Articles | Volume 11, issue 2
https://doi.org/10.5194/esd-11-537-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-11-537-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multivariate bias corrections of climate simulations: which benefits for which losses?
Bastien François
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et l’Environnement (LSCE-IPSL) CNRS/CEA/UVSQ, UMR8212, Université Paris-Saclay, Gif-sur-Yvette, France
Mathieu Vrac
Laboratoire des Sciences du Climat et l’Environnement (LSCE-IPSL) CNRS/CEA/UVSQ, UMR8212, Université Paris-Saclay, Gif-sur-Yvette, France
Alex J. Cannon
Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
Yoann Robin
Centre National de Recherches Météorologiques, Université de Toulouse, CNRS, Météo-France, Toulouse, France
Denis Allard
INRAE, BioSP, 84914, Avignon, France
Related authors
Denis Allard, Mathieu Vrac, Bastien François, and Iñaki García de Cortázar-Atauri
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-102, https://doi.org/10.5194/hess-2024-102, 2024
Preprint under review for HESS
Short summary
Short summary
Atmospheric variables from climate models often present biases relative to the past. In order to use these models to assess the impact of climate change on processes of interest, it is necessary to correct these biases. We tested several Multivariate Bias Correction Methods (MBCMs) for 5 physical variables that are input variables for 4 process models. We provide recommendations regarding the use of MBCMs when multivariate and time dependent processes are involved.
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
EGUsphere, https://doi.org/10.5194/egusphere-2024-2079, https://doi.org/10.5194/egusphere-2024-2079, 2024
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere, and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Bastien François and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 23, 21–44, https://doi.org/10.5194/nhess-23-21-2023, https://doi.org/10.5194/nhess-23-21-2023, 2023
Short summary
Short summary
Compound events (CEs) result from a combination of several climate phenomena. In this study, we propose a new methodology to assess the time of emergence of CE probabilities and to quantify the contribution of marginal and dependence properties of climate phenomena to the overall CE probability changes. By applying our methodology to two case studies, we show the importance of considering changes in both marginal and dependence properties for future risk assessments related to CEs.
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3167, https://doi.org/10.5194/egusphere-2024-3167, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Extreme meteorological and climatological events properties are changing under human caused climate change. Extreme events attribution methods seek to estimate the contribution of global warming in the probability and intensity changes of extreme events. Here we propose a procedure to estimate these quantities for the flow analogues method which compare the observed event to similar events in the past.
Germain Bénard, Marion Gehlen, and Mathieu Vrac
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-31, https://doi.org/10.5194/esd-2024-31, 2024
Preprint under review for ESD
Short summary
Short summary
We introduce a novel approach to compare Earth System Model output using a causality-based approach. The analysis of interactions between atmospheric, oceanic, and biogeochemical variables in the North Atlantic Subpolar Gyre highlights the dynamics of each model. This method reveals potential underlying causes of model differences, offering a tool for enhanced model evaluation and improved understanding of complex Earth system dynamics under past and future climates.
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2024-2980, https://doi.org/10.5194/egusphere-2024-2980, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study examines the mechanisms that characterise long-lasting (persistent) and short hot spells in Europe in a comparative framework. By analysing weather data, we found that long spells in Southwestern Europe are typically preceded by dry soil conditions and driven by multiple persistence-inducing mechanisms. In contrast, short spells occur in a more transient atmospheric situation and exhibit fewer drivers. Understanding persistent heat extremes can help improve their prediction.
Denis Allard, Mathieu Vrac, Bastien François, and Iñaki García de Cortázar-Atauri
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-102, https://doi.org/10.5194/hess-2024-102, 2024
Preprint under review for HESS
Short summary
Short summary
Atmospheric variables from climate models often present biases relative to the past. In order to use these models to assess the impact of climate change on processes of interest, it is necessary to correct these biases. We tested several Multivariate Bias Correction Methods (MBCMs) for 5 physical variables that are input variables for 4 process models. We provide recommendations regarding the use of MBCMs when multivariate and time dependent processes are involved.
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
EGUsphere, https://doi.org/10.5194/egusphere-2024-2079, https://doi.org/10.5194/egusphere-2024-2079, 2024
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere, and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Mathieu Vrac, Denis Allard, Grégoire Mariéthoz, Soulivanh Thao, and Lucas Schmutz
Earth Syst. Dynam., 15, 735–762, https://doi.org/10.5194/esd-15-735-2024, https://doi.org/10.5194/esd-15-735-2024, 2024
Short summary
Short summary
We aim to combine multiple global climate models (GCMs) to enhance the robustness of future projections. We introduce a novel approach, called "α pooling", aggregating the cumulative distribution functions (CDFs) of the models into a CDF more aligned with historical data. The new CDFs allow us to perform bias adjustment of all the raw climate simulations at once. Experiments with European temperature and precipitation demonstrate the superiority of this approach over conventional techniques.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024, https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
Short summary
This study assesses the impact of climate change on the timing, seasonality and magnitude of mean annual minimum (MAM) flows and annual maximum flows (AMF) in the Volta River basin (VRB). Several climate change projection data are use to simulate river flow under multiple greenhouse gas emission scenarios. Future projections show that AMF could increase with various magnitude but negligible shift in time across the VRB, while MAM could decrease with up to 14 days of delay in occurrence.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Bastien François and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 23, 21–44, https://doi.org/10.5194/nhess-23-21-2023, https://doi.org/10.5194/nhess-23-21-2023, 2023
Short summary
Short summary
Compound events (CEs) result from a combination of several climate phenomena. In this study, we propose a new methodology to assess the time of emergence of CE probabilities and to quantify the contribution of marginal and dependence properties of climate phenomena to the overall CE probability changes. By applying our methodology to two case studies, we show the importance of considering changes in both marginal and dependence properties for future risk assessments related to CEs.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Yoann Robin and Mathieu Vrac
Earth Syst. Dynam., 12, 1253–1273, https://doi.org/10.5194/esd-12-1253-2021, https://doi.org/10.5194/esd-12-1253-2021, 2021
Short summary
Short summary
We propose a new multivariate downscaling and bias correction approach called
time-shifted multivariate bias correction, which aims to correct temporal dependencies in addition to inter-variable and spatial ones. Our method is evaluated in a
perfect model experimentcontext where simulations are used as pseudo-observations. The results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted.
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021, https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Short summary
This work assesses the forecast of the temperature over the Sahara, a key driver of the West African Monsoon, at a seasonal timescale. The seasonal models are able to reproduce the climatological state and some characteristics of the temperature during the rainy season in the Sahel. But, because of errors in the timing, the forecast skill scores are significant only for the first 4 weeks.
Anna Denvil-Sommer, Marion Gehlen, and Mathieu Vrac
Ocean Sci., 17, 1011–1030, https://doi.org/10.5194/os-17-1011-2021, https://doi.org/10.5194/os-17-1011-2021, 2021
Short summary
Short summary
In this work we explored design options for a future Atlantic-scale observational network enabling the release of carbon system estimates by combining data streams from various platforms. We used outputs of a physical–biogeochemical global ocean model at sites of real-world observations to reconstruct surface ocean pCO2 by applying a non-linear feed-forward neural network. The results provide important information for future BGC-Argo deployment, i.e. important regions and the number of floats.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Yoann Robin and Aurélien Ribes
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020, https://doi.org/10.5194/ascmo-6-205-2020, 2020
Short summary
Short summary
We have developed a new statistical method to describe how a severe weather event, such as a heat wave, may have been influenced by climate change. Our method incorporates both observations and data from various climate models to reflect climate model uncertainty. Our results show that both the probability and the intensity of the French July 2019 heatwave have increased significantly in response to human influence. We find that this heat wave might not have been possible without climate change.
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, https://doi.org/10.5194/gmd-13-5367-2020, 2020
Short summary
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations).
It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series.
Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Short summary
Coastal compound flooding (CF), caused by interacting storm surges and high water runoff, is typically studied based on concurring storm surge extremes with either precipitation or river discharge extremes. Globally, these two approaches show similar CF spatial patterns, especially where the CF potential is the highest. Deviations between the two approaches increase with the catchment size. The precipitation-based analysis allows for considering
local-rainfall-driven CF and CF in small rivers.
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020, https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Short summary
Existing approaches to quantify the emergence of climate change require several user choices that make these approaches less objective. We present an approach that uses a minimum number of choices and showcase its application in the extremely sensitive, permafrost-dominated region of eastern Siberia. Designed as a Python toolbox, it allows for incorporating climate model, reanalysis, and in situ data to make use of numerous existing data sources and reduce uncertainties in obtained estimates.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 24, 2841–2854, https://doi.org/10.5194/hess-24-2841-2020, https://doi.org/10.5194/hess-24-2841-2020, 2020
Short summary
Short summary
At subdaily resolution, rain intensity exhibits a strong variability in space and time due to the diversity of processes that produce rain (e.g., frontal storms, mesoscale convective systems and local convection). In this paper we explore a new method to simulate rain type time series conditional to meteorological covariates. Afterwards, we apply stochastic rain type simulation to the downscaling of precipitation of a regional climate model.
Florentin Breton, Mathieu Vrac, Pