Articles | Volume 11, issue 2
https://doi.org/10.5194/esd-11-509-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-11-509-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Eurasian autumn snow link to winter North Atlantic Oscillation is strongest for Arctic warming periods
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
Bremerhaven, Germany
Marco Rohrer
Oeschger Centre for Climate Change Research, University of Bern, Bern,
Switzerland
Institute of Geography, University of Bern, Bern, Switzerland
now at: Axis Capital, Zurich, Switzerland
María Santolaria-Otín
Institut des Géosciences de l'Environnement, Université
Grenoble-Alpes, Grenoble, France
Gerrit Lohmann
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
Bremerhaven, Germany
Related authors
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021, https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Short summary
Northern Hemisphere winter weather is influenced by the strength of westerly winds 30 km above the surface, the so-called polar vortex. Eurasian autumn snow cover is thought to modulate the polar vortex. So far, however, the modeled influence of snow on the polar vortex did not fit the observed influence. By analyzing a model experiment for the time span of 110 years, we could show that the causality of this impact is indeed sound and snow cover can weaken the polar vortex.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
Yvan Orsolini, Martin Wegmann, Emanuel Dutra, Boqi Liu, Gianpaolo Balsamo, Kun Yang, Patricia de Rosnay, Congwen Zhu, Wenli Wang, Retish Senan, and Gabriele Arduini
The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019, https://doi.org/10.5194/tc-13-2221-2019, 2019
Short summary
Short summary
The Tibetan Plateau region exerts a considerable influence on regional climate, yet the snowpack over that region is poorly represented in both climate and forecast models due a large precipitation and snowfall bias. We evaluate the snowpack in state-of-the-art atmospheric reanalyses against in situ observations and satellite remote sensing products. Improved snow initialisation through better use of snow observations in reanalyses may improve medium-range to seasonal weather forecasts.
Martin Wegmann, Emanuel Dutra, Hans-Werner Jacobi, and Olga Zolina
The Cryosphere, 12, 1887–1898, https://doi.org/10.5194/tc-12-1887-2018, https://doi.org/10.5194/tc-12-1887-2018, 2018
Short summary
Short summary
An important factor for Earth's climate is the high sunlight reflectivity of snow. By melting, it reveals darker surfaces and sunlight is converted to heat. We investigate how well this process is represented in reanalyses data sets compared to observations over Russia. We found snow processes to be well represented, but reflectivity variability needs to be improved. Our results highlight the need for a better representation of this key climate change feedback process in modelled data.
Martin Wegmann, Yvan Orsolini, Emanuel Dutra, Olga Bulygina, Alexander Sterin, and Stefan Brönnimann
The Cryosphere, 11, 923–935, https://doi.org/10.5194/tc-11-923-2017, https://doi.org/10.5194/tc-11-923-2017, 2017
Short summary
Short summary
We investigate long-term climate reanalyses datasets to infer their quality in reproducing snow depth values compared to in situ measured data from meteorological stations that go back to 1900. We found that the long-term reanalyses do a good job in reproducing snow depths but have some questionable snow states early in the 20th century. Thus, with care, climate reanalyses can be a valuable tool to investigate spatial snow evolution in global warming and climate change studies.
Stefan Brönnimann, Abdul Malik, Alexander Stickler, Martin Wegmann, Christoph C. Raible, Stefan Muthers, Julien Anet, Eugene Rozanov, and Werner Schmutz
Atmos. Chem. Phys., 16, 15529–15543, https://doi.org/10.5194/acp-16-15529-2016, https://doi.org/10.5194/acp-16-15529-2016, 2016
Short summary
Short summary
The Quasi-Biennial Oscillation is a wind oscillation in the equatorial stratosphere. Effects on climate have been found, which is relevant for seasonal forecasts. However, up to now only relatively short records were available, and even within these the climate imprints were intermittent. Here we analyze a 108-year long reconstruction as well as four 405-year long simulations. We confirm most of the claimed QBO effects on climate, but they are small, which explains apparently variable effects.
Hu Yang, Xiaoxu Shi, Xulong Wang, Qingsong Liu, Yi Zhong, Xiaodong Liu, Youbin Sun, Yanjun Cai, Fei Liu, Gerrit Lohmann, Martin Werner, Zhimin Jian, Tainã M. L. Pinho, Hai Cheng, Lijuan Lu, Jiping Liu, Chao-Yuan Yang, Qinghua Yang, Yongyun Hu, Xing Cheng, Jingyu Zhang, and Dake Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2778, https://doi.org/10.5194/egusphere-2024-2778, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The precession driven low-latitude hydrological cycle is not paced by hemispheric summer insolation, but shifting perihelion.
Yugeng Chen, Pengyang Song, Xianyao Chen, and Gerrit Lohmann
Clim. Past, 20, 2001–2015, https://doi.org/10.5194/cp-20-2001-2024, https://doi.org/10.5194/cp-20-2001-2024, 2024
Short summary
Short summary
Our study examines the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM), a period with higher tidal dissipation. Despite increased tidal mixing, our model simulations show that the AMOC remained relatively shallow, consistent with paleoproxy data and resolving previous inconsistencies between proxy data and model simulations. This research highlights the importance of strong ocean stratification during the LGM and its interaction with tidal mixing.
Lars Ackermann, Thomas Rackow, Kai Himstedt, Paul Gierz, Gregor Knorr, and Gerrit Lohmann
Geosci. Model Dev., 17, 3279–3301, https://doi.org/10.5194/gmd-17-3279-2024, https://doi.org/10.5194/gmd-17-3279-2024, 2024
Short summary
Short summary
We present long-term simulations with interactive icebergs in the Southern Ocean. By melting, icebergs reduce the temperature and salinity of the surrounding ocean. In our simulations, we find that this cooling effect of iceberg melting is not limited to the surface ocean but also reaches the deep ocean and propagates northward into all ocean basins. Additionally, the formation of deep-water masses in the Southern Ocean is enhanced.
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past, 20, 573–595, https://doi.org/10.5194/cp-20-573-2024, https://doi.org/10.5194/cp-20-573-2024, 2024
Short summary
Short summary
The main aim of this paper is to present the summer vapor pressure deficit (VPD) reconstruction dataset for the last 400 years over Europe based on δ18O records by using a random forest approach. We provide both a spatial and a temporal long-term perspective on the past summer VPD and new insights into the relationship between summer VPD and large-scale atmospheric circulation. This is the first gridded reconstruction of the European summer VPD over the past 400 years.
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
EGUsphere, https://doi.org/10.5194/egusphere-2024-246, https://doi.org/10.5194/egusphere-2024-246, 2024
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial-interglacial sea ice response to a changing climate and enhance our understanding of the ocean-sea ice-ice shelf interactions and dynamics.
Uta Krebs-Kanzow, Christian B. Rodehacke, and Gerrit Lohmann
The Cryosphere, 17, 5131–5136, https://doi.org/10.5194/tc-17-5131-2023, https://doi.org/10.5194/tc-17-5131-2023, 2023
Short summary
Short summary
We compare components of the surface energy balance from two datasets, ERA5 and ERA-Interim, which can be used to estimate the surface mass balance (SMB) on the Greenland Ice Sheet (GrIS). ERA5 differs significantly from ERA-Interim, especially in the melt regions with lower temperatures and stronger shortwave radiation. Consequently, methods that previously estimated the GrIS SMB from ERA-Interim need to be carefully recalibrated before conversion to ERA5 forcing.
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023, https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
Short summary
The Last Glacial Maximum (LGM) marks the most recent extremely cold and dry time period of our planet. Using AWI-ESM, we quantify the relative importance of Earth's orbit, greenhouse gases (GHG) and ice sheets (IS) in determining the LGM climate. Our results suggest that both GHG and IS play important roles in shaping the LGM temperature. Continental ice sheets exert a major control on precipitation, atmospheric dynamics, and the intensity of El Niño–Southern Oscillation.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Ryan Love, Lev Tarasov, Heather Andres, Alan Condron, Xu Zhang, and Gerrit Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2225, https://doi.org/10.5194/egusphere-2023-2225, 2023
Preprint archived
Short summary
Short summary
Freshwater injection into bands across the North Atlantic are a mainstay of climate modelling when investigating topics such as climate change or the role of glacial runoff in the glacial climate system. However, this approach is unrealistic and results in a systematic bias in the climate response to a given flux of freshwater. We evaluate the magnitude of this bias by comparison to two other approaches for introducing freshwater into a coupled climate model setup for glacial conditions.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Di Cai, Gerrit Lohmann, Xianyao Chen, and Monica Ionita
EGUsphere, https://doi.org/10.5194/egusphere-2023-1646, https://doi.org/10.5194/egusphere-2023-1646, 2023
Preprint archived
Short summary
Short summary
Our study reveals how a decline in autumn sea ice in the Barents-Kara Seas leads to severe winters in Europe. Using observational data, we illustrate that Arctic sea ice loss isn't just a local issue – it impacts harsh winter conditions globally. Current climate models struggle to reflect these effects accurately, indicating a need for more research. Gaining a more nuanced understanding of this relationship will enhance our climate predictions and preparation for future extremes.
Pengyang Song, Dmitry Sidorenko, Patrick Scholz, Maik Thomas, and Gerrit Lohmann
Geosci. Model Dev., 16, 383–405, https://doi.org/10.5194/gmd-16-383-2023, https://doi.org/10.5194/gmd-16-383-2023, 2023
Short summary
Short summary
Tides have essential effects on the ocean and climate. Most previous research applies parameterised tidal mixing to discuss their effects in models. By comparing the effect of a tidal mixing parameterisation and tidal forcing on the ocean state, we assess the advantages and disadvantages of the two methods. Our results show that tidal mixing in the North Pacific Ocean strongly affects the global thermohaline circulation. We also list some effects that are not considered in the parameterisation.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022, https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Short summary
Climate models are used to predict future climate changes and as such, it is important to assess their performance in simulating past climate changes. We analyze seasonal sea-ice cover over the Southern Ocean simulated from numerical PMIP3, PMIP4 and LOVECLIM simulations during the Last Glacial Maximum (LGM). Comparing these simulations to proxy data, we provide improved estimates of LGM seasonal sea-ice cover. Our estimate of summer sea-ice extent is 20 %–30 % larger than previous estimates.
Sebastian Hinck, Evan J. Gowan, Xu Zhang, and Gerrit Lohmann
The Cryosphere, 16, 941–965, https://doi.org/10.5194/tc-16-941-2022, https://doi.org/10.5194/tc-16-941-2022, 2022
Short summary
Short summary
Proglacial lakes were pervasive along the retreating continental ice margins after the Last Glacial Maximum. Similarly to the marine ice boundary, interactions at the ice-lake interface impact ice sheet dynamics and mass balance. Previous numerical ice sheet modeling studies did not include a dynamical lake boundary. We describe the implementation of an adaptive lake boundary condition in PISM and apply the model to the glacial retreat of the Laurentide Ice Sheet.
