Articles | Volume 11, issue 2
Earth Syst. Dynam., 11, 509–524, 2020
https://doi.org/10.5194/esd-11-509-2020
Earth Syst. Dynam., 11, 509–524, 2020
https://doi.org/10.5194/esd-11-509-2020
Research article
29 May 2020
Research article | 29 May 2020

Eurasian autumn snow link to winter North Atlantic Oscillation is strongest for Arctic warming periods

Martin Wegmann et al.

Related authors

Impact of Eurasian autumn snow on the winter North Atlantic Oscillation in seasonal forecasts of the 20th century
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021,https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Large-scale climate signals of a European oxygen isotope network from tree rings
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021,https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations
Yvan Orsolini, Martin Wegmann, Emanuel Dutra, Boqi Liu, Gianpaolo Balsamo, Kun Yang, Patricia de Rosnay, Congwen Zhu, Wenli Wang, Retish Senan, and Gabriele Arduini
The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019,https://doi.org/10.5194/tc-13-2221-2019, 2019
Short summary
Spring snow albedo feedback over northern Eurasia: Comparing in situ measurements with reanalysis products
Martin Wegmann, Emanuel Dutra, Hans-Werner Jacobi, and Olga Zolina
The Cryosphere, 12, 1887–1898, https://doi.org/10.5194/tc-12-1887-2018,https://doi.org/10.5194/tc-12-1887-2018, 2018
Short summary
Eurasian snow depth in long-term climate reanalyses
Martin Wegmann, Yvan Orsolini, Emanuel Dutra, Olga Bulygina, Alexander Sterin, and Stefan Brönnimann
The Cryosphere, 11, 923–935, https://doi.org/10.5194/tc-11-923-2017,https://doi.org/10.5194/tc-11-923-2017, 2017
Short summary

Related subject area

Dynamics of the Earth system: interactions
On the additivity of climate responses to the volcanic and solar forcing in the early 19th century
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022,https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Exploring the relationship between temperature forecast errors and Earth system variables
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022,https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022,https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
The biogeophysical effects of idealized land cover and land management changes in Earth system models
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022,https://doi.org/10.5194/esd-13-1305-2022, 2022
Short summary
Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022,https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary

Cited articles

Allan, R. and Ansell, T.: A New Globally Complete Monthly Historical Gridded Mean Sea Level Pressure Dataset (HadSLP2): 1850–2004, J. Climate, 19, 5816–5842, 2006. 
Athanasiadis, P. J., Bellucci, A., Scaife, A. A., Hermanson, L., Materia, S., Sanna, A., Borrelli, A., MacLachlan, C., and Gualdi, S.: A multisystem view of wintertime NAO seasonal predictions, J. Climate, 30, 1461–1475, 2017. 
Blackport, R. and Screen, J. A.: Influence of Arctic Sea Ice Loss in Autumn Compared to That in Winter on the Atmospheric Circulation, Geophys. Res. Lett., 46, 2213–2221, 2019. 
Blackport, R., Screen, J. A., van der Weil, K., and Bintanja, R.: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes, Nat. Clim. Change, 9, 697–704, 2019. 
Boland, E. J., Bracegirdle, T. J., and Shuckburgh, E. F.: Assessment of sea ice-atmosphere links in CMIP5 models, Clim. Dyn., 49, 683–702, 2017. 
Download
Short summary
Predicting the climate of the upcoming season is of big societal benefit, but finding out which component of the climate system can act as a predictor is difficult. In this study, we focus on Eurasian snow cover as such a component and show that knowing the snow cover in November is very helpful in predicting the state of winter over Europe. However, this mechanism was questioned in the past. Using snow data that go back 150 years into the past, we are now very confident in this relationship.
Altmetrics
Final-revised paper
Preprint