Articles | Volume 11, issue 4
https://doi.org/10.5194/esd-11-1133-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-11-1133-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Daytime low-level clouds in West Africa – occurrence, associated drivers, and shortwave radiation attenuation
Derrick K. Danso
CORRESPONDING AUTHOR
Université Grenoble Alpes, IRD, CNRS, Grenoble-INP, IGE, 38000
Grenoble, France.
Laboratoire de Physique de l'Atmosphère et de Mécaniques des
Fluides (LAPAMF), Université Félix Houphoüet Boigny, Abidjan,
Côte d'Ivoire
Sandrine Anquetin
Université Grenoble Alpes, IRD, CNRS, Grenoble-INP, IGE, 38000
Grenoble, France.
Arona Diedhiou
Université Grenoble Alpes, IRD, CNRS, Grenoble-INP, IGE, 38000
Grenoble, France.
Laboratoire de Physique de l'Atmosphère et de Mécaniques des
Fluides (LAPAMF), Université Félix Houphoüet Boigny, Abidjan,
Côte d'Ivoire
Kouakou Kouadio
Laboratoire de Physique de l'Atmosphère et de Mécaniques des
Fluides (LAPAMF), Université Félix Houphoüet Boigny, Abidjan,
Côte d'Ivoire
Arsène T. Kobea
Laboratoire de Physique de l'Atmosphère et de Mécaniques des
Fluides (LAPAMF), Université Félix Houphoüet Boigny, Abidjan,
Côte d'Ivoire
Related authors
No articles found.
Carlo Destouches, Arona Diedhiou, Sandrine Anquetin, Benoit Hingray, Armand Pierre, Dominique Boisson, and Adermus Joseph
Earth Syst. Dynam., 16, 497–512, https://doi.org/10.5194/esd-16-497-2025, https://doi.org/10.5194/esd-16-497-2025, 2025
Short summary
Short summary
This work provides a relevant analysis of changes in extreme precipitation over the Caribbean and their link with warming in different ocean basins. It also improves our understanding of the impact of warming on extreme precipitation events, which can cause devastating damage to economic sectors such as agriculture, biodiversity, health, and energy.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025, https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary
Short summary
Solar energy production in West Africa is set to rise and needs accurate solar radiation estimates which are affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cuts errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Camille Crapart, Sandrine Anquetin, Juliette Blanchet, and Arona Diedhiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3710, https://doi.org/10.5194/egusphere-2024-3710, 2025
Short summary
Short summary
Our study investigates global dryland dynamics and aridification under future climate scenarios. By employing the FAO Aridity Index and an ensemble of 13 CMIP6 models, we provide projections for dryland distribution and aridity index across three socio-economic pathways (SSP2-4.5, SSP3-7.0, and SSP5-8.5), for the near-term (2030–2060) and for the long-term (2070–2100) future. Our findings give insights on the future distribution of the world water resources and climatic conditions.
Koffi Claude Alain Kouadio, Siélé Silué, Ernest Amoussou, Kouakou Lazare Kouassi, Arona Diedhiou, Talnan Jean Honoré Coulibaly, Salomon Obahoundjé, Sacré Regis Didi, and Houebagnon Saint Jean Coulibaly
Proc. IAHS, 385, 39–45, https://doi.org/10.5194/piahs-385-39-2024, https://doi.org/10.5194/piahs-385-39-2024, 2024
Short summary
Short summary
Hydropower (HP) is the 2nd source of energy in Côte d'Ivoire. However water resource for HP is threatened by climate change (CC). Therefore the hydro potential and production are impacted. This study investigates the impacts of future CC in the White Bandama watershed using hydrological modelling coupled with GIS analysis. It emerges that in the future an upward trend in flows will be recorded. This could contribute to the siltation of dams and an increase in the risk of flooding in the basin.
