Articles | Volume 13, issue 3
https://doi.org/10.5194/esd-13-1351-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-1351-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era
Carolina M. L. Camargo
CORRESPONDING AUTHOR
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, the Netherlands
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Riccardo E. M. Riva
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Tim H. J. Hermans
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, the Netherlands
Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
Aimée B. A. Slangen
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, the Netherlands
Related authors
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Tim H. J. Hermans, Chiheb Ben Hammouda, Simon Treu, Timothy Tiggeloven, Anaïs Couasnon, Julius J. M. Busecke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-196, https://doi.org/10.5194/egusphere-2025-196, 2025
Short summary
Short summary
We studied the performance of different types of neural networks at predicting extreme storm surges. We found that that performance improves when during model training, events with a lower density are given a higher weight. Additionally, we found that the performance of especially convolutional neural networks approaches that of a state-of-the-art hydrodynamic model. This is promising for the application of neural networks to climate model simulations.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023, https://doi.org/10.5194/gmd-16-7461-2023, 2023
Short summary
Short summary
Future sea-level rise projections exhibit multiple forms of uncertainty, all of which must be considered by scientific assessments intended to inform decision-making. The Framework for Assessing Changes To Sea-level (FACTS) is a new software package intended to support assessments of global mean, regional, and extreme sea-level rise. An early version of FACTS supported the development of the IPCC Sixth Assessment Report sea-level projections.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023, https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Cited articles
Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Spada, G., Benveniste, J., Cazenave, A., and Picot, N.: Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration, Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, 2019. a, b, c
Abram, N., Gattuso, J.-P., Prakash, A., Cheng, L., Chidichimo, M.,
Crate, S., Enomoto, H., Garschagen, M., Gruber, N., Harper,
S., Holland, E., Kudela, R., Rice, J., Steffen, K., and von
Schuckmann, K.: Framing and Context of the Report, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 73–129, https://doi.org/10.1017/9781009157964.003, 2019. a
Adhikari, S., Ivins, E. R., Frederikse, T., Landerer, F. W., and Caron, L.: Sea-level fingerprints emergent from GRACE mission data, Earth Syst. Sci. Data, 11, 629–646, https://doi.org/10.5194/essd-11-629-2019, 2019. a, b
Akaike, H.: A new look at the statistical model identification, IEEE Trans.
Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc‐Minute Global Relief Model:
Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS
NGDC‐24, National Geophysical Data Center, NOAA, [data set],
https://doi.org/10.7289/V5C8276M, 2009. a
Bamber, J. and Riva, R.: The sea level fingerprint of recent ice mass fluxes, The Cryosphere, 4, 621–627, https://doi.org/10.5194/tc-4-621-2010, 2010. a, b, c
Blazquez, A., Meyssignac, B., Lemoine, J. M., Berthier, E., Ribes, A., and
Cazenave, A.: Exploring the uncertainty in GRACE estimates of the mass
redistributions at the Earth surface: Implications for the global water and
sea level budgets, Geophys. J. Int., 215, 415–430,
https://doi.org/10.1093/gji/ggy293, 2018. a
Bos, M. S., Williams, S. D., Araújo, I. B., and Bastos, L.: The effect
of temporal correlated noise on the sea level rate and acceleration
uncertainty, Geophys. J. Int., 196, 1423–1430,
https://doi.org/10.1093/gji/ggt481, 2014. a, b
Burnham, K. P. and Anderson, D. R.: Model selection and multimodel inference a practical information-theoretic approach., vol. 2, Springer, New York, https://doi.org/10.1007/b97636, 2002. a
Cáceres, D., Marzeion, B., Malles, J. H., Gutknecht, B. D., Müller Schmied, H., and Döll, P.: Assessing global water mass transfers from continents to oceans over the period 1948–2016, Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, 2020. a, b, c, d
Camargo, C. M. L., Hermans, T., Riva, R., and Slangen, A.: Data underlying the publication: Trends and Uncertainties of Mass-driven Sea-level Change in the Satellite Altimetry Era (1993–2016), 4TU.ResearchData [data set], https://doi.org/10.4121/16778794.v2, 2021. a
carocamargo: carocamargo/barystaticSLC: v1.0.0 – scripts for the published paper (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7093189, 2022. a
Caron, L., Ivins, E. R., Larour, E., Adhikari, S., Nilsson, J., and Blewitt,
G.: GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean
Science, Geophys. Res. Lett., 45, 2203–2212,
https://doi.org/10.1002/2017GL076644, 2018. a
Chambers, D. P., Tamisiea, M. E., Nerem, R. S., and Ries, J. C.: Effects of ice
melting on GRACE observations of ocean mass trends, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL029171, 2007. a, b
Church, J. A. and White, N. J.: A 20th century acceleration in global sea-level
rise, Geophys. Res. Lett., 33, L01602,
https://doi.org/10.1029/2005GL024826, 2006. a
Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Colorado, USA, RGI [data set], https://doi.org/10.7265/N5-RGI-60, 2017. a, b
Crameri, F.: Scientific colour maps, Zenodo [data set],
https://doi.org/10.5281/zenodo.1243862, 2018. a
Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability indicators: model tuning and validation, J. Hydrol., 260, 105–134, https://doi.org/10.1016/S0022-1694(02)00283-4, 2003. a
Dziewonski, A. and Anderson, D.: Preliminary reference Earth model, Phys. Earth Plan. Int., 25, 297–356, https://doi.org/10.17611/DP/9991844, 1981. a
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout,
S. S., Edwards, T. L., N. R. Golledge, M. H., Kopp, R. E., Krinner, G., Mix,
A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen,
A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362 pp., https://doi.org/10.1017/9781009157896.011, 2021. a, b, c
Frederikse, T., Riva, R., Slobbe, C., Broerse, T., and Verlaan, M.: Estimating
decadal variability in sea level from tide gauge records: An application to
the North Sea, J. Geophys. Res.-Oceans, 121, 1529–1545,
https://doi.org/10.1002/2015JC011174, 2016. a
Frederikse, T., Landerer, F. W., and Caron, L.: The imprints of contemporary mass redistribution on local sea level and vertical land motion observations, Solid Earth, 10, 1971–1987, https://doi.org/10.5194/se-10-1971-2019, 2019. a, b
Gomez, N., Mitrovica, J. X., Tamisiea, M. E., and Clark, P. U.: A new
projection of sea level change in response to collapse of marine sectors of
the Antarctic Ice Sheet, Geophys. J. Int., 180, 623–634,
https://doi.org/10.1111/j.1365-246X.2009.04419.x, 2010. a
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte,
R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S.: Concepts and
Terminology for Sea Level: Mean, Variability and Change, Both Local and
Global, Surv. Geophys., 40, 1251–1289,
https://doi.org/10.1007/s10712-019-09525-z, 2019. a, b
Hamlington, B. D., Reager, J. T., Lo, M. H., Karnauskas, K. B., and Leben,
R. R.: Separating decadal global water cycle variability from sea level rise,
Sci. Rep., 7, 995, https://doi.org/10.1038/s41598-017-00875-5, 2017. a
He, X., Bos, M. S., Montillet, J. P., and Fernandes, R. M. S.: Investigation of
the noise properties at low frequencies in long GNSS time series, J. Geodesy, 93, 1271–1282, https://doi.org/10.1007/s00190-019-01244-y, 2019. a
Horwath, M., Gutknecht, B. D., Cazenave, A., Palanisamy, H. K., Marti, F., Marzeion, B., Paul, F., Le Bris, R., Hogg, A. E., Otosaka, I., Shepherd, A., Döll, P., Cáceres, D., Müller Schmied, H., Johannessen, J. A., Nilsen, J. E. Ø., Raj, R. P., Forsberg, R., Sandberg Sørensen, L., Barletta, V. R., Simonsen, S. B., Knudsen, P., Andersen, O. B., Ranndal, H., Rose, S. K., Merchant, C. J., Macintosh, C. R., von Schuckmann, K., Novotny, K., Groh, A., Restano, M., and Benveniste, J.: Global sea-level budget and ocean-mass budget, with a focus on advanced data products and uncertainty characterisation, Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, 2022. a, b, c, d, e
Hsu, C. W. and Velicogna, I.: Detection of sea level fingerprints derived from
GRACE gravity data, Geophys. Res. Lett., 44, 8953–8961,
https://doi.org/10.1002/2017GL074070, 2017. a, b
Hughes, C. W. and Williams, S. D.: The color of sea level: Importance of
spatial variations in spectral shape for assessing the significance of
trends, J. Geophys. Res.-Oceans, 115, C10048,
https://doi.org/10.1029/2010JC006102, 2010. a, b, c
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a, b
Humphrey, V. and Gudmundsson, L.: GRACE-REC: a reconstruction of climate-driven water storage changes over the last century, Earth Syst. Sci. Data, 11, 1153–1170, https://doi.org/10.5194/essd-11-1153-2019, 2019. a
Humphrey, V., Gudmundsson, L., and Seneviratne, S. I.: A global reconstruction
of climate-driven subdecadal water storage variability, Geophys. Res.