Justus Contzen, Thorsten Dickhaus, and Gerrit Lohmann
Geosci. Model Dev., 15, 1803–1820, https://doi.org/10.5194/gmd-15-1803-2022, https://doi.org/10.5194/gmd-15-1803-2022, 2022
Short summary
Short summary
Climate models are of paramount importance to predict future climate changes. Since many severe consequences of climate change are due to extreme events, the accurate behaviour of models in terms of extremes needs to be validated thoroughly. We present a method for model validation in terms of climate extremes and an algorithm to detect regions in which extremes tend to occur at the same time. These methods are applied to data from different climate models and to observational data.
Daniel Balting, Simon Michel, Viorica Nagavciuc, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David Steger, Gerrit Lohmann, and Monica Ionita
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-47, https://doi.org/10.5194/essd-2022-47, 2022
Preprint withdrawn
Short summary
Short summary
Vapor pressure deficit is a key component of vegetation dynamics, soil science, meteorology, and soil science. In this study, we reconstruct the variability of the vapor pressure deficit in the past and examine the changes in future scenarios using climate models. In this way, past, present and future changes of the vapor pressure deficit can be detected locally, regionally, and continentally with higher statistical significance.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021, https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Short summary
Northern Hemisphere winter weather is influenced by the strength of westerly winds 30 km above the surface, the so-called polar vortex. Eurasian autumn snow cover is thought to modulate the polar vortex. So far, however, the modeled influence of snow on the polar vortex did not fit the observed influence. By analyzing a model experiment for the time span of 110 years, we could show that the causality of this impact is indeed sound and snow cover can weaken the polar vortex.
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
Short summary
We use regional climate simulations for the Last Glacial Maximum to reconstruct permafrost and to identify areas of thermal contraction cracking of the ground in western Europe. We find ground cracking, a precondition for the development of permafrost proxies, south of the probable permafrost border, implying that permafrost was not the limiting factor for proxy development. A good agreement with permafrost and climate proxy data is achieved when easterly winds are modelled more frequently.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Saeid Bagheri Dastgerdi, Melanie Behrens, Jean-Louis Bonne, Maria Hörhold, Gerrit Lohmann, Elisabeth Schlosser, and Martin Werner
The Cryosphere, 15, 4745–4767, https://doi.org/10.5194/tc-15-4745-2021, https://doi.org/10.5194/tc-15-4745-2021, 2021
Short summary
Short summary
In this study, for the first time, water vapour isotope measurements in Antarctica for all seasons of a year are performed. Local temperature is identified as the main driver of δ18O and δD variability. A similar slope of the temperature–δ18O relationship in vapour and surface snow points to the water vapour isotope content as a potential key driver. This dataset can be used as a new dataset to evaluate the capability of isotope-enhanced climate models.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Xiaoxu Shi, Dirk Notz, Jiping Liu, Hu Yang, and Gerrit Lohmann
Geosci. Model Dev., 14, 4891–4908, https://doi.org/10.5194/gmd-14-4891-2021, https://doi.org/10.5194/gmd-14-4891-2021, 2021
Short summary
Short summary
The ice–ocean heat flux is one of the key elements controlling sea ice changes. It motivates our study, which aims to examine the responses of modeled climate to three ice–ocean heat flux parameterizations, including two old approaches that assume one-way heat transport and a new one describing a double-diffusive ice–ocean heat exchange. The results show pronounced differences in the modeled sea ice, ocean, and atmosphere states for the latter as compared to the former two parameterizations.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Uta Krebs-Kanzow, Paul Gierz, Christian B. Rodehacke, Shan Xu, Hu Yang, and Gerrit Lohmann
The Cryosphere, 15, 2295–2313, https://doi.org/10.5194/tc-15-2295-2021, https://doi.org/10.5194/tc-15-2295-2021, 2021
Short summary
Short summary
The surface mass balance scheme dEBM (diurnal Energy Balance Model) provides a novel, computationally inexpensive interface between the atmosphere and land ice for Earth system modeling. The dEBM is particularly suitable for Earth system modeling on multi-millennial timescales as it accounts for changes in the Earth's orbit and atmospheric greenhouse gas concentration.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Gerrit Lohmann
Earth Syst. Dynam., 11, 1195–1208, https://doi.org/10.5194/esd-11-1195-2020, https://doi.org/10.5194/esd-11-1195-2020, 2020
Short summary
Short summary
With the development of computer capacities, simpler models like energy balance models have not disappeared, and a stronger emphasis has been given to the concept of a hierarchy of models. The global temperature is calculated by the radiation budget through the incoming energy from the Sun and the outgoing energy from the Earth. The argument that the temperature can be calculated by a simple radiation budget is revisited, and it is found that the effective heat capacity matters.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Christian Stepanek, Eric Samakinwa, Gregor Knorr, and Gerrit Lohmann
Clim. Past, 16, 2275–2323, https://doi.org/10.5194/cp-16-2275-2020, https://doi.org/10.5194/cp-16-2275-2020, 2020
Short summary
Short summary
Future climate is expected to be warmer than today. We study climate based on simulations of the mid-Pliocene (about 3 million years ago), which was a time of elevated temperatures, and discuss implications for the future. Our results are provided towards a comparison to both proxy evidence and output of other climate models. We simulate a mid-Pliocene climate that is both warmer and wetter than today. Some climate characteristics can be more directly transferred to the near future than others.
Florian Fuhrmann, Benedikt Diensberg, Xun Gong, Gerrit Lohmann, and Frank Sirocko
Clim. Past, 16, 2221–2238, https://doi.org/10.5194/cp-16-2221-2020, https://doi.org/10.5194/cp-16-2221-2020, 2020
Short summary
Short summary
Proxy data of sediment cores, speleothem, pollen and isotope data were used to reconstruct past aridity of eight regions of the world over the last 60 000 years. These regions show humid conditions during the early MIS3 (60 to 45 ka). Also the early Holocene (14 to 6 ka) was humid throughout the regions. In contrast, MIS2 and the LGM were arid in Northern Nemisphere records. On- and offsets of aridity/humidity differ between the regions. All this is in good agreement with recent model results.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Jesper Sjolte, Florian Adolphi, Bo M. Vinther, Raimund Muscheler, Christophe Sturm, Martin Werner, and Gerrit Lohmann
Clim. Past, 16, 1737–1758, https://doi.org/10.5194/cp-16-1737-2020, https://doi.org/10.5194/cp-16-1737-2020, 2020
Short summary
Short summary
In this study we investigate seasonal climate reconstructions produced by matching climate model output to ice core and tree-ring data, and we evaluate the model–data reconstructions against meteorological observations. The reconstructions capture the main patterns of variability in sea level pressure and temperature in summer and winter. The performance of the reconstructions depends on seasonal climate variability itself, and definitions of seasons can be optimized to capture this variability.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Eric Samakinwa, Christian Stepanek, and Gerrit Lohmann
Clim. Past, 16, 1643–1665, https://doi.org/10.5194/cp-16-1643-2020, https://doi.org/10.5194/cp-16-1643-2020, 2020
Short summary
Short summary
Boundary conditions, forcing, and methodology for the two phases of PlioMIP differ considerably. We compare results from PlioMIP1 and PlioMIP2 simulations. We also carry out sensitivity experiments to infer the relative contribution of different boundary conditions to mid-Pliocene warmth. Our results show dominant effects of mid-Pliocene geography on the climate state and also that prescribing orbital forcing for different time slices within the mid-Pliocene could lead to pronounced variations.
Lawrence Mudryk, María Santolaria-Otín, Gerhard Krinner, Martin Ménégoz, Chris Derksen, Claire Brutel-Vuilmet, Mike Brady, and Richard Essery
The Cryosphere, 14, 2495–2514, https://doi.org/10.5194/tc-14-2495-2020, https://doi.org/10.5194/tc-14-2495-2020, 2020
Short summary
Short summary
We analyze how well updated state-of-the-art climate models reproduce observed historical snow cover extent and snow mass and how they project that these quantities will change up to the year 2100. Overall the updated models better represent historical snow extent than previous models, and they simulate stronger historical trends in snow extent and snow mass. They project that spring snow extent will decrease by 8 % for each degree Celsius that the global surface air temperature increases.
Paul Gierz, Lars Ackermann, Christian B. Rodehacke, Uta Krebs-Kanzow, Christian Stepanek, Dirk Barbi, and Gerrit Lohmann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-159, https://doi.org/10.5194/gmd-2020-159, 2020
Publication in GMD not foreseen
Short summary
Short summary
In this study, we describe the SCOPE coupler, which is used connect the ECHAM6/JSBACH/FESOM1.4 climate model to the PISM 1.1.4 ice sheet model. This system is used to simulate IPCC scenarios projected for the future, and several warm periods in the past; the mid Holocene and the Last Interglacial. Our new model allows us to simulate the ice sheet’s response to changes in the climatic conditions, providing a new avenue of investigation over the previous models, which keep the cryosphere fixed.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
Alexandre Cauquoin, Martin Werner, and Gerrit Lohmann
Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, https://doi.org/10.5194/cp-15-1913-2019, 2019
Short summary
Short summary
We present here the first model results of a newly developed isotope-enhanced version of the Earth system model MPI-ESM. Our model setup has a finer spatial resolution compared to other isotope-enabled fully coupled models. We evaluate the model for preindustrial and mid-Holocene climate conditions. Our analyses show a good to very good agreement with various isotopic data. The spatial and temporal links between isotopes and climate variables under warm climatic conditions are also analyzed.
Yvan Orsolini, Martin Wegmann, Emanuel Dutra, Boqi Liu, Gianpaolo Balsamo, Kun Yang, Patricia de Rosnay, Congwen Zhu, Wenli Wang, Retish Senan, and Gabriele Arduini
The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019, https://doi.org/10.5194/tc-13-2221-2019, 2019
Short summary
Short summary
The Tibetan Plateau region exerts a considerable influence on regional climate, yet the snowpack over that region is poorly represented in both climate and forecast models due a large precipitation and snowfall bias. We evaluate the snowpack in state-of-the-art atmospheric reanalyses against in situ observations and satellite remote sensing products. Improved snow initialisation through better use of snow observations in reanalyses may improve medium-range to seasonal weather forecasts.
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019, https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Short summary
Processes causing the same global-average radiative forcing might lead to different global temperature changes. We expand the theoretical framework by which we calculate paleoclimate sensitivity with an efficacy factor. Applying the revised approach to radiative forcing caused by CO2 and land ice albedo perturbations, inferred from data of the past 800 000 years, gives a new paleo-based estimate of climate sensitivity.
Monica Ionita, Klaus Grosfeld, Patrick Scholz, Renate Treffeisen, and Gerrit Lohmann
Earth Syst. Dynam., 10, 189–203, https://doi.org/10.5194/esd-10-189-2019, https://doi.org/10.5194/esd-10-189-2019, 2019
Short summary
Short summary
Based on a simple statistical model we show that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous months' oceanic and atmospheric conditions. Our statistical model skillfully captures the interannual variability of the September sea ice extent and could provide a valuable tool for identifying relevant regions and oceanic and atmospheric parameters that are important for the sea ice development in the Arctic.