Ma-Lyse Nema, Bachir Saley Mahaman, Arona Diedhiou, and Assiel Mugabe
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-47, https://doi.org/10.5194/nhess-2023-47, 2023
Revised manuscript not accepted
Short summary
Short summary
My early experience inspired me to write this paper because I was always curious about the reasons behind the frequent landslides that occurred in the area where I was born. Now, my dream has come true because this study was centered on the same region, same people, and because I discovered the causes and preventative measures for landslides in my area. I hope that when establishing policies for disaster management in the study area, decision-makers will take these results into consideration.
Julia Crook, Cornelia Klein, Sonja Folwell, Christopher M. Taylor, Douglas J. Parker, Adama Bamba, and Kouakou Kouadio
Weather Clim. Dynam., 4, 229–248, https://doi.org/10.5194/wcd-4-229-2023, https://doi.org/10.5194/wcd-4-229-2023, 2023
Short summary
Short summary
We estimate recent deforestation in West Africa and use a climate model allowing explicit convection to determine impacts on early season rainfall. We find enhanced rainfall over deforestation, in line with recent observational results, due to changes in circulation rather than humidity, showing potential for future studies. Local changes depend on initial soil moisture, deforestation extent, and ocean proximity, with sea breezes shifting inland where surface friction decreased.
Eva Boisson, Bruno Wilhelm, Emmanuel Garnier, Alain Mélo, Sandrine Anquetin, and Isabelle Ruin
Nat. Hazards Earth Syst. Sci., 22, 831–847, https://doi.org/10.5194/nhess-22-831-2022, https://doi.org/10.5194/nhess-22-831-2022, 2022
Short summary
Short summary
We present the database of Historical Impacts of Floods in the Arve Valley (HIFAVa). It reports flood occurrences and impacts (1850–2015) in a French Alpine catchment. Our results show an increasing occurrence of impacts from 1920 onwards, which is more likely related to indirect source effects and/or increasing exposure rather than hydrological changes. The analysis reveals that small mountain streams caused more impacts (67 %) than the main river.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Salomon Obahoundje, Ernest Amoussou, Marc Youan Ta, Lazare Kouakou Kouassi, and Arona Diedhiou
Proc. IAHS, 384, 343–347, https://doi.org/10.5194/piahs-384-343-2021, https://doi.org/10.5194/piahs-384-343-2021, 2021
Affoué Berthe Yao, Sampah Georges Eblin, Loukou Alexis Brou, Kouakou Lazare Kouassi, Gla Blaise Ouede, Ibrahim Salifou, Arona Diedhiou, and Bi Crépin Péné
Proc. IAHS, 384, 203–211, https://doi.org/10.5194/piahs-384-203-2021, https://doi.org/10.5194/piahs-384-203-2021, 2021
Short summary
Short summary
This study aims to analyse the frequency, intensity and duration of extreme climate events in order to optimise sugarcane production in the Ferkessédougou sugar complexes. This study could enable the Ferkessédougou sugar complexes managers to develop strategies for adaptation to climate change.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Cited articles
Adejuwon, J. O. and Odekunle, T. O.: Variability and the severity of the
“Little Dry Season” in southwestern Nigeria, J. Climate, 19, 483–493,
https://doi.org/10.1175/JCLI3642.1, 2006.
Adler, B., Kalthoff, N., and Gantner, L.: Nocturnal low-level clouds over southern West Africa analysed using high-resolution simulations, Atmos. Chem. Phys., 17, 899–910, https://doi.org/10.5194/acp-17-899-2017, 2017.
Adler, B., Babić, K., Kalthoff, N., Lohou, F., Lothon, M., Dione, C., Pedruzo-Bagazgoitia, X., and Andersen, H.: Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: an observation-based analysis of conditions and processes, Atmos. Chem. Phys., 19, 663–681, https://doi.org/10.5194/acp-19-663-2019, 2019.
Armstrong, S. and Hurley, W. G.: A new methodology to optimise solar energy
extraction under cloudy conditions, Renew. Energy, 35, 780–787,
https://doi.org/10.1016/j.renene.2009.10.018, 2010.