Lett., 44, 2300–2309, https://doi.org/10.1002/2017GL072564, 2017. a
Jeon, T., Seo, K. W., Kim, B. H., Kim, J. S., Chen, J., and Wilson, C. R.: Sea
level fingerprints and regional sea level change, Earth Planet.
Sci. Lett., 567, 116985, https://doi.org/10.1016/j.epsl.2021.116985, 2021. a, b
Jevrejeva, S., Frederikse, T., Kopp, R. E., Le Cozannet, G., Jackson, L. P.,
and van de Wal, R. S. W.: Probabilistic Sea Level Projections at the Coast by 2100, Surv. Geophys., 40, 1673–1696, 2019. a
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T.,
Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H.,
Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L., Loomis, B. D.,
McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S.,
Strekalov, D., Tamisiea, M. E., Wang, F., Watkins, M. M., Wen, H. Y., Wiese,
D. N., and Yuan, D. N.: Extending the Global Mass Change Data Record: GRACE
Follow-On Instrument and Science Data Performance, Geophys. Res. Lett., 47, 1–10, https://doi.org/10.1029/2020GL088306, 2020. a
Lange, S.: WFDE5 over land merged with ERA5 over the ocean (W5E5), V. 1.0, GFZ Data Services [data set], https://doi.org/10.5880/pik.2019.023, 2019. a
Larour, E., Ivins, E. R., and Adhikari, S.: Should coastal planners have
concern over where land ice is melting?, Sci. Adv., 3, 1–9,
https://doi.org/10.1126/sciadv.1700537, 2017. a
Larour, E., Caron, L., Morlighem, M., Adhikari, S., Frederikse, T., Schlegel, N.-J., Ivins, E., Hamlington, B., Kopp, R., and Nowicki, S.: ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17, Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, 2020. a
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B.,
Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C.,
Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution
mapping of the world's reservoirs and dams for sustainable river-flow
management, Front. Ecol. Environ., 9, 494–502,
https://doi.org/10.1890/100125, 2011. a
Lin, Y., Hibbert, F. D., Whitehouse, P. L., Woodroffe, S. A., Purcell, A.,
Shennan, I., and Bradley, S. L.: A reconciled solution of Meltwater Pulse 1A
sources using sea-level fingerprinting, Nat. Commun., 12, 2015,
https://doi.org/10.1038/s41467-021-21990-y, 2021. a
MacIntosh, C. R., Merchant, C. J., and von Schuckmann, K.: Uncertainties in
Steric Sea Level Change Estimation During the Satellite Altimeter Era:
Concepts and Practices, Surv. Geophys., 38, 59–87, 2017. a
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change from the surface mass balance of glaciers, The Cryosphere, 6, 1295–1322, https://doi.org/10.5194/tc-6-1295-2012, 2012. a, b, c
Milne, G. A. and Mitrovica, J. X.: Postglacial sea-level change on a rotating
Earth, Geophys. J. Int., 133, 1–19,
https://doi.org/10.1046/j.1365-246X.1998.1331455.x, 1998. a
Mitrovica, J., Gomez, N., Morrow, E., Hay, C., Latychev, K., and Tamisiea, M.: On the robustness of predictions of sea level fingerprints, Geophys. J. Int., 187, 729–742, https://doi.org/10.1111/j.1365-246X.2011.05090.x,
2011. a, b, c
Mitrovica, J. X. and Peltier, W. R.: On Postglacial Geoid Subsidence Over the
Equatorial Oceans, J. Geophys. Res., 96, 20053–20071,
https://doi.org/10.1029/91JB01284, 1991. a
Mouginot, J. and Rignot, E.: Glacier Catchments/Basins for the Greenland Ice
Sheet, Dryad [data set], https://doi.org/10.7280/D1WT11, 2019. a, b
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Supplement of
Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018,
Proc. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019. a, b
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D.,
and Mitchum, G. T.: Climate-change-driven accelerated sea-level
rise detected in the altimeter era, Proc. Natl. Acad. Sci., 115, 2022–2025, https://doi.org/10.1073/pnas.1717312115, 2018. a
Nicholls, R., Wong, P., Burkett, V., Codignotto, J., Hay, J., McLean, R.,
Ragoonaden, S., and Woodroffe, C.: Coastal systems and low-lying areas, in:
Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of
Working Group II to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, 164, 22225,
https://ro.uow.edu.au/scipapers/164, 2007. a
Oppenheimer, M., Abdelgawad, A., Hay, J., Glavovic, B., Cai, R., Marzeion, B.,
