2016.
Perolo, P.: CO2 flux measurements in Lake Geneva, Zenodo [dataset], https://doi.org/10.5281/zenodo.5679883, 2021.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.:
Global carbon dioxide emissions from inland waters,
Nature,
503, 355–359, https://doi.org/10.1038/nature12760, 2013.
Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., MacIntyre, S., Lenters, J. D., Smyth, R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D., Laas, A., and Wu, C. H.:
Lake-size dependency of wind shear and convection as controls on gas exchange: Lake-size dependency of u∗ and w∗,
Geophys. Res. Lett.,
39, L09405, https://doi.org/10.1029/2012GL051886, 2012.
Reed, D. E., Dugan, H. A., Flannery, A. L., and Desai, A. R.:
Carbon sink and source dynamics of a eutrophic deep lake using multiple flux observations over multiple years: Carbon sink and source dynamics,
Limnol. Oceanogr. Lett.,
3, 285–292, https://doi.org/10.1002/lol2.10075, 2018.
Reichl, B. G. and Deike, L.:
Contribution of sea-state dependent bubbles to air-sea carbon dioxide fluxes,
Geophys. Res. Lett.,
47, L087267, https://doi.org/10.1029/2020GL087267, 2020.
Rimet, F., Anneville, O., Barbet, D., Chardon, C., Crépin, L., Domaizon, I., and Monet, G.:
The Observatory on LAkes (OLA) database: Sixty years of environmental data accessible to the public,
J. Limnol.,
78, 164–178. https://doi.org/10.4081/jlimnol.2020.1944, 2020.
Risk, D., Nickerson, N., Creelman, C., McArthur, G., and Owens, J.:
Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux,
Agr. Forest Meteorol.,
151, 1622–1631, https://doi.org/10.1016/j.agrformet.2011.06.020, 2011.
Russell, T. W. F. and Denn, M. M.:
Introduction to chemical engineering analysis,
Wiley, New York, USA, 1972.
Schilder, J., Bastviken, D., van Hardenbroek, M., Kankaala, P., Rinta, P., Stötter, T., and Heiri, O.:
Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes: Spatial heterogeneity of diffusive flux,
Geophys. Res. Lett.,
40, 5752–5756, https://doi.org/10.1002/2013GL057669, 2013.
Schubert, M., Paschke, A., Lieberman, E., and Burnett, W. C.:
Air–Water Partitioning of 222Rn and its Dependence on Water Temperature and Salinity,
Environ. Sci. Technol.,
46, 3905–3911, https://doi.org/10.1021/es204680n, 2012.
Simon A.:
Turbulent mixing in the surface boundary layer of lakes,
PhD thesis no. 12,272,
Swiss Fed. Inst. Technol. (ETH), Zurich, 1997.
Soloviev, A. and Lukas, R.:
The Near-Surface Layer of the Ocean: Structure, Dynamics, and Applications,
Springer, Dordrecht, NL, 572 pp., https://doi.org/10.1007/978-94-007-7621-0, 2006.
Soloviev, A. and Schlüssel P.:
Parametrization of the cool skin of the ocean and of the air-ocean gas transfer on the basis of modeling surface renewal,
J. Phys. Oceanogr.,
24, 1339–1346, 1994.
Soloviev, A., Donelan, M., Graber, H., Haus, B., and Schlüssel, P.:
An approach to estimation of near-surface turbulence and CO2 transfer velocity from remote sensing data,
J. Marine Syst.,
66, 182–194, https://doi.org/10.1016/j.jmarsys.2006.03.023, 2007.
Stumm, W. and Morgan, J. J.:
Aquatic Chemistry: An introduction emphasizing chemical equilibria in natural waters,
2nd edn.,
John Wiley and Sons Ltd, New York, USA, 1981.
Tedford, E. W., MacIntyre, S., Miller, S. D., and Czikowsky, M. J.:
Similarity scaling of turbulence in a temperate lake during fall cooling,
J. Geophys. Res.-Oceans,
119, 4689–4713, https://doi.org/10.1002/2014JC010135, 2014.