Babić, K., Adler, B., Kalthoff, N., Andersen, H., Dione, C., Lohou, F., Lothon, M., and Pedruzo-Bagazgoitia, X.: The observed diurnal cycle of low-level stratus clouds over southern West Africa: a case study, Atmos. Chem. Phys., 19, 1281–1299, https://doi.org/10.5194/acp-19-1281-2019, 2019a.
Babić, K., Kalthoff, N., Adler, B., Quinting, J. F., Lohou, F., Dione, C., and Lothon, M.: What controls the formation of nocturnal low-level stratus clouds over southern West Africa during the monsoon season?, Atmos. Chem. Phys., 19, 13489–13506, https://doi.org/10.5194/acp-19-13489-2019, 2019b.
Bonkaney, A., Madougou, S., and Adamou, R.: Impacts of Cloud Cover and Dust
on the Performance of Photovoltaic Module in Niamey, J. Renew. Energy, 2017,
9107502, https://doi.org/10.1155/2017/9107502, 2017.
Bouniol, D., Couvreux, F., Kamsu-Tamo, P. H., Leplay, M., Guichard, F.,
Favot, F., and O'connor, E. J.: Diurnal and seasonal cycles of cloud
occurrences, types, and radiative impact over West Africa, J. Appl.
Meteorol. Clim., 51, 534–553, https://doi.org/10.1175/JAMC-D-11-051.1, 2012.
Chineke, T. C., Jagtap, S. S., and Nwofor, O.: West African monsoon: Is the
August break “breaking” in the eastern humid zone of Southern Nigeria?,
Clim. Change, 103, 555–570, https://doi.org/10.1007/s10584-009-9780-2, 2010.
Christensen, J. H., Kumar, K. K., Aldrian, E., An, S.-I., Cavalcanti, I. F.
A., Castro, M. de, Dong, W., Goswami, P., Hall, A., Kanyanga, J. K., Kitoh,
A., Kossin, J., Lau, N.-C., Renwick, J., Stephenson, D. B., Xie, S.-P., and
Zhou, T.: Climate phenomena and their relevance for future regional climate
change, in: Climate Change 2013: The Physical Science Basis. Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., 1217–1308, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2013.
Danso, D. K., Anquetin, S., Diedhiou, A., Lavaysse, C., Kobea, A., and
Touré, N. E.: Spatio-temporal variability of cloud cover types in West
Africa with satellite-based and reanalysis data, Q. J. Roy. Meteor. Soc.,
145, 3715–3731, https://doi.org/10.1002/qj.3651, 2019.
Dione, C., Lohou, F., Lothon, M., Adler, B., Babić, K., Kalthoff, N., Pedruzo-Bagazgoitia, X., Bezombes, Y., and Gabella, O.: Low-level stratiform clouds and dynamical features observed within the southern West African monsoon, Atmos. Chem. Phys., 19, 8979–8997, https://doi.org/10.5194/acp-19-8979-2019, 2019.
Froidurot, S. and Diedhiou, A.: Characteristics of wet and dry spells in the
West African monsoon system, Atmos. Sci. Lett., 18, 125–131,
https://doi.org/10.1002/asl.734, 2017.