Evan J. Gowan, Lu Niu, Gregor Knorr, and Gerrit Lohmann
Earth Syst. Sci. Data, 11, 375–391, https://doi.org/10.5194/essd-11-375-2019, https://doi.org/10.5194/essd-11-375-2019, 2019
Short summary
Short summary
The speed of ice sheet flow is largely controlled by the strength of the ice–bed interface. We present three datasets on the geological properties of regions in North America, Greenland and Iceland that were covered by Quaternary ice sheets. These include the grain size of glacial sediments, the continuity of sediment cover and bedrock geology. Simple ice modelling experiments show that altering the basal strength of the ice sheet on the basis of these datasets impacts ice thickness.
Uta Krebs-Kanzow, Paul Gierz, and Gerrit Lohmann
The Cryosphere, 12, 3923–3930, https://doi.org/10.5194/tc-12-3923-2018, https://doi.org/10.5194/tc-12-3923-2018, 2018
Short summary
Short summary
We present a new surface melt scheme for land ice. Derived from the energy balance of melting surfaces, the scheme may be particularly suitable for long ice-sheet simulations of past and future climates. It is computationally inexpensive and can be adapted to changes in the Earth's orbit and atmospheric composition. The scheme yields a better spatial representation of surface melt than common empirical schemes when applied to the Greenland Ice Sheet under present-day climate conditions.
Gerrit Lohmann
Earth Syst. Dynam., 9, 1279–1281, https://doi.org/10.5194/esd-9-1279-2018, https://doi.org/10.5194/esd-9-1279-2018, 2018
Short summary
Short summary
Long-term sea surface temperature trends and variability are underestimated in models compared to paleoclimate data. The idea is presented that the trends and variability are related, which is elaborated in a conceptual model framework. The temperature spectrum can be used to estimate the timescale-dependent climate sensitivity.
Axel Wagner, Gerrit Lohmann, and Matthias Prange
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-172, https://doi.org/10.5194/gmd-2018-172, 2018
Publication in GMD not foreseen
Short summary
Short summary
This study demonstrates the dependence of simulated surface air temperatures on variations in grid resolution and resolution-dependent orography in simulations of the Mid-Holocene. A set of Mid-Holocene sensitivity experiments is carried out. The simulated Mid-Holocene temperature differences (low versus high resolution) reveal a response that regionally exceeds the Mid-Holocene to preindustrial modelled temperature anomalies, and show partly reversed signs across the same geographical regions.
Jesper Sjolte, Christophe Sturm, Florian Adolphi, Bo M. Vinther, Martin Werner, Gerrit Lohmann, and Raimund Muscheler
Clim. Past, 14, 1179–1194, https://doi.org/10.5194/cp-14-1179-2018, https://doi.org/10.5194/cp-14-1179-2018, 2018
Short summary
Short summary
Tropical volcanic eruptions and variations in solar activity have been suggested to influence the strength of westerly winds across the North Atlantic. We use Greenland ice core records together with a climate model simulation, and find stronger westerly winds for five winters following tropical volcanic eruptions. We see a delayed response to solar activity of 5 years, and the response to solar minima corresponds well to the cooling pattern during the period known as the Little Ice Age.
Martin Wegmann, Emanuel Dutra, Hans-Werner Jacobi, and Olga Zolina
The Cryosphere, 12, 1887–1898, https://doi.org/10.5194/tc-12-1887-2018, https://doi.org/10.5194/tc-12-1887-2018, 2018
Short summary
Short summary
An important factor for Earth's climate is the high sunlight reflectivity of snow. By melting, it reveals darker surfaces and sunlight is converted to heat. We investigate how well this process is represented in reanalyses data sets compared to observations over Russia. We found snow processes to be well represented, but reflectivity variability needs to be improved. Our results highlight the need for a better representation of this key climate change feedback process in modelled data.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Akil Hossain, Xu Zhang, and Gerrit Lohmann
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-9, https://doi.org/10.5194/cp-2018-9, 2018
Revised manuscript not accepted
Norel Rimbu, Monica Ionita, Markus Czymzik, Achim Brauer, and Gerrit Lohmann
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-137, https://doi.org/10.5194/cp-2017-137, 2017
Manuscript not accepted for further review
Short summary
Short summary
Multi-decadal to millennial flood frequency variations in the Mid- to Late Holocene in a flood layer record from Lake Ammersee is strongly related to the occurrence of extreme precipitation and temperatures in the northeastern Europe.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Lu Niu, Gerrit Lohmann, Sebastian Hinck, and Evan J. Gowan
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-105, https://doi.org/10.5194/cp-2017-105, 2017
Revised manuscript not accepted
Short summary
Short summary
The sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during the last glacial-interglacial cycle is investigated by using output from PMIP3 models. The results show large diversity in simulated ice sheets between different models. We found that summer surface air temperature pattern resembles the ice sheet extent pattern at the LGM. This study implies careful constrains on climate output is essential for simulating reliable glacial-interglacial Northern Hemisphere ice sheets.
Vera D. Meyer, Jens Hefter, Gerrit Lohmann, Lars Max, Ralf Tiedemann, and Gesine Mollenhauer
Clim. Past, 13, 359–377, https://doi.org/10.5194/cp-13-359-2017, https://doi.org/10.5194/cp-13-359-2017, 2017
Martin Wegmann, Yvan Orsolini, Emanuel Dutra, Olga Bulygina, Alexander Sterin, and Stefan Brönnimann
The Cryosphere, 11, 923–935, https://doi.org/10.5194/tc-11-923-2017, https://doi.org/10.5194/tc-11-923-2017, 2017
Short summary
Short summary
We investigate long-term climate reanalyses datasets to infer their quality in reproducing snow depth values compared to in situ measured data from meteorological stations that go back to 1900. We found that the long-term reanalyses do a good job in reproducing snow depths but have some questionable snow states early in the 20th century. Thus, with care, climate reanalyses can be a valuable tool to investigate spatial snow evolution in global warming and climate change studies.
Stefan Brönnimann, Abdul Malik, Alexander Stickler, Martin Wegmann, Christoph C. Raible, Stefan Muthers, Julien Anet, Eugene Rozanov, and Werner Schmutz
Atmos. Chem. Phys., 16, 15529–15543, https://doi.org/10.5194/acp-16-15529-2016, https://doi.org/10.5194/acp-16-15529-2016, 2016
Short summary
Short summary
The Quasi-Biennial Oscillation is a wind oscillation in the equatorial stratosphere. Effects on climate have been found, which is relevant for seasonal forecasts. However, up to now only relatively short records were available, and even within these the climate imprints were intermittent. Here we analyze a 108-year long reconstruction as well as four 405-year long simulations. We confirm most of the claimed QBO effects on climate, but they are small, which explains apparently variable effects.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Madlene Pfeiffer and Gerrit Lohmann
Clim. Past, 12, 1313–1338, https://doi.org/10.5194/cp-12-1313-2016, https://doi.org/10.5194/cp-12-1313-2016, 2016
Short summary
Short summary
The Last Interglacial was warmer, with a reduced Greenland Ice Sheet (GIS), compared to the late Holocene. We analyse – through climate model simulations – the impact of a reduced GIS on the global surface air temperature and find a relatively strong warming especially in the Northern Hemisphere. These results are then compared to temperature reconstructions, indicating good agreement with respect to the pattern. However, the simulated temperatures underestimate the proxy-based temperatures.
Norel Rimbu, Markus Czymzik, Monica Ionita, Gerrit Lohmann, and Achim Brauer
Clim. Past, 12, 377–385, https://doi.org/10.5194/cp-12-377-2016, https://doi.org/10.5194/cp-12-377-2016, 2016
M. Werner, B. Haese, X. Xu, X. Zhang, M. Butzin, and G. Lohmann
Geosci. Model Dev., 9, 647–670, https://doi.org/10.5194/gmd-9-647-2016, https://doi.org/10.5194/gmd-9-647-2016, 2016
Short summary
Short summary
This paper presents the first results of a new isotope-enabled GCM set-up, based on the ECHAM5/MPI-OM fully coupled atmosphere-ocean model. Results of two equilibrium simulations under pre-industrial and Last Glacial Maximum conditions reveal a good to very good agreement with many delta O-18 and delta D observational records, and a remarkable improvement for the modelling of the deuterium excess signal in Antarctic ice cores.
M. Stärz, G. Lohmann, and G. Knorr
Clim. Past, 12, 151–170, https://doi.org/10.5194/cp-12-151-2016, https://doi.org/10.5194/cp-12-151-2016, 2016
Short summary
Short summary
In order to account for coupled climate-soil processes, we developed a soil scheme which is asynchronously coupled to an earth system model. We tested the scheme and found additional warming for a relatively warm climate (mid-Holocene), and extra cooling for a colder (Last Glacial Maximum) than preindustrial climate. These findings indicate a relatively strong positive soil feedback to climate, which may help to reduce model-data discrepancies for the climate of the geological past.
M. Forrest, J. T. Eronen, T. Utescher, G. Knorr, C. Stepanek, G. Lohmann, and T. Hickler
Clim. Past, 11, 1701–1732, https://doi.org/10.5194/cp-11-1701-2015, https://doi.org/10.5194/cp-11-1701-2015, 2015
Short summary
Short summary
We simulated Late Miocene (11-7 Million years ago) vegetation using two plausible CO2 concentrations: 280ppm CO2 and 450ppm CO2. We compared the simulated vegetation to existing plant fossil data for the whole Northern Hemisphere. Our results suggest that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
X. Shi and G. Lohmann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esdd-6-2137-2015, https://doi.org/10.5194/esdd-6-2137-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Our work is to investigate to what degree the open water ice formation affects the ice and ocean properties.
Our results show a positive feedback among the Arctic sea ice, the AMOC, and the surface air temperature in the Arctic.
The sea ice transport affects the freshwater budget in regions of deep water formation.
A link between the climate of Northern Hemisphere continents and the lead closing rate during ice formation period is also shown by the model.
B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal
The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015, https://doi.org/10.5194/tc-9-881-2015, 2015
Short summary
Short summary
We present results from simulations of the Antarctic ice sheet by means of an intercomparison project with six ice-sheet models. Our results demonstrate the difficulty of all models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line. Improved grounding-line physics could be essential for a correct representation of the migration of the grounding line of the Antarctic ice sheet during the Pliocene.
A. M. Dolan, S. J. Hunter, D. J. Hill, A. M. Haywood, S. J. Koenig, B. L. Otto-Bliesner, A. Abe-Ouchi, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, G. Ramstein, N. A. Rosenbloom, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 11, 403–424, https://doi.org/10.5194/cp-11-403-2015, https://doi.org/10.5194/cp-11-403-2015, 2015
Short summary
Short summary
Climate and ice sheet models are often used to predict the nature of ice sheets in Earth history. It is important to understand whether such predictions are consistent among different models, especially in warm periods of relevance to the future. We use input from 15 different climate models to run one ice sheet model and compare the predictions over Greenland. We find that there are large differences between the predicted ice sheets for the warm Pliocene (c. 3 million years ago).