Terray, E. A., Donelan, M. A., Agrawal, Y. C., Drennan, W. M., Kahma, K. K., Williams III, A. J., Hwang, P. A., and Kitaigorodkii, S. A.:
Estimates of kinetic energy dissipation under breaking waves,
J. Phys. Oceanogr.,
26, 792–807, 1996.
Toba, Y.:
Local balance in the air-sea boundary processes,
J. Oceanogr.,
28, 109–120, https://doi.org/10.1007/BF02109772, 1972.
Toba, Y.:
Stochastic form of the growth of wind waves in a single-parameter representation with physical implications,
J. Phys. Oceanogr.,
8, 494–507, https://doi.org/10.1175/1520-0485(1978)008<0494:SFOTGO>2.0.CO;2, 1978.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, Soren., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von Wachenfeldt, E., and Weyhenmeyer, G. A.:
Lakes and reservoirs as regulators of carbon cycling and climate,
Limnol. Oceanogr.,
54, 2298–2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
Vachon, D. and Prairie, Y. T.:
The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes,
Can. J. Fish. Aquat. Sci.,
70, 1757–1764, https://doi.org/10.1139/cjfas-2013-0241, 2013.
Vachon, D., Prairie, Y. T., and Cole, J. J.:
The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange,
Limnol. Oceanogr.,
55, 1723–1732, https://doi.org/10.4319/lo.2010.55.4.1723, 2010.
Vesala, T., Huotari, J., Rannik, Ü., Suni, T., Smolander, S., Sogachev, A., Launiainen, S., and Ojala, A.:
Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period,
J. Geophys. Res.,
111, D11101, https://doi.org/10.1029/2005JD006365, 2006.
Wanninkhof, R.:
Relationship between wind speed and gas exchange over the ocean,
J. Geophys. Res.,
97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R. and Knox, M.: Chemical enhancement of CO2 exchange in natural waters, Limnol. Oceanogr., 41, 689–697, https://doi.org/10.4319/lo.1996.41.4.0689, 1996.
Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I., Corman, J. R., Hanson, P. C., and Read, J. S.:
LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models,
Inland Waters,
6, 622–636, https://doi.org/10.1080/IW-6.4.883, 2016.
Woolf, D. K.:
Bubbles and their role in gas exchange,
in: The Sea Surface and Global Change,
edited by: Liss, P. S. and Duce, R. A.,
Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511525025.007, pp. 173–206, 1997.
Woolf, D. K.:
Parametrization of gas transfer velocities and sea-state-dependent wave breaking,
Tellus B,
57, 87–94, https://doi.org/10.3402/tellusb.v57i2.16783, 2005.
Wüest, A. and Lorke, A.:
Small-scale hydrodynamics in lakes,
Annu. Rev. Fluid Mech.,
35, 373–412, https://doi.org/10.1146/annurev.fluid.35.101101.161220, 2003.
Wüest, A., Bouffard, D., Guillard, J., Ibelings, B. W., Lavanchy, S., Perga, M.-E., and Pasche, N.: LéXPLORE: A floating laboratory on Lake Geneva offering unique research opportunities, Wires Water, 8, e1544, https://doi.org/10.1002/wat2.1544, 2021.
Wyngaard, J. C. and Coté O. R.:
The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer,
J. Atmos. Sci.,
28, 190–201, 1971.
Zappa, C. J., McGillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W. H., and Ho, D. T.:
Environmental turbulent mixing controls on air–water gas exchange in marine and aquatic systems,
Geophys. Res. Lett.,
34, L10601, https://doi.org/10.1029/2006GL028790, 2007.
Zimmermann, M., Mayr, M. J., Bouffard, D., Eugster, W., Steinsberger, T., Wehrli, B., Brand, A., and Bürgmann, H.:
Lake overturn as a key driver for methan oxidation,
CSH. Lab. bioRXiv,
https://doi.org/10.1101/689182, 2019.
Short summary
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote gas exchange at the air–water interface. In this study, for the first time, we measured enhanced gas exchanges by wind-induced waves at the surface of a large lake. We adapted an ocean-based model to account for the effect of surface waves on gas exchange in lakes. We finally show that intense wind events with surface waves contribute disproportionately to the annual CO2 gas flux in a large lake.
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote...
Altmetrics
Final-revised paper
Preprint