Galle, S., Grippa, M., Peugeot, C., Moussa, I. B., Cappelaere, B., Demarty, J., Mougin, E., Panthou, G., Adjomayi, P., Agbossou, E. K., Ba, A., Boucher, M., Cohard, J.-M., Descloitres, M., Descroix, L., Diawara, M., Dossou, M., Favreau, G., Gangneron, F., Gosset, M., Hector, B., Hiernaux, P., Issoufou, B.-A., Kergoat, L., Lawin, E., Lebel, T., Legchenko, A., Abdou, M. M., Malam-Issa, O., Mamadou, O., Nazoumou, Y., Pellarin, T., Quantin, G., Sambou, B., Seghieri, J., Séguis, L., Vandervaere, J.-P., Vischel, T., Vouillamoz, J.-M., Zannou, A., Afouda, S., Alhassane, A., Arjounin, M., Barral, H., Biron, R., Cazenave, F., Chaffard, V., Chazarin, J.-P., Guyard, H., Koné, A., Mainassara, I., Mamane, A., Oi, M., Ouani, T., Soumaguel, N., Wubda, M., Ago, E. E., Alle, I. C., Allies, A., Arpin-Pont, F., Awessou, B., Cassé, C., Charvet, G., Dardel, C., Depeyre, A., Diallo, F. B., Do, T., Fatras, C., Frappart, F., Gal, L., Gascon, T., Gibon, F., Guiro, I., Ingatan, A., Kempf, J., Kotchoni, D. O. V., Lawson, F. M. A., Leauthaud, C., Louvet, S., Mason, E., Nguyen, C. C., Perrimond, B., Pierre, C., Richard, A., Robert, E., Romá-Cascón, C., Velluet, C., and Wilcox, C.: AMMA-CATCH, a Critical Zone Observatory in West Africa Monitoring a Region in Transition, Vadose Zone J., 17, 180062, https://doi.org/10.2136/vzj2018.03.0062, 2018.
Gbobaniyi, E., Sarr, A., Sylla, M. B., Diallo, I., Lennard, C., Dosio, A.,
Dhiédiou, A., Kamga, A., Klutse, N. A. B., Hewitson, B., Nikulin, G., and
Lamptey, B.: Climatology, annual cycle and interannual variability of
precipitation and temperature in CORDEX simulations over West Africa, Int.
J. Climatol., 34, 2241–2257, https://doi.org/10.1002/joc.3834, 2014.
Gounou, A., Guichard, F., and Couvreux, F.: Observations of Diurnal Cycles
Over a West African Meridional Transect: Pre-Monsoon and Full-Monsoon
Seasons, Bound.-Lay. Meteorol., 144, 329–357,
https://doi.org/10.1007/s10546-012-9723-8, 2012.
Goyens, C., Lauwaet, D., Schröder, M., Demuzere, M., and Van Lipzig, N.
P. M.: Tracking mesoscale convective systems in the Sahel: Relation between
cloud parameters and precipitation, Int. J. Climatol., 32, 1921–1934,
https://doi.org/10.1002/joc.2407, 2012.
Grabowski, W. W., Bechtold, P., Cheng, A., Forbes, R., Halliwell, C.,
Khairoutdinov, M., Lang, S., Nasuno, T., Petch, J., Tao, W. K., Wong, R.,
Wu, X., and Xu, K. M.: Daytime convective development over land: A model
intercomparison based on LBA observations, Q. J. Roy. Meteor. Soc.,
132, 317–344, https://doi.org/10.1256/qj.04.147, 2006.
Hannak, L., Knippertz, P., Fink, A. H., Kniffka, A., and Pante, G.: Why do
global climate models struggle to represent low-level clouds in the west
african summer monsoon?, J. Climate, 30, 1665–1687,
https://doi.org/10.1175/JCLI-D-16-0451.1, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hill, P. G., Allan, R. P., Chiu, J. C., Bodas-Salcedo, A., and Knippertz, P.:
Quantifying the contribution of different cloud types to the radiation
budget in southern West Africa, J. Climate, 31, 5273–5291,
https://doi.org/10.1175/JCLI-D-17-0586.1, 2018.
Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., and
Schubert, W. H.: Trimodal characteristics of Tropical convection, J. Climate,
12, 2397–2418, https://doi.org/10.1175/1520-0442(1999)012<2397:tcotc>2.0.co;2, 1999.