D. Barbi, G. Lohmann, K. Grosfeld, and M. Thoma
Geosci. Model Dev., 7, 2003–2013, https://doi.org/10.5194/gmd-7-2003-2014, https://doi.org/10.5194/gmd-7-2003-2014, 2014
T. Goelles, K. Grosfeld, and G. Lohmann
Geosci. Model Dev., 7, 1395–1408, https://doi.org/10.5194/gmd-7-1395-2014, https://doi.org/10.5194/gmd-7-1395-2014, 2014
A. Basu, M. G. Schultz, S. Schröder, L. Francois, X. Zhang, G. Lohmann, and T. Laepple
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-3193-2014, https://doi.org/10.5194/acpd-14-3193-2014, 2014
Revised manuscript not accepted
D. J. Hill, A. M. Haywood, D. J. Lunt, S. J. Hunter, F. J. Bragg, C. Contoux, C. Stepanek, L. Sohl, N. A. Rosenbloom, W.-L. Chan, Y. Kamae, Z. Zhang, A. Abe-Ouchi, M. A. Chandler, A. Jost, G. Lohmann, B. L. Otto-Bliesner, G. Ramstein, and H. Ueda
Clim. Past, 10, 79–90, https://doi.org/10.5194/cp-10-79-2014, https://doi.org/10.5194/cp-10-79-2014, 2014
X. Zhang, G. Lohmann, G. Knorr, and X. Xu
Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, https://doi.org/10.5194/cp-9-2319-2013, 2013
B. Haese, M. Werner, and G. Lohmann
Geosci. Model Dev., 6, 1463–1480, https://doi.org/10.5194/gmd-6-1463-2013, https://doi.org/10.5194/gmd-6-1463-2013, 2013
R. Zhang, Q. Yan, Z. S. Zhang, D. Jiang, B. L. Otto-Bliesner, A. M. Haywood, D. J. Hill, A. M. Dolan, C. Stepanek, G. Lohmann, C. Contoux, F. Bragg, W.-L. Chan, M. A. Chandler, A. Jost, Y. Kamae, A. Abe-Ouchi, G. Ramstein, N. A. Rosenbloom, L. Sohl, and H. Ueda
Clim. Past, 9, 2085–2099, https://doi.org/10.5194/cp-9-2085-2013, https://doi.org/10.5194/cp-9-2085-2013, 2013
Z.-S. Zhang, K. H. Nisancioglu, M. A. Chandler, A. M. Haywood, B. L. Otto-Bliesner, G. Ramstein, C. Stepanek, A. Abe-Ouchi, W.-L. Chan, F. J. Bragg, C. Contoux, A. M. Dolan, D. J. Hill, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, N. A. Rosenbloom, L. E. Sohl, and H. Ueda
Clim. Past, 9, 1495–1504, https://doi.org/10.5194/cp-9-1495-2013, https://doi.org/10.5194/cp-9-1495-2013, 2013
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
A. M. Haywood, D. J. Hill, A. M. Dolan, B. L. Otto-Bliesner, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, H. J. Dowsett, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, A. Abe-Ouchi, S. J. Pickering, G. Ramstein, N. A. Rosenbloom, U. Salzmann, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 9, 191–209, https://doi.org/10.5194/cp-9-191-2013, https://doi.org/10.5194/cp-9-191-2013, 2013
G. Lohmann, A. Wackerbarth, P. M. Langebroek, M. Werner, J. Fohlmeister, D. Scholz, and A. Mangini
Clim. Past, 9, 89–98, https://doi.org/10.5194/cp-9-89-2013, https://doi.org/10.5194/cp-9-89-2013, 2013
S. Dietrich, M. Werner, T. Spangehl, and G. Lohmann
Clim. Past, 9, 13–26, https://doi.org/10.5194/cp-9-13-2013, https://doi.org/10.5194/cp-9-13-2013, 2013
Related subject area
Dynamics of the Earth system: interactions
Continental heat storage: contributions from the ground, inland waters, and permafrost thawing
The rate of information transfer as a measure of ocean–atmosphere interactions
Evaluation of global teleconnections in CMIP6 climate projections using complex networks
On the additivity of climate responses to the volcanic and solar forcing in the early 19th century
Exploring the relationship between temperature forecast errors and Earth system variables
Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era
The biogeophysical effects of idealized land cover and land management changes in Earth system models
Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks
Complex network analysis of fine particulate matter (PM2.5): transport and clustering
CO2 surface variability: from the stratosphere or not?
Quantifying memory and persistence in the atmosphere–land and ocean carbon system
Salinity dynamics of the Baltic Sea
Impact of urbanization on the thermal environment of the Chengdu–Chongqing urban agglomeration under complex terrain
Sensitivity of land–atmosphere coupling strength to changing atmospheric temperature and moisture over Europe
Human impacts and their interactions in the Baltic Sea region
Exploring the coupled ocean and atmosphere system with a data science approach applied to observations from the Antarctic Circumnavigation Expedition
Accounting for surface waves improves gas flux estimation at high wind speed in a large lake
Multiscale fractal dimension analysis of a reduced order model of coupled ocean–atmosphere dynamics
Modelling sea-level fingerprints of glaciated regions with low mantle viscosity
Jarzynski equality and Crooks relation for local models of air–sea interaction
Interacting tipping elements increase risk of climate domino effects under global warming
A climate network perspective on the intertropical convergence zone
Spatiotemporal patterns of synchronous heavy rainfall events in East Asia during the Baiu season
Rankings of extreme and widespread dry and wet events in the Iberian Peninsula between 1901 and 2016
Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: a normal-mode perspective
Daytime low-level clouds in West Africa – occurrence, associated drivers, and shortwave radiation attenuation
Water transport among the world ocean basins within the water cycle
Economic impacts of a glacial period: a thought experiment to assess the disconnect between econometrics and climate sciences
Semi-equilibrated global sea-level change projections for the next 10 000 years
The synergistic impact of ENSO and IOD on Indian summer monsoon rainfall in observations and climate simulations – an information theory perspective
Climate change as an incentive for future human migration
Compound warm–dry and cold–wet events over the Mediterranean
Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory
Mesoscale atmospheric circulation controls of local meteorological elevation gradients on Kersten Glacier near Kilimanjaro summit
On the interconnections among major climate modes and their common driving factors
Back to the future II: tidal evolution of four supercontinent scenarios
Concurrent wet and dry hydrological extremes at the global scale
Synthesis and evaluation of historical meridional heat transport from midlatitudes towards the Arctic
Amplified warming of seasonal cold extremes relative to the mean in the Northern Hemisphere extratropics
Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: a theory-guided causal effect network approach
Analysis of the position and strength of westerlies and trades with implications for Agulhas leakage and South Benguela upwelling
Organization of dust storms and synoptic-scale transport of dust by Kelvin waves
ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation
North Pacific subtropical sea surface temperature frontogenesis and its connection with the atmosphere above
The multi-scale structure of atmospheric energetic constraints on globally averaged precipitation
Potential of global land water recycling to mitigate local temperature extremes
Pipes to Earth's subsurface: the role of atmospheric conditions in controlling air transport through boreholes and shafts
Causal dependences between the coupled ocean–atmosphere dynamics over the tropical Pacific, the North Pacific and the North Atlantic
Moisture transport and Antarctic sea ice: austral spring 2016 event
Recent changes of relative humidity: regional connections with land and ocean processes
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
David Docquier, Stéphane Vannitsem, and Alessio Bellucci
Earth Syst. Dynam., 14, 577–591, https://doi.org/10.5194/esd-14-577-2023, https://doi.org/10.5194/esd-14-577-2023, 2023
Short summary
Short summary
The climate system is strongly regulated by interactions between the ocean and atmosphere. However, many uncertainties remain in the understanding of these interactions. Our analysis uses a relatively novel approach to quantify causal links between the ocean surface and lower atmosphere based on satellite observations. We find that both the ocean and atmosphere influence each other but with varying intensity depending on the region, demonstrating the power of causal methods.
Clementine Dalelane, Kristina Winderlich, and Andreas Walter
Earth Syst. Dynam., 14, 17–37, https://doi.org/10.5194/esd-14-17-2023, https://doi.org/10.5194/esd-14-17-2023, 2023
Short summary
Short summary
The realistic representation of global teleconnections is an indispensable requirement for the reliable simulation of low-frequency climate variability and climate change. We present an application of the complex network framework to quantify and evaluate large-scale interactions within and between ocean and atmosphere in 22 historical CMIP6 climate projections with respect to two century-long reanalyses.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022, https://doi.org/10.5194/esd-13-1305-2022, 2022
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation, and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occurs and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022, https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary
Short summary
The stability of the Greenland Ice Sheet under global warming is crucial. Here, using PISM, we study how the interplay of feedbacks between the ice sheet, the atmosphere and solid Earth affects the long-term response of the Greenland Ice Sheet under constant warming. Our findings suggest four distinct dynamic regimes of the Greenland Ice Sheet on the route to destabilization under global warming – from recovery via quasi-periodic oscillations in ice volume to ice sheet collapse.
Na Ying, Wansuo Duan, Zhidan Zhao, and Jingfang Fan
Earth Syst. Dynam., 13, 1029–1039, https://doi.org/10.5194/esd-13-1029-2022, https://doi.org/10.5194/esd-13-1029-2022, 2022
Short summary
Short summary
A complex PM2.5 measurement network has been built to investigate transport patterns and cooperative regions in China. Network-based degree measurements are used to reveal the spatial transport pattern of PM2.5. The study also attempts to investigate the seasonal transport path of PM2.5. In addition, the cooperation regions of PM2.5 are quantified according to their synchronicity characteristics. The proposed study can be applied to other air pollutant data, such as ozone and NOx.
Michael J. Prather
Earth Syst. Dynam., 13, 703–709, https://doi.org/10.5194/esd-13-703-2022, https://doi.org/10.5194/esd-13-703-2022, 2022
Short summary
Short summary
Atmospheric CO2 fluctuations point to changes in fossil fuel emissions plus natural and perturbed variations in the natural carbon cycle. One unstudied source of variability is the stratosphere, where the influx of aged CO2-depleted air can cause surface fluctuations. Using modeling and, separately, scaling the observed N2O variability, I find that stratosphere-driven surface variability in CO2 is not a significant uncertainty (at most 10 % of the observed interannual variability).
Matthias Jonas, Rostyslav Bun, Iryna Ryzha, and Piotr Żebrowski
Earth Syst. Dynam., 13, 439–455, https://doi.org/10.5194/esd-13-439-2022, https://doi.org/10.5194/esd-13-439-2022, 2022
Short summary
Short summary
We interpret carbon dioxide emissions from fossil fuel burning and land use as a global stress–strain experiment to reflect the overall behavior of the atmosphere–land and ocean system in response to increasing CO2 emissions since 1850. The system has been trapped progressively in terms of persistence, while its ability to build up memory has been reduced. We expect system failures globally well before 2050 if the current trend in emissions is not reversed immediately and sustainably.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
Si Chen, Zhenghui Xie, Jinbo Xie, Bin Liu, Binghao Jia, Peihua Qin, Longhuan Wang, Yan Wang, and Ruichao Li
Earth Syst. Dynam., 13, 341–356, https://doi.org/10.5194/esd-13-341-2022, https://doi.org/10.5194/esd-13-341-2022, 2022
Short summary
Short summary
This study discusses the changes in the summer thermal environment in the Chengdu–Chongqing urban agglomeration due to urban expansion in complex terrain conditions in the recent 40 years, using high-resolution simulations with the WRF model. We quantify the influence of a single urban expansion factor and a single complex terrain factor on the urban thermal environment. Under the joint influence of complex terrain and urban expansion, the heat island effect caused by urbanization was enhanced.
