Articles | Volume 13, issue 3
Earth Syst. Dynam., 13, 1377–1396, 2022
https://doi.org/10.5194/esd-13-1377-2022
Earth Syst. Dynam., 13, 1377–1396, 2022
https://doi.org/10.5194/esd-13-1377-2022
Research article
29 Sep 2022
Research article | 29 Sep 2022

Resilience of UK crop yields to compound climate change

Louise J. Slater et al.

Related authors

Hybrid forecasting: using statistics and machine learning to integrate predictions from dynamical models
Louise Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-334,https://doi.org/10.5194/hess-2022-334, 2022
Preprint under review for HESS
Short summary
Hydrological concept formation inside long short-term memory (LSTM) networks
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022,https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
Extreme floods in Europe: going beyond observations using reforecast ensemble pooling
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022,https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021,https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021,https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary

Related subject area

Earth system change: climate prediction
El Niño–Southern Oscillation (ENSO) predictability in equilibrated warmer climates
Yiyu Zheng, Maria Rugenstein, Patrick Pieper, Goratz Beobide-Arsuaga, and Johanna Baehr
Earth Syst. Dynam., 13, 1611–1623, https://doi.org/10.5194/esd-13-1611-2022,https://doi.org/10.5194/esd-13-1611-2022, 2022
Short summary
Investigation of the extreme wet–cold compound events changes between 2025–2049 and 1980–2004 using regional simulations in Greece
Iason Markantonis, Diamando Vlachogiannis, Athanasios Sfetsos, and Ioannis Kioutsioukis
Earth Syst. Dynam., 13, 1491–1504, https://doi.org/10.5194/esd-13-1491-2022,https://doi.org/10.5194/esd-13-1491-2022, 2022
Short summary
Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system
Rashed Mahmood, Markus G. Donat, Pablo Ortega, Francisco J. Doblas-Reyes, Carlos Delgado-Torres, Margarida Samsó, and Pierre-Antoine Bretonnière
Earth Syst. Dynam., 13, 1437–1450, https://doi.org/10.5194/esd-13-1437-2022,https://doi.org/10.5194/esd-13-1437-2022, 2022
Short summary
Evaluating uncertainty in aerosol forcing of tropical precipitation shifts
Amy H. Peace, Ben B. B. Booth, Leighton A. Regayre, Ken S. Carslaw, David M. H. Sexton, Céline J. W. Bonfils, and John W. Rostron
Earth Syst. Dynam., 13, 1215–1232, https://doi.org/10.5194/esd-13-1215-2022,https://doi.org/10.5194/esd-13-1215-2022, 2022
Short summary
A non-stationary extreme-value approach for climate projection ensembles: application to snow loads in the French Alps
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022,https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary

Cited articles

AHDB: Wheat growth guide, Kenilworth, Warwickshire, https://cereals.ahdb.org.uk/media/185687/g66-wheat-growth-guide.pdf (last access: 1 January 2021), 2018. 
AHDB: AHDB Harvest Report, Report 6 – Week 13, Week ending 6 October, https://ahdb.org.uk/cereals-oilseeds/gb-harvest-progress (last access: 22 September 2022), 2020. 
AHDB: The growth stages of cereals, Kenilworth, Warwicksh, https://ahdb.org.uk/knowledge-library/the-growth-stages-of-cereals, last access: 22 September 2022. 
Ainsworth, E. A. and Long, S. P.: 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?, Glob. Chang. Biol., 27, 27–49, https://doi.org/10.1111/gcb.15375, 2021. 
Andrews, T., Andrews, M. B., Bodas-Salcedo, A., Jones, G. S., Kuhlbrodt, T., Manners, J., Menary, M. B., Ridley, J., Ringer, M. A., Sellar, A. A., Senior, C. A., and Tang, Y.: Forcings, Feedbacks, and Climate Sensitivity in HadGEM3-GC3.1 and UKESM1, J. Adv. Model. Earth Syst., 11, 4377–4394, https://doi.org/10.1029/2019MS001866, 2019. 
Download
Short summary
This work considers how wheat yields are affected by weather conditions during the three main wheat growth stages in the UK. Impacts are strongest in years with compound weather extremes across multiple growth stages. Future climate projections are beneficial for wheat yields, on average, but indicate a high risk of unseen weather conditions which farmers may struggle to adapt to and mitigate against.
Altmetrics
Final-revised paper
Preprint