Kalthoff, N., Lohou, F., Brooks, B., Jegede, G., Adler, B., Babić, K., Dione, C., Ajao, A., Amekudzi, L. K., Aryee, J. N. A., Ayoola, M., Bessardon, G., Danuor, S. K., Handwerker, J., Kohler, M., Lothon, M., Pedruzo-Bagazgoitia, X., Smith, V., Sunmonu, L., Wieser, A., Fink, A. H., and Knippertz, P.: An overview of the diurnal cycle of the atmospheric boundary layer during the West African monsoon season: results from the 2016 observational campaign, Atmos. Chem. Phys., 18, 2913–2928, https://doi.org/10.5194/acp-18-2913-2018, 2018.
Kniffka, A., Knippertz, P., and Fink, A. H.: The role of low-level clouds in the West African monsoon system, Atmos. Chem. Phys., 19, 1623–1647, https://doi.org/10.5194/acp-19-1623-2019, 2019.
Knippertz, P., Fink, A. H., Schuster, R., Trentmann, J., Schrage, J. M., and
Yorke, C.: Ultra-low clouds over the southern West African monsoon region,
Geophys. Res. Lett., 38, 1–7, https://doi.org/10.1029/2011GL049278, 2011.
Knippertz, P., Coe, H., Chiu, J. C., Evans, M. J., Fink, A. H., Kalthoff,
N., Liousse, C., Mari, C., Allan, R. P., Brooks, B., Danour, S., Flamant,
C., Jegede, O. O., Lohou, F., and Marsham, J. H.: The DACCIWA project:
Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa., B. Am.
Meteorol. Soc., 96, 1451–1460, https://doi.org/10.1175/BAMS-D-14-00108.1, 2015.
Kosmopoulos, P. G., Kazadzis, S., Lagouvardos, K., Kotroni, V., and Bais, A.:
Solar energy prediction and verification using operational model forecasts
and ground-based solar measurements, Energy, 93, 1918–1930,
https://doi.org/10.1016/j.energy.2015.10.054, 2015.
Kuwonu, F.: Harvesting the sun. Scaling up solar power to meet Africa's
energy needs, Africa Renew, available at: https://www.un.org/africarenewal/magazine/april-2016/harvesting-sun
(last access: 15 May 2020), 2016.
Liou, K. N.: An introduction to atmospheric radiation, Elsevier Science, San Diego, CA, USA, 2002.
Liu, Y., Wu, W., Jensen, M. P., and Toto, T.: Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo, Atmos. Chem. Phys., 11, 7155–7170, https://doi.org/10.5194/acp-11-7155-2011, 2011.
Lohou, F., Kalthoff, N., Adler, B., Babić, K., Dione, C., Lothon, M., Pedruzo-Bagazgoitia, X., and Zouzoua, M.: Conceptual model of diurnal cycle of low-level stratiform clouds over southern West Africa, Atmos. Chem. Phys., 20, 2263–2275, https://doi.org/10.5194/acp-20-2263-2020, 2020.
Mace, G. G. and Zhang, Q.: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results, J. Geophys. Res.-Atmos., 119, 9441–9462, https://doi.org/10.1002/2013JD021374, 2014.
Mallet, M., Tulet, P., Serça, D., Solmon, F., Dubovik, O., Pelon, J., Pont, V., and Thouron, O.: Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006, Atmos. Chem. Phys., 9, 7143–7160, https://doi.org/10.5194/acp-9-7143-2009, 2009.
Marsham, J. H., Dixon, N. S., Garcia-Carreras, L., Lister, G. M. S., Parker,
D. J., Knippertz, P., and Birch, C. E.: The role of moist convection in the
West African monsoon system: Insights from continental-scale
convection-permitting simulations, Geophys. Res. Lett., 40, 1843–1849,
https://doi.org/10.1002/grl.50347, 2013.
Mathon, V., Laurent, H., and Lebel, T.: Mesoscale convective system rainfall
in the Sahel, J. Appl. Meteorol., 41, 1081–1092,
https://doi.org/10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2,
2002a.
Mathon, V., Diedhiou, A., and Laurent, H.: Relationship between easterly
waves and mesoscale convective systems over the Sahel, Geophys. Res. Lett.,
29, 12–15, https://doi.org/10.1029/2001GL014371, 2002b.
Moner-Girona, M., Bódis, K., Korgo. B., Huld, T., Kougias, I., Pinedo-Pascua, I., Monforti-Ferrario, F., and Szabó, S.: Mapping the least-cost option for rural electrification in Burkina Faso – Scaling-up renewable energies, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/900097, 2017.
Monerie, P. A., Sanchez-Gomez, E., Gaetani, M., Mohino, E., and Dong, B.:
Future evolution of the Sahel precipitation zonal contrast in CESM1, Clim.
Dynam., 55, 2801–2821, https://doi.org/10.1007/s00382-020-05417-w, 2020.
MPEER: Ministre du Pétrole, de l'Energie et des E. R.: Rapport
d'Activités MPEER 2018, available at: http://www.mpeder.ci/uploads/documents/rapports/RAPPORT_D_ACTIVITES_ MPEER_2018.pdf (last access: 21 March 2020),
2019.
Nicholson, S. E.: A revised picture of the structure of the “monsoon” and
land ITCZ over West Africa, Clim. Dynam, 32, 1155–1171,
https://doi.org/10.1007/s00382-008-0514-3, 2009.
Nicholson, S. E.: The West African Sahel: A Review of Recent Studies on the
Rainfall Regime and Its Interannual Variability, ISRN Meteorol., 2013,
1–32, https://doi.org/10.1155/2013/453521, 2013.
Nicholson, S. E.: The ITCZ and the seasonal cycle over equatorial Africa,
B. Am. Meteorol. Soc., 99, 337–348, https://doi.org/10.1175/BAMS-D-16-0287.1, 2018.
Parker, D. J., Burton, R. R., Diongue-Niang, A., Ellis, R. J., Felton, M.,
Taylor, C. M., Thorncroft, C. D., Bessemoulin, P., and Tompkins, A. M.: The
diurnal cycle of the West African monsoon circulation, Q. J. Roy. Meteor.
Soc., 131, 2839–2860, https://doi.org/10.1256/qj.04.52, 2005.
Pedruzo-Bagazgoitia, X., de Roode, S. R., Adler, B., Babić, K., Dione, C., Kalthoff, N., Lohou, F., Lothon, M., and Vilà-Guerau de Arellano, J.: The diurnal stratocumulus-to-cumulus transition over land in southern West Africa, Atmos. Chem. Phys., 20, 2735–2754, https://doi.org/10.5194/acp-20-2735-2020, 2020.
Redelsperger, J.-L., Thorncroft, C. D., Diedhiou, A., Lebel, T., Parker, D.
J., and Polcher, J.: African Monsoon Multidisciplinary Analysis: An
International Research Project and Field Campaign, B. Am. Meteorol. Soc.,
87, 1739–1746, https://doi.org/10.1175/BAMS-87-12-1739, 2006.
Schrage, J. M. and Fink, A. H.: Nocturnal continental low-level stratus over
tropical west africa: Observations and possible mechanisms controlling its
onset, Mon. Weather Rev., 140, 1794–1809, https://doi.org/10.1175/MWR-D-11-00172.1,
2012.
Schuster, R., Fink, A. H., and Knippertz, P.: Formation and Maintenance of
Nocturnal Low-Level Stratus over the Southern West African Monsoon Region
during AMMA 2006, J. Atmos. Sci., 70, 2337–2355,
https://doi.org/10.1175/JAS-D-12-0241.1, 2013.
Stein, T. H. M., Parker, D. J., Delanoë, J., Dixon, N. S., Hogan, R. J.,
Knippertz, P., Maidment, R. I., and Marsham, J. H.: The vertical cloud
structure of the West African monsoon: A 4 year climatology using CloudSat
and CALIPSO, J. Geophys. Res.-Atmos., 116, 1–13,
https://doi.org/10.1029/2011JD016029, 2011.