Lisa Jach, Thomas Schwitalla, Oliver Branch, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 13, 109–132, https://doi.org/10.5194/esd-13-109-2022, https://doi.org/10.5194/esd-13-109-2022, 2022
Short summary
Short summary
The land surface can influence the occurrence of local rainfall through different feedback mechanisms. In Europe, this happens most frequently in summer. Here, we examine how differences in atmospheric temperature and moisture change where and how often the land surface can influence rainfall. The results show that the differences barely move the region of strong surface influence over Scandinavia and eastern Europe, but they can change the frequency of coupling events.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam., 12, 1169–1189, https://doi.org/10.5194/esd-12-1169-2021, https://doi.org/10.5194/esd-12-1169-2021, 2021
Short summary
Short summary
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote gas exchange at the air–water interface. In this study, for the first time, we measured enhanced gas exchanges by wind-induced waves at the surface of a large lake. We adapted an ocean-based model to account for the effect of surface waves on gas exchange in lakes. We finally show that intense wind events with surface waves contribute disproportionately to the annual CO2 gas flux in a large lake.
Tommaso Alberti, Reik V. Donner, and Stéphane Vannitsem
Earth Syst. Dynam., 12, 837–855, https://doi.org/10.5194/esd-12-837-2021, https://doi.org/10.5194/esd-12-837-2021, 2021
Short summary
Short summary
We provide a novel approach to diagnose the strength of the ocean–atmosphere coupling by using both a reduced order model and reanalysis data. Our findings suggest the ocean–atmosphere dynamics presents a rich variety of features, moving from a chaotic to a coherent coupled dynamics, mainly attributed to the atmosphere and only marginally to the ocean. Our observations suggest further investigations in characterizing the occurrence and spatial dependency of the ocean–atmosphere coupling.
Alan Bartholet, Glenn A. Milne, and Konstantin Latychev
Earth Syst. Dynam., 12, 783–795, https://doi.org/10.5194/esd-12-783-2021, https://doi.org/10.5194/esd-12-783-2021, 2021
Short summary
Short summary
Improving the accuracy of regional sea-level projections is an important aim that will impact estimates of sea-level hazard around the globe. The computation of sea-level fingerprints is a key component of any such projection, and to date these computations have been based on the assumption that elastic deformation accurately describes the solid Earth response on century timescales. We show here that this assumption is inaccurate in some glaciated regions characterized by low mantle viscosity.
Achim Wirth and Florian Lemarié
Earth Syst. Dynam., 12, 689–708, https://doi.org/10.5194/esd-12-689-2021, https://doi.org/10.5194/esd-12-689-2021, 2021
Short summary
Short summary
We show that modern concepts of non-equilibrium statistical mechanics can be applied to large-scale environmental fluid dynamics, where fluctuations are not thermal but come from turbulence. The work theorems developed by Jarzynski and Crooks are applied to air–sea interaction. Rather than looking at the average values of thermodynamic variables, their probability density functions are considered, which allows us to replace the inequalities of equilibrium statistical mechanics with equalities.
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Frederik Wolf, Aiko Voigt, and Reik V. Donner
Earth Syst. Dynam., 12, 353–366, https://doi.org/10.5194/esd-12-353-2021, https://doi.org/10.5194/esd-12-353-2021, 2021
Short summary
Short summary
In our work, we employ complex networks to study the relation between the time mean position of the intertropical convergence zone (ITCZ) and sea surface temperature (SST) variability. We show that the information hidden in different spatial SST correlation patterns, which we access utilizing complex networks, is strongly correlated with the time mean position of the ITCZ. This research contributes to the ongoing discussion on drivers of the annual migration of the ITCZ.
Frederik Wolf, Ugur Ozturk, Kevin Cheung, and Reik V. Donner
Earth Syst. Dynam., 12, 295–312, https://doi.org/10.5194/esd-12-295-2021, https://doi.org/10.5194/esd-12-295-2021, 2021
Short summary
Short summary
Motivated by a lacking onset prediction scheme, we examine the temporal evolution of synchronous heavy rainfall associated with the East Asian Monsoon System employing a network approach. We find, that the evolution of the Baiu front is associated with the formation of a spatially separated double band of synchronous rainfall. Furthermore, we identify the South Asian Anticyclone and the North Pacific Subtropical High as the main drivers, which have been assumed to be independent previously.
Margarida L. R. Liberato, Irene Montero, Célia Gouveia, Ana Russo, Alexandre M. Ramos, and Ricardo M. Trigo
Earth Syst. Dynam., 12, 197–210, https://doi.org/10.5194/esd-12-197-2021, https://doi.org/10.5194/esd-12-197-2021, 2021
Short summary
Short summary
Extensive, long-standing dry and wet episodes are frequent climatic extreme events (EEs) in the Iberian Peninsula (IP). A method for ranking regional extremes of persistent, widespread drought and wet events is presented, using different SPEI timescales. Results show that there is no region more prone to EE occurrences in the IP, the most extreme extensive agricultural droughts evolve into hydrological and more persistent extreme droughts, and widespread wet and dry EEs are anti-correlated.
Breno Raphaldini, André S. W. Teruya, Pedro Leite da Silva Dias, Lucas Massaroppe, and Daniel Yasumasa Takahashi
Earth Syst. Dynam., 12, 83–101, https://doi.org/10.5194/esd-12-83-2021, https://doi.org/10.5194/esd-12-83-2021, 2021
Short summary
Short summary
Several recent studies suggest a modulation of the Madden–Julian oscillation (MJO) by the quasi-biennial oscillation (QBO). The physics behind this interaction, however, remain poorly understood. In this study, we investigated the QBO–MJO interaction and the role of stratospheric ozone as a forcing mechanism. A normal-mode decomposition procedure combined with causality analysis reveals significant interactions between MJO-related modes and QBO-related modes.
Derrick K. Danso, Sandrine Anquetin, Arona Diedhiou, Kouakou Kouadio, and Arsène T. Kobea
Earth Syst. Dynam., 11, 1133–1152, https://doi.org/10.5194/esd-11-1133-2020, https://doi.org/10.5194/esd-11-1133-2020, 2020
Short summary
Short summary
The atmospheric and surface conditions that exist during the occurrence of daytime low-level clouds (LLCs) and their influence on solar radiation were investigated in West Africa. During the monsoon season, these LLCs are linked to high moisture flux driven by strong southwesterly winds from the Gulf of Guinea and significant background moisture levels. Their occurrence leads to a strong reduction in the incoming solar radiation and has large impacts on the surface energy budget.
David García-García, Isabel Vigo, and Mario Trottini
Earth Syst. Dynam., 11, 1089–1106, https://doi.org/10.5194/esd-11-1089-2020, https://doi.org/10.5194/esd-11-1089-2020, 2020
Short summary
Short summary
The global water cycle involves water-mass transport on land, in the atmosphere, in the ocean, and among them. The GRACE mission has allowed for the quantification of water-mass variations. It was a revolution in the understanding of Earth dynamics. Here, we develop and apply a novel method, based on GRACE data and atmospheric models, that allows systematic estimation of water-mass exchange among ocean basins. This is valuable for understanding the role of the ocean within the water cycle.
Marie-Noëlle Woillez, Gaël Giraud, and Antoine Godin
Earth Syst. Dynam., 11, 1073–1087, https://doi.org/10.5194/esd-11-1073-2020, https://doi.org/10.5194/esd-11-1073-2020, 2020
Short summary
Short summary
To illustrate the fact that future economic damage from global warming is often highly underestimated, we applied two different statistically based damage functions available in the literature to a global cooling of 4 °C. We show that the gross domestic product (GDP) projections obtained are at odds with the state of the planet during an ice age. We conclude that such functions do not provide relevant information on potential damage from a large climate change, be it cooling or warming.
Jonas Van Breedam, Heiko Goelzer, and Philippe Huybrechts
Earth Syst. Dynam., 11, 953–976, https://doi.org/10.5194/esd-11-953-2020, https://doi.org/10.5194/esd-11-953-2020, 2020
Short summary
Short summary
We made projections of global mean sea-level change during the next 10 000 years for a range in climate forcing scenarios ranging from a peak in carbon dioxide concentrations in the next decades to burning most of the available carbon reserves over the next 2 centuries. We find that global mean sea level will rise between 9 and 37 m, depending on the emission of greenhouse gases. In this study, we investigated the long-term consequence of climate change for sea-level rise.
Praveen Kumar Pothapakula, Cristina Primo, Silje Sørland, and Bodo Ahrens
Earth Syst. Dynam., 11, 903–923, https://doi.org/10.5194/esd-11-903-2020, https://doi.org/10.5194/esd-11-903-2020, 2020
Short summary
Short summary
Information exchange (IE) from the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO) to Indian summer monsoon rainfall (ISMR) is investigated. Observational data show that IOD and ENSO synergistically exchange information on ISMR variability over central India. IE patterns observed in three global climate models (GCMs) differ from observations. Our study highlights new perspectives that IE metrics could bring to climate science.
Min Chen and Ken Caldeira
Earth Syst. Dynam., 11, 875–883, https://doi.org/10.5194/esd-11-875-2020, https://doi.org/10.5194/esd-11-875-2020, 2020
Short summary
Short summary
We examine the implications of future motivation for humans to migrate by analyzing today’s relationships between climatic factors and population density, with all other factors held constant. Such analyses are unlikely to make accurate predictions but can still be useful for informing discussions about the broad range of incentives that might influence migration decisions. Areas with the highest projected population growth rates tend to be the areas most adversely affected by climate change.
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
Simon Opie, Richard G. Taylor, Chris M. Brierley, Mohammad Shamsudduha, and Mark O. Cuthbert
Earth Syst. Dynam., 11, 775–791, https://doi.org/10.5194/esd-11-775-2020, https://doi.org/10.5194/esd-11-775-2020, 2020
Short summary
Short summary
Knowledge of the relationship between climate and groundwater is limited and typically undermined by the scale, duration and accessibility of observations. Using monthly satellite measurements newly compiled over 14 years in the tropics and sub-tropics, we show that the imprint of precipitation history on groundwater, i.e. hydraulic memory, is longer in drylands than humid environments with important implications for the understanding and management of groundwater resources under climate change.
Thomas Mölg, Douglas R. Hardy, Emily Collier, Elena Kropač, Christina Schmid, Nicolas J. Cullen, Georg Kaser, Rainer Prinz, and Michael Winkler
Earth Syst. Dynam., 11, 653–672, https://doi.org/10.5194/esd-11-653-2020, https://doi.org/10.5194/esd-11-653-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro summit are like sample spots of the climate in the tropical mid-troposphere. Measurements of air temperature, air humidity, and precipitation with automated weather stations show that the differences in these meteorological elements between two altitudes (~ 5600 and ~ 5900 m) vary significantly over the day and the seasons, in concert with airflow dynamics around the mountain. Knowledge of these variations will improve atmosphere and cryosphere models.