Hinkel, J., Cifuentes-Jara, M., Meyssignac, B., Van De Wal, R., DeConto,
R., Sebesvari, Z., Magnan, A., and Ghosh, Hay, T. J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006, 2019. a
Peltier, W. R., Argus, D. F., and Drummond, R.: Comment on “An Assessment of
the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et
al., J. Geophys. Res.-Solid Earth, 123, 2019–2028,
https://doi.org/10.1002/2016JB013844, 2018. a, b
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., and et al.: The
Randolph Glacier Inventory: a globally complete inventory of glaciers,
J. Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014. a, b
Prandi, P., Meyssignac, B., Ablain, M., Spada, G., Ribes, A., and Benveniste,
J.: Local sea level trends, accelerations and uncertainties over
1993–2019, Sci. Data, 8, 1–12, https://doi.org/10.1038/s41597-020-00786-7,
2021. a, b, c, d
Reager, J. T., Gardner, A. S., Famiglietti, J. S., Wiese, D. N., Eicker, A.,
and Lo, M. H.: A decade of sea level rise slowed by climate-driven
hydrology, Science, 351, 699–703, https://doi.org/10.1126/science.aad8386, 2016. a, b
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res. Lett., 38, L10504, https://doi.org/10.1029/2011GL047109, 2011. a, b
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem,
M. J., and Morlighem, M.: Four decades of Antarctic ice sheet mass balance
from 1979–2017, Proc. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a, b
Riva, R., Bamber, J., Lavallee, D., and Wouters, B.: Sea-level fingerprint of
continental water and ice mass change from GRACE, Geophys. Res. Lett., 37, 1–6, https://doi.org/10.1029/2010GL044770, 2010. a, b
Royston, S., Watson, C. S., Legrésy, B., King, M. A., Church, J. A., and Bos,
M. S.: Sea-Level Trend Uncertainty With Pacific Climatic Variability and
Temporally-Correlated Noise, J. Geophys. Res.-Oceans, 123,
1978–1993, https://doi.org/10.1002/2017JC013655, 2018. a, b, c
Save, H.: CSR GRACE and GRACE-FO RL06 Mascon Solutions v02, CSR [data set], https://doi.org/10.15781/cgq9-nh24, 2020. a, b
Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE RL05
mascons, J. Geophys. Res.-Solid Earth, 121, 7547–7569,
https://doi.org/10.1002/2017JB015312, 2016. a, b, c, d
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and
Ziese, M.: GPCC full data reanalysis version 7.0 at 0.5∘: monthly
land-surface precipitation from rain-gauges built on GTS-based and historic
data, Global Precipitation Climatology Centre (GPCC),
https://doi.org/10.5676/dwd_gpcc/fd_m_v7_050, http://gpcc.dwd.de/ (last access: 19 September 2022), 2015. a
Schwarz, G.: Estimating the Dimension of a Model, The Annals of Statistics, 6, 461–464, 1978. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M.,
Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki,
S., Payne, T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrøm,
A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B.,
Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner,
A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V.,
Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P.,
Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild,
S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler,
T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier,
W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen,
I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K. W.,
Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L.,
Van De Berg, W. J., Van Der Wal, W., Van Wessem, M., Vishwakarma,
B. D., Wiese, D., and Wouters, B.: Mass balance of the Antarctic Ice Sheet
from 1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y,
2018. a, b, c
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna,
I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne,
T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis,
G., Barletta, V. R., Bjørk, A. A., Blazquez, A., Bonin, J., Colgan, W.,
Csatho, B., Cullather, R., Engdahl, M. E., Felikson, D., Fettweis, X.,
Forsberg, R., Hogg, A. E., Gallee, H., Gardner, A., Gilbert, L., Gourmelen,
N., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A.,
Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P. L.,
Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild,
S., Mohajerani, Y., Moore, P., Mottram, R., Mouginot, J., Moyano, G., Muir,
A., Nagler, T., Nield, G., Nilsson, J., Noël, B., Otosaka, I., Pattle,
M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H.,
Sandberg Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E.,
Schröder, L., Seo, K. W., Simonsen, S. B., Slater, T., Spada, G.,
Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W.,
van Wessem, M., Vishwakarma, B. D., Wiese, D., Wilton, D., Wagner, T.,
Wouters, B., and Wuite, J.: Mass balance of the Greenland Ice Sheet from
1992 to 2018, Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020. a, b, c
Simon, K. M. and Riva, R. E.: Uncertainty Estimation in Regional Models of
Long-Term GIA Uplift and Sea Level Change: An Overview, J. Geophys. Res.-Solid Earth, 125, e2019JB018983, https://doi.org/10.1029/2019JB018983, 2020. a
Slangen, A. B. A., van de Wal, R. S. W., Wada, Y., and Vermeersen, L. L. A.: Comparing tide gauge observations to regional patterns of sea-level change (1961–2003), Earth Syst. Dynam., 5, 243–255, https://doi.org/10.5194/esd-5-243-2014, 2014. a, b
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018. a, b
Tamisiea, M. E. and Mitrovica, J. X.: The Moving boundaries of Sea Level
Change, Oceanography, 24, 24–39, https://doi.org/10.5670/oceanog.2011.25,
2011. a, b
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004. a, b, c, d
Taylor, J. R.: An introduction to error analysis : the study
of uncertainties in physical measurements, University Science Books,
Sausalito, California, ISBN 0935702423, 1997. a
Thorne, P.: Global surface temperatures, in: Climate Change, Observed Impacts on Planet Earth, 2021, 95–109, https://doi.org/10.1016/b978-0-12-821575-3.00005-0, 2021. a, b
Thorne, P., Parkes, D., Christy, J., and Mears, C.: Lessons from Upper-Air
Temperature Records, Am. Meteorol. Soc., 86, 1437–1442,
https://doi.org/10.1175/BAMS-86-10-1437, 2005. a
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M., and DiMarco, S. F.: True colors of oceanography, Oceanography, 3, 9–13, https://doi.org/10.5670/oceanog.2016.66, 2016. a
Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R. M., and Bamber, J. L.:
Re-assessing global water storage trends from GRACE time series,
Environ. Res. Lett., 16, 034005, https://doi.org/10.1088/1748-9326/abd4a9,
2021. a, b, c, d
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geosci. Res.-Solid Earth, 120, 1648–2671, https://doi.org/10.1002/2014JB011547, 2015. a, b, c, d
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018. a, b
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo,
P.: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology
applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, https://doi.org/10.1002/2014WR015638, 2014. a
WGMS: Fluctuations of Glaciers Database, World Glacier Monitoring Service,
Zurich, Switzerland, https://doi.org/10.5904/wgms-fog-2021-05, 2021. a
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing
leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490–7502 , https://doi.org/10.1002/2016WR019344, 2016. a, b, c
Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W., and Watkins, M. M.: JPL
GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL06 CRI
Filtered Version 2 PO.DAAC, CA, USA, JPL [data set], https://doi.org/10.5067/TEMSC-3JC62, 2019. a, b
Wigley, T. M. L.: The Climate Change Commitment, Science, 307, 1766–1769,
https://doi.org/10.1126/science.1103934, 2005. a
Wouters, B., Gardner, A. S., and Moholdt, G.: Global Glacier Mass Loss During
the GRACE Satellite Mission (2002–2016), Front. Earth Sci., 7,
1–11, https://doi.org/10.3389/feart.2019.00096, 2019. a
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun,
M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L.,
Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass
changes and their contributions to sea-level rise from 1961 to 2016, Nature,
568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019. a, b
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause...
Altmetrics
Final-revised paper
Preprint