Storer, R. L. and Van den Heever, S. C.: Microphysical processes evident in
aerosol forcing of tropical deep convective clouds, J. Atmos. Sci., 70, 430–446, https://doi.org/10.1175/JAS-D-12-076.1, 2013.
Sultan, B. and Janicot, S.: Abrupt shift of the ITCZ over West Africa and
intra-seasonal variability, Geophys. Res. Lett., 27, 3353–3356,
https://doi.org/10.1029/1999GL011285, 2000.
Sultan, B. and Janicot, S.: The West African monsoon dynamics. Part II: The
“preonset” and “onset” of the summer monsoon, J. Climate, 16,
3407–3427, https://doi.org/10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2, 2003.
Sultan, B., Janicot, S., and Diedhiou, A.: The West African monsoon dynamics.
Part I: Documentation of intraseasonal variability, J. Climate, 16,
3389–3406, https://doi.org/10.1175/1520-0442(2003)016<3389:TWAMDP>2.0.CO;2, 2003.
Thorncroft, C. D., Nguyen, H., Zhang, C., and Peyrill, P.: Annual cycle of
the West African monsoon: regional circulations and associated water vapour
transport, Q. J. Roy. Meteor. Soc., 137, 129–147,
https://doi.org/10.1002/qj.728, 2011.
Turner, D. D., Vogelmann, A. M., Austin, R. T., Barnard., J. C.,
Cady-Pereira., K., Chiu, J. C., Clough., S. A., Flynn, C., Khaiyer, M. M.,
Liljegren, J., Johnson, K., Lin, B., Long, C., Marshak, A., Matrosov., S.
Y., Mcfarlane., S. A., Miller, M., Min, Q., Minnis, P., O'Hirok, W., Wang,
Z., and Wiscombe, W.: Thin liquid water clouds, B. Am. Meteorol. Soc., 88, 177–190, https://doi.org/10.1175/BAMS-88-2-177, 2007.
van der Linden, R., Fink, A. H., and Redl, R.: Satellite-based climatology of
low-level continental clouds in southern West Africa during the summer
monsoon season, J. Geophys. Res.-Atmos., 120, 1186–1201,
https://doi.org/10.1002/2014JD022614, 2015.
Vizy, E. K. and Cook, K. H.: Understanding the summertime diurnal cycle of precipitation over sub-Saharan West Africa: regions with daytime rainfall peaks in the absence of significant topographic features, Clim. Dynam, 52, 2903–2922, https://doi.org/10.1007/s00382-018-4315-z, 2019.
World Bank: This Is What It's All About: Boosting Renewable Energy in
Africa, World Bank Gr, available at: https://www.worldbank.org/en/news/feature/2019/02/26/this-is-what-its-all-about-boosting-renewable-energy-in-africa
(last access: 8 February 2020), 2019.
Yang, G.-Y. and Slingo, J.: The Diurnal Cycle in the Tropics, Mon. Weather
Rev., 129, 784–801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2, 2001.
Zouzoua, M., Lohou, F., Assamoi, P., Lothon, M., Yoboue, V., Dione, C., Kalthoff, N., Adler, B., Babić, K., and Pedruzo-Bagazgoitia, X.: Breakup of nocturnal low-level stratiform clouds during southern West African Monsoon Season, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-602, in review, 2020.
Short summary
The atmospheric and surface conditions that exist during the occurrence of daytime low-level clouds (LLCs) and their influence on solar radiation were investigated in West Africa. During the monsoon season, these LLCs are linked to high moisture flux driven by strong southwesterly winds from the Gulf of Guinea and significant background moisture levels. Their occurrence leads to a strong reduction in the incoming solar radiation and has large impacts on the surface energy budget.
The atmospheric and surface conditions that exist during the occurrence of daytime low-level...
Altmetrics
Final-revised paper
Preprint