Xinnong Pan, Geli Wang, Peicai Yang, Jun Wang, and Anastasios A. Tsonis
Earth Syst. Dynam., 11, 525–535, https://doi.org/10.5194/esd-11-525-2020, https://doi.org/10.5194/esd-11-525-2020, 2020
Short summary
Short summary
The variations in oceanic and atmospheric modes play important roles in global and regional climate variability. The relationships between their variations and regional climate variability have been extensively examined, but the interconnections among these climate modes remain unclear. We show that the base periods and their harmonic oscillations that appear to be related to QBO, ENSO, and solar activities act as key connections among the climatic modes with synchronous behaviors.
Hannah S. Davies, J. A. Mattias Green, and Joao C. Duarte
Earth Syst. Dynam., 11, 291–299, https://doi.org/10.5194/esd-11-291-2020, https://doi.org/10.5194/esd-11-291-2020, 2020
Short summary
Short summary
We have confirmed that there is a supertidal cycle associated with the supercontinent cycle. As continents drift due to plate tectonics, oceans also change size, controlling the strength of the tides and causing periods of supertides. In this work, we used a coupled tectonic–tidal model of Earth's future to test four different scenarios that undergo different styles of ocean closure and periods of supertides. This has implications for the Earth system and for other planets with liquid oceans.
Paolo De Luca, Gabriele Messori, Robert L. Wilby, Maurizio Mazzoleni, and Giuliano Di Baldassarre
Earth Syst. Dynam., 11, 251–266, https://doi.org/10.5194/esd-11-251-2020, https://doi.org/10.5194/esd-11-251-2020, 2020
Short summary
Short summary
We show that floods and droughts can co-occur in time across remote regions on the globe and introduce metrics that can help in quantifying concurrent wet and dry hydrological extremes. We then link wet–dry extremes to major modes of climate variability (i.e. ENSO, PDO, and AMO) and provide their spatial patterns. Such concurrent extreme hydrological events may pose risks to regional hydropower production and agricultural yields.
Yang Liu, Jisk Attema, Ben Moat, and Wilco Hazeleger
Earth Syst. Dynam., 11, 77–96, https://doi.org/10.5194/esd-11-77-2020, https://doi.org/10.5194/esd-11-77-2020, 2020
Short summary
Short summary
Poleward meridional energy transport (MET) has significant impact on the climate in the Arctic. In this study, we quantify and intercompare MET at subpolar latitudes from six reanalysis data sets. The results indicate that the spatial distribution and temporal variations of MET differ substantially among the reanalysis data sets. Our study suggests that the MET estimated from reanalyses is useful for the evaluation of energy transports but should be used with great care.
Mia H. Gross, Markus G. Donat, Lisa V. Alexander, and Steven C. Sherwood
Earth Syst. Dynam., 11, 97–111, https://doi.org/10.5194/esd-11-97-2020, https://doi.org/10.5194/esd-11-97-2020, 2020
Short summary
Short summary
This study explores the amplified warming of cold extremes relative to average temperatures for both the recent past and future in the Northern Hemisphere and the possible physical processes that are driving this. We find that decreases in snow cover and
warmer-than-usual winds are driving the disproportionate rates of warming in cold extremes relative to average temperatures. These accelerated warming rates in cold extremes have implications for tourism, insect longevity and human health.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam., 11, 17–34, https://doi.org/10.5194/esd-11-17-2020, https://doi.org/10.5194/esd-11-17-2020, 2020
Short summary
Short summary
Drivers from both the mid-latitudes and the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Ashok Kumar Pokharel and Michael L. Kaplan
Earth Syst. Dynam., 10, 651–666, https://doi.org/10.5194/esd-10-651-2019, https://doi.org/10.5194/esd-10-651-2019, 2019
Short summary
Short summary
This study contributes to a better understanding of how large-scale dust transport can be organized from northwest Africa to the US, Amazon basin, and Europe and might be due in part to Kelvin waves. We also think there is still a need to study major historical dust events that occurred in this region to confirm that this location is suitable and responsible for the generation of the Kelvin waves and the transport of dust on a regular basis.
Christoph Heinze, Veronika Eyring, Pierre Friedlingstein, Colin Jones, Yves Balkanski, William Collins, Thierry Fichefet, Shuang Gao, Alex Hall, Detelina Ivanova, Wolfgang Knorr, Reto Knutti, Alexander Löw, Michael Ponater, Martin G. Schultz, Michael Schulz, Pier Siebesma, Joao Teixeira, George Tselioudis, and Martin Vancoppenolle
Earth Syst. Dynam., 10, 379–452, https://doi.org/10.5194/esd-10-379-2019, https://doi.org/10.5194/esd-10-379-2019, 2019
Short summary
Short summary
Earth system models for producing climate projections under given forcings include additional processes and feedbacks that traditional physical climate models do not consider. We present an overview of climate feedbacks for key Earth system components and discuss the evaluation of these feedbacks. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research.
Leying Zhang, Haiming Xu, Jing Ma, Ning Shi, and Jiechun Deng
Earth Syst. Dynam., 10, 261–270, https://doi.org/10.5194/esd-10-261-2019, https://doi.org/10.5194/esd-10-261-2019, 2019
Short summary
Short summary
Net heat flux dominates the frontogenesis of the NPSTF from October to December, while oceanic meridional temperature advection contributes equally as much or even more net heat flux in January and February. The atmosphere is critical to frontogenesis through net heat flux and the Aleutian low, the latter of which benefits meridional temperature advection.
Miguel Nogueira
Earth Syst. Dynam., 10, 219–232, https://doi.org/10.5194/esd-10-219-2019, https://doi.org/10.5194/esd-10-219-2019, 2019
Mathias Hauser, Wim Thiery, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 10, 157–169, https://doi.org/10.5194/esd-10-157-2019, https://doi.org/10.5194/esd-10-157-2019, 2019
Short summary
Short summary
We develop a method to keep the amount of water in the soil at the present-day level, using only local water sources in a global climate model. This leads to less drying over many land areas, but also decreases river runoff. We find that temperature extremes in the 21st century decrease substantially using our method. This provides a new perspective on how land water can influence regional climate and introduces land water management as potential tool for local mitigation of climate change.
Elad Levintal, Nadav G. Lensky, Amit Mushkin, and Noam Weisbrod
Earth Syst. Dynam., 9, 1141–1153, https://doi.org/10.5194/esd-9-1141-2018, https://doi.org/10.5194/esd-9-1141-2018, 2018
Stéphane Vannitsem and Pierre Ekelmans
Earth Syst. Dynam., 9, 1063–1083, https://doi.org/10.5194/esd-9-1063-2018, https://doi.org/10.5194/esd-9-1063-2018, 2018
Short summary
Short summary
The El Niño–Southern Oscillation phenomenon is a slow dynamics present in the coupled ocean–atmosphere tropical Pacific system which has important teleconnections with the northern extratropics. These teleconnections are usually believed to be the source of an enhanced predictability in the northern extratropics at seasonal to decadal timescales. This question is challenged by investigating the causality between these regions using an advanced technique known as convergent cross mapping.
Monica Ionita, Patrick Scholz, Klaus Grosfeld, and Renate Treffeisen
Earth Syst. Dynam., 9, 939–954, https://doi.org/10.5194/esd-9-939-2018, https://doi.org/10.5194/esd-9-939-2018, 2018
Short summary
Short summary
In austral spring 2016 the Antarctic region experienced anomalous sea ice retreat in all sectors, with sea ice extent in October and November 2016 being the lowest in the Southern Hemisphere over the observational record (1979–present). The extreme sea ice retreat was accompanied by the wettest and warmest spring on record, over large areas covering the Indian ocean, the Ross Sea, and the Weddell Sea.
Sergio M. Vicente-Serrano, Raquel Nieto, Luis Gimeno, Cesar Azorin-Molina, Anita Drumond, Ahmed El Kenawy, Fernando Dominguez-Castro, Miquel Tomas-Burguera, and Marina Peña-Gallardo
Earth Syst. Dynam., 9, 915–937, https://doi.org/10.5194/esd-9-915-2018, https://doi.org/10.5194/esd-9-915-2018, 2018
Short summary
Short summary
We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 and compared the variability and trends in RH with those in land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. Our results stress that the different hypotheses that may explain the decrease in RH under a global warming scenario could act together to explain recent RH trends.
Cited articles
Allan, R. and Ansell, T.: A New Globally Complete Monthly Historical
Gridded Mean Sea Level Pressure Dataset (HadSLP2): 1850–2004, J. Climate,
19, 5816–5842, 2006.
Athanasiadis, P. J., Bellucci, A., Scaife, A. A., Hermanson, L., Materia, S.,
Sanna, A., Borrelli, A., MacLachlan, C., and Gualdi, S.: A multisystem view
of wintertime NAO seasonal predictions, J. Climate, 30, 1461–1475, 2017.
Blackport, R. and Screen, J. A.: Influence of Arctic Sea Ice Loss in Autumn
Compared to That in Winter on the Atmospheric Circulation, Geophys. Res.
Lett., 46, 2213–2221, 2019.
Blackport, R., Screen, J. A., van der Weil, K., and Bintanja, R.: Minimal
influence of reduced Arctic sea ice on coincident cold winters in
mid-latitudes, Nat. Clim. Change, 9, 697–704, 2019.
Boland, E. J., Bracegirdle, T. J., and Shuckburgh, E. F.: Assessment of sea
ice-atmosphere links in CMIP5 models, Clim. Dyn., 49, 683–702, 2017.
Climate Research Unit: North Atlantic Oscillation Index, available at: https://crudata.uea.ac.uk/cru/data/nao/ (last access: 5 May 2020), 1997.
Cohen, J.: An observational analysis: Tropical relative to Arctic influence
on midlatitude weather in the era of Arctic amplification, Geophys. Res.
Lett., 43, 5287–5294, 2016.
Cohen, J. and Entekhabi, D.: Eurasian snow cover variability and Northern
Hemisphere climate predictability, Geophys. Res. Lett., 26, 345–348, 1999.
Cohen, J., Barlow, M., Kushner, P. J., and Saito, K.:
Stratosphere–troposphere coupling and links with Eurasian land surface
variability, J. Climate, 20, 5335–5343, 2007.
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou,
D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., and Jones, J.:
Recent Arctic amplification and extreme mid-latitude weather, Nat.
Geosci., 7, 627–637, 2014.
Cohen, J., Pfeiffer, K., and Francis, J. A.: Warm Arctic episodes linked
with increased frequency of extreme winter weather in the United
States, Nat. Commun., 9, 1–12, 2018.
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J.,
Ballinger, T., Bhatt, U., Chen, H., Coumou, D., Feldstein, S., Gu, H., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F., Lee, S., Linderholm, H. W., Maslowski
W., Peings, Y., Pfeiffer, K., Rigor, I., Semmler, T., Stroeve, J., Taylor, P. C., Vavrus, S., Vihma, T., Wang, S., Wendisch, M., Wu, Y., and Yoon: J.: Divergent
consensuses on Arctic amplification influence on midlatitude severe winter
weather, Nat. Clim. Chang., 10, 20–29, 2020.
Collow, T. W., Wang, W., Kumar, A., and Zhang, J.: How well can the observed
Arctic sea ice summer retreat and winter advance be represented in the NCEP
Climate Forecast System version 2?, Clim. Dyn., 49, 1651–1663, 2017.
Cram, T. A., Compo, G. P., Yin, X., Allan, R. J., McColl, C., Vose, R. S.,
Whitaker, J. S., Matsui, N., Ashcroft, L., Auchmann, R., and Bessemoulin, P.:
The international surface pressure databank version 2, Geosci. Data
J., 2, 31–46, 2015.
Crasemann, B., Handorf, D., Jaiser, R., Dethloff, K., Nakamura, T., Ukita,
J., and Yamazaki, K.: Can preferred atmospheric circulation patterns over
the North-Atlantic-Eurasian region be associated with arctic sea ice
loss?, Polar Sci., 14, 9–20, 2017.
Dell'Aquila, A., Corti, S., Weisheimer, A., Hersbach, H., Peubey, C., Poli,
P., Berrisford, P., Dee, D., and Simmons, A.: Benchmarking Northern
Hemisphere midlatitude atmospheric synoptic variability in centennial
reanalysis and numerical simulations, Geophys. Res. Lett., 43, 5442–5449,
2016.
Deser, C., Hurrell, J. W., and Phillips, A. S.: The role of the North
Atlantic Oscillation in European climate projections, Clim. Dyn., 49,
3141–3157, 2017.
Douville, H., Peings, Y., and Saint-Martin, D.: Snow-(N) AO relationship
revisited over the whole twentieth century, Geophys. Res. Lett., 44,
569–577, 2017.
Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Eade, R., Robinson, N.,
Andrews, M., and Knight, J.: Skilful predictions of the winter North Atlantic
Oscillation one year ahead, Nat. Geosci., 9, 809–814, 2016.
Enfield, D. B., Mestas-Nuñez, A. M., and Trimble, P. J.: The Atlantic
multidecadal oscillation and its relation to rainfall and river flows in the
continental US, Geophys. Res. Lett., 28, 2077–2080, 2001.
European Centre for Medium-Range Weather Forecast: Atmospheric Reanalysis of the 20th Century, available at: https://apps.ecmwf.int/datasets/data/era20c-moda/levtype=sfc/type=an/ (last access: 5 May 2020), 2016.
Francis, J. A.: Why are Arctic linkages to extreme weather still up in the
air?, B. Am. Meteorol. Soc., 98, 2551–2557, 2017.
Furtado, J. C., Cohen, J. L., Butler, A. H., Riddle, E. E., and Kumar, A.:
Eurasian snow cover variability and links to winter climate in the CMIP5
models, Clim. Dyn., 45, 2591–2605, 2015.
Furtado, J. C., Cohen, J. L., and Tziperman, E.: The combined influences of
autumnal snow and sea ice on Northern Hemisphere winters, Geophys. Res.
Lett., 43, 3478–3485, 2016.
García-Serrano, J., Frankignoul, C., Gastineau, G., and De La
Càmara, A.: On the predictability of the winter Euro-Atlantic climate:
lagged influence of autumn Arctic sea ice, J. Climate., 28, 5195–5216, 2015.
Gastineau, G., García-Serrano, J., and Frankignoul, C.: The influence
of autumnal Eurasian snow cover on climate and its link with Arctic sea ice
cover, J. Climate, 30, 7599–7619, 2017.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka,
G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis for research and applications,
version 2 (MERRA-2), J. Climate, 30, 5419–5454, 2017.
Ghatak, D., Frei, A., Gong, G., Stroeve, J., and Robinson, D.: On the
emergence of an Arctic amplification signal in terrestrial Arctic snow
extent, J. Geophysi. Res.-Atmos., 115, D24105, https://doi.org/10.1029/2010JD014007, 2010.
Han, S. and Sun, J.: Impacts of Autumnal Eurasian Snow Cover on Predominant
Modes of Boreal Winter Surface Air Temperature Over Eurasia, J. Geophys.
Res.-Atmos., 123, 10079–10091, 2018.
Handorf, D., Jaiser, R., Dethloff, K., Rinke, A., and Cohen, J.: Impacts of
Arctic sea ice and continental snow cover changes on atmospheric winter
teleconnections, Geophysi. Res. Lett., 42, 2367–2377, 2015.
Hegerl, G. C., Brönnimann, S., Schurer, A., and Cowan, T.: The early
20th century warming: anomalies, causes, and consequences, Wiley
Interdiscip. Rev. Clim.. Sci., 9, e522, 2018.
Henderson, G. R., Peings, Y., Furtado, J. C., and Kushner, P. J.:
Snow–atmosphere coupling in the Northern Hemisphere, Nat. Clim. Change, 8,
954–963, 2018.
Honda, M., Inoue, J., and Yamane, S. : Influence of low Arctic sea-ice
minima on anomalously cold Eurasian winters, Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079, 2009.
Hoshi, K., Ukita, J., Honda, M., Nakamura, T., Yamazaki, K., Miyoshi, Y.,
and Jaiser, R.: Weak Stratospheric Polar Vortex Events Modulated by the
Arctic Sea-Ice Loss, J. Geophys. Res.-Atmos., 124, 858–869, 2019.
Hurrell, J. W. and Deser, C.: North Atlantic climate variability: the role
of the North Atlantic Oscillation, J. Marine Syst., 79, 231–244, 2010.
Inoue, J., Hori, M. E., and Takaya, K: The role of Barents Sea ice in the
wintertime cyclone track and emergence of a warm-Arctic cold-Siberian
anomaly, J. Climate, 25, 2561–2568, 2012.
Jones, P. D., Jonsson, T., and Wheeler, D.: Extension to the North Atlantic
Oscillation using early instrumental pressure observations from Gibraltar
and south-west Iceland, Int. J. Climatol., 17, 1433–1450, 1997.
Jung, T., Vitart, F., Ferranti, L., and Morcrette, J. J.: Origin and
predictability of the extreme negative NAO winter of 2009/10, Geophys. Res.
Lett., 38, L07701, https://doi.org/10.1029/2011GL046786, 2011.
Kang, D., Lee, M. I., Im, J., Kim, D., Kim, H. M., Kang, H. S., Schubert, S. D.,
Arribas, A., and MacLachlan, C.: Prediction of the Arctic Oscillation in
boreal winter by dynamical seasonal forecasting systems, Geophys. Res.
Lett., 41, 3577–3585, 2014.
Kelleher, M. and Screen, J.: Atmospheric precursors of and response to
anomalous Arctic sea ice in CMIP5 models, Adv. Atmos. Sci., 35, 27–37, 2018.
King, M. P., Hell, M., and Keenlyside, N.: Investigation of the atmospheric
mechanisms related to the autumn sea ice and winter circulation link in the
Northern Hemisphere, Clim. Dyn., 46, 1185–1195, 2016.
Kolstad, E. W. and Screen, J. A.: Non-Stationary Relationship between
Autumn Arctic Sea Ice and the Winter North Atlantic Oscillation, Geophys.
Res. Lett., 46, 7583–7591, 2019.
Kretschmer, M., Coumou, D., Agel, L., Barlow, M., Tziperman, E., and Cohen,
J.: More-persistent weak stratospheric polar vortex states linked to cold
extremes, B. Am. Meteorol. Soc., 99, 49–60, 2018.
Laloyaux, P., de Boisseson, E., Balmaseda, M., Bidlot, J. R., Broennimann,
S., Buizza, R., Dalhgren, P., Dee, D., Haimberger, L., Hersbach, H.,
Kosaka, Y., Martin, M., Poli, P., Rayner, N., Rustemeier, E., and Schepers, D.: CERA-20C: A coupled reanalysis of the Twentieth
Century, J. Adv. Model. Earth Syst., 10, 1172–1195, 2018.
Luo, D., Chen, Y., Dai, A., Mu, M., Zhang, R., and Ian, S.: Winter Eurasian
cooling linked with the Atlantic multidecadal oscillation, Environ. Res.
Lett., 12, 125002, https://doi.org/10.1088/1748-9326/aa8de8, 2017.
Luo, D., Chen, X., Overland, J., Simmonds, I., Wu, Y., and Zhang, P.:
Weakened potential vorticity barrier linked to recent winter Arctic sea-ice
loss and mid-latitude cold extremes, J. Climate, 32, 4235–4261, 2019.
McCusker, K. E., Fyfe, J. C., and Sigmond, M.: Twenty-five winters of
unexpected Eurasian cooling unlikely due to Arctic sea-ice loss, Nat.
Geosci., 9, 838–842, 2016.
Moore, G. W. K. and Renfrew, I. A.: Cold European winters: interplay
between the NAO and the East Atlantic mode, Atmos. Sci. Lett., 13, 1–8,
2012.
Mori, M., Kosaka, Y., Watanabe, M., Nakamura, H., and Kimoto, M.: A
reconciled estimate of the influence of Arctic sea-ice loss on recent
Eurasian cooling, Nat. Clim. Change, 9, 123–129, 2019.
National Aeronautics and Space Administration: Modern-Era Retrospective Analysis for Research and Application Version 2, available at:
https://disc.gsfc.nasa.gov/datasets?keywords="MERRA-2"&page=1&source=Models%2FAnalyses MERRA-2 (last access: 5 May 2020), 2017.
National Oceanic and Atmospheric Administration: Atlantic Multidecadal Oscillation Index, available at: https://psl.noaa.gov/data/timeseries/AMO/ (last access: 5 May 2020), 2001.
National Oceanic and Atmospheric Administration: Niño 3.4 SST Index, available at: https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/ (last access: 5 May 2020), 2003.
National Oceanic and Atmospheric Administration: Twentieth Century Reanalysis Version 2c, available at: https://psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html (last access: 5 May 2020), 2015.
National Snow & Ice Data Center: Gridded Monthly Sea Ice Extent and Concentration, available at: https://nsidc.org/data/g10010 (last access: 5 May 2020), 2017.
Orsolini, Y. J. and Kvamstø, N. G.: Role of Eurasian snow cover in
wintertime circulation: Decadal simulations forced with satellite
observations, J. Geophysi. Res.-Atmos., 114, D19108, https://doi.org/10.1029/2009JD012253, 2009.
Orsolini, Y. J., Senan, R., Vitart, F., Balsamo, G., Weisheimer, A., and
Doblas-Reyes, F. J.: Influence of the Eurasian snow on the negative North
Atlantic Oscillation in subseasonal forecasts of the cold winter
2009/2010, Clim. Dyn., 47, 1325–1334, 2016.
Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., de Rosnay, P., Zhu, C., Wang, W., Senan, R., and Arduini, G.: Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations, The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019, 2019.
Overland, J. E. and Wang, M.: Arctic-midlatitude weather linkages in North
America, Polar Sci., 16, 1–9, 2018.
Overland, J. E., Wood, K. R., and Wang, M.: Warm Arctic – cold continents:
climate impacts of the newly open Arctic Sea, Polar Res., 30, 15787, https://doi.org/10.3402/polar.v30i0.15787, 2011.
Pedersen, R. A., Cvijanovic, I., Langen, P. L., and Vinther, B. M.: The
impact of regional Arctic sea ice loss on atmospheric circulation and the
NAO, J. Climate, 29, 889–902, 2016.
Peings, Y.: Ural Blocking as a driver of early winter stratospheric
warmings, Geophys. Res. Lett., 46, 5460–5468, 2019.
Peings, Y., Brun, E., Mauvais, V., and Douville, H. : How stationary is the
relationship between Siberian snow and Arctic Oscillation over the 20th
century?, Geophys. Res. Lett., 40, 183–188, 2013.
Peings, Y., Douville, H., Colin, J., Martin, D. S., and Magnusdottir, G.:
Snow–(N) AO teleconnection and its modulation by the Quasi-Biennial
Oscillation, J. Climate, 30, 10211–10235, 2017.
Petoukhov, V. and Semenov, V. A.: A link between reduced Barents-Kara sea
ice and cold winter extremes over northern continents, J. Geophys. Res.-Atmos., 115, D21111, https://doi.org/10.1029/2009JD013568, 2010.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart,
F., Laloyaux, P., Tan, D. G., Peubey, C., Thépaut, J. N., and Trémolet,
Y.: ERA-20C: An atmospheric reanalysis of the twentieth century, J.
Climate, 29, 4083–4097, 2016.
Rayner, N. A. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V.,
Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002JD002670, 2003.
Robinson, D. A., Estilow, T. W., and NOAA CDR Program: NOAA Climate
Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE),
Version 1, 2012.
Rohrer, M.: Tibaldi Molteni 2-dimensional blocks, available at: https://github.com/marco-rohrer/TM2D (last access: 5 May 2020), 2018.
Rohrer, M., Brönnimann, S., Martius, O., Raible, C. C., Wild, M., and
Compo, G. P.: Representation of extratropical cyclones, blocking
anticyclones, and Alpine circulation types in multiple reanalyses and model
simulations, J. Climate, 31, 3009–3031, 2018.
Rohrer, M., Broennimann, S., Martius, O., Raible, C. C., and Wild, M.:
Decadal variations of blocking and storm tracks in centennial
reanalyses, Tellus A, 71, 1–21, 2019.
Romanowsky, E., Handorf, D., Jaiser, R., Wohltmann, I., Dorn, W., Ukita, J.,
Cohen, J., Dethloff, K., and Rex, M.: The role of stratospheric ozone for
Arctic-midlatitude linkages, Sci. Rep., 9, 7962, https://doi.org/10.1038/s41598-019-43823-1, 2019.
Ruggieri, P., Kucharski, F., Buizza, R., and Ambaum, M. H. P.: The transient
atmospheric response to a reduction of sea-ice cover in the Barents and Kara
Seas, Q. J. Roy. Meteorol. Soc., 143, 1632–1640, 2017.
Saito, K., Cohen, J., and Entekhabi, D.: Evolution of atmospheric response
to early-season Eurasian snow cover anomalies, Mon. Weather Rev., 129,
2746–2760, 2001.
Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T.,
Dunstone, N., Eade, R., Fereday, D., Folland, C. K., Gordon, M., Hermanson,
L., Knight, J. R., Lea, D. J., MacLachlan, C., Maidens, A., Martin, M., Peterson, A. K., Smith, D., Vellinga, M., Wallace, E., Waters, J., and Williams, A.: Skillful long-range prediction of European and North American
winters, Geophys. Res. Lett., 41, 2514–2519, 2014.
Scaife, A. A., Karpechko, A. Y., Baldwin, M. P., Brookshaw, A., Butler, A. H.,
Eade, R., Gordon, M., MacLachlan, C., Martin, N., Dunstone, N., and Smith, D.:
Seasonal winter forecasts and the stratosphere, Atmos. Sci. Lett., 17,
51–56, 2016.
Scherrer, S. C., Croci-Maspoli, M., Schwierz, C., and Appenzeller, C.:
Two-dimensional indices of atmospheric blocking and their statistical
relationship with winter climate patterns in the Euro-Atlantic region, Int.
J. Climatol., 26, 233–249, 2006.
Schwierz, C., Croci-Maspoli, M., and Davies, H. C.: Perspicacious indicators
of atmospheric blocking, Geophys. Res. Lett., 31, L06125, https://doi.org/10.1029/2003GL019341, 2004.
Screen, J. A.: Simulated atmospheric response to regional and pan-Arctic sea
ice loss, J. Climate, 30, 3945–3962, 2017.
Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner,
P. J., Oudar, T., McCusker, K. E., and Sun, L.: Consistency and discrepancy in
the atmospheric response to Arctic sea-ice loss across climate models, Nat.
Geosci., 11, 155–163, 2018.
Smith, D. M., Scaife, A. A., Eade, R., and Knight, J. R.: Seasonal to
decadal prediction of the winter North Atlantic Oscillation: emerging
capability and future prospects, Q. J. Roy. Meteorol. Soc., 142, 611–617,
2016.
Sorokina, S. A., Li, C., Wettstein, J. J., and Kvamstø, N. G.: Observed
atmospheric coupling between Barents Sea ice and the warm-Arctic
cold-Siberian anomaly pattern, J. Climate, 29, 495–511, 2016.
Sun, C., Zhang, R., Li, W., Zhu, J., and Yang, S.: Possible impact of North
Atlantic warming on the decadal change in the dominant modes of winter
Eurasian snow water equivalent during 1979–2015, Clim. Dyn., 53, 5203–5213,
2019.
Suo, L., Gao, Y., Guo, D., Liu, J., Wang, H., and Johannessen, O. M.:
Atmospheric response to the autumn sea-ice free Arctic and its
detectability, Clim. Dyn., 46, 2051–2066, 2016.
Thompson, D. W. and Wallace, J. M.: The Arctic Oscillation signature in the
wintertime geopotential height and temperature fields, Geophys. Res.
Lett., 25, 1297–1300, 1998.
Tibaldi, S. and Molteni, F.: On the operational predictability of
blocking, Tellus A, 42, 343–365, 1990.
Trenary, L. and DelSole, T.: Does the Atlantic Multidecadal Oscillation get
its predictability from the Atlantic Meridional Overturning circulation?, J.
Climate, 29, 5267–5280, 2016.
Tyrrell, N. L., Karpechko, A. Y., and Räisänen, P.: The influence of
Eurasian snow extent on the northern extratropical stratosphere in a QBO
resolving model, J. Geophys. Res.-Atmos., 123, 315–328, 2018.
Tyrrell, N. L., Karpechko, A. Y., Uotila, P., and Vihma, T.: Atmospheric
Circulation Response to Anomalous Siberian Forcing in October 2016 and its
Long-Range Predictability, Geophys. Res. Lett., 46, 2800–2810, 2019.
Vihma, T.: Effects of Arctic sea ice decline on weather and climate: A
review, Surv. Geophys., 35, 1175–1214, 2014.
Walsh, J. E., Fetterer, F., Scott Stewart, J., and Chapman, W. L.: A
database for depicting Arctic sea ice variations back to 1850, Geogr.
Rev., 107, 89–107, 2017.
Wang, L., Ting, M., and Kushner, P. J.: A robust empirical seasonal
prediction of winter NAO and surface climate, Sci. Rep., 7, 1–9, 2017.
Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J.,
Schmutz, C., Stephenson, D. B., and Xoplaki, E.: North Atlantic
Oscillation–concepts and studies, Surv. Geophys., 22, 321–381, 2001.
Warner, J. L.: Arctic sea ice – a driver of the winter NAO?, Weather, 73,
307–310, 2018.
Wegmann, M., Orsolini, Y., Vázquez, M., Gimeno, L., Nieto, R., Bulygina,
O., Jaiser, R., Handorf, D., Rinke, A., Dethloff, K., and Sterin, A.: Arctic
moisture source for Eurasian snow cover variations in autumn, Environ.
Res. Lett., 10, 054015, https://doi.org/10.1088/1748-9326/10/5/054015, 2015.
Wegmann, M., Brönnimann, S., and Compo, G. P.: Tropospheric circulation
during the early twentieth century Arctic warming, Clim. Dyn., 48,
2405–2418, 2017a.
Wegmann, M., Orsolini, Y., Dutra, E., Bulygina, O., Sterin, A., and Brönnimann, S.: Eurasian snow depth in long-term climate reanalyses, The Cryosphere, 11, 923–935, https://doi.org/10.5194/tc-11-923-2017, 2017b.
Wegmann, M., Orsolini, Y., and Zolina, O.: Warm Arctic− cold Siberia:
comparing the recent and the early 20th-century Arctic warmings, Environ.
Res. Lett., 13, 025009, https://doi.org/10.1088/1748-9326/aaa0b7, 2018a.
Wegmann, M., Dutra, E., Jacobi, H.-W., and Zolina, O.: Spring snow albedo feedback over northern Eurasia: Comparing in situ measurements with reanalysis products, The Cryosphere, 12, 1887–1898, https://doi.org/10.5194/tc-12-1887-2018, 2018b.
Xu, B., Chen, H., Gao, C., Zhou, B., Sun, S., and Zhu, S.: Regional response
of winter snow cover over the Northern Eurasia to late autumn Arctic sea ice
and associated mechanism, Atmos. Res., 222, 100–113, 2019.
Yao, Y., Luo, D., Dai, A., and Simmonds, I.: Increased quasi stationarity
and persistence of winter Ural blocking and Eurasian extreme cold events in
response to Arctic warming. Part I: Insights from observational analyses, J.
Climate, 30, 3549–3568, 2017.
Ye, K. and Wu, R.: Autumn snow cover variability over northern Eurasia and
roles of atmospheric circulation, Adv. Atmos. Sci., 34, 847–858, 2017.
Yeo, S. R., Kim, W., and Kim, K. Y.: Eurasian snow cover variability in
relation to warming trend and Arctic Oscillation, Clim. Dyn., 48, 499–511,
2017.
Zhang, J., Tian, W., Chipperfield, M. P., Xie, F., and Huang, J.: Persistent
shift of the Arctic polar vortex towards the Eurasian continent in recent
decades, Nat. Clim. Change, 6, 1094, https://doi.org/10.1038/nclimate3136, 2016.
Short summary
Predicting the climate of the upcoming season is of big societal benefit, but finding out which component of the climate system can act as a predictor is difficult. In this study, we focus on Eurasian snow cover as such a component and show that knowing the snow cover in November is very helpful in predicting the state of winter over Europe. However, this mechanism was questioned in the past. Using snow data that go back 150 years into the past, we are now very confident in this relationship.
Predicting the climate of the upcoming season is of big societal benefit, but finding out which...
Altmetrics
Final-revised paper
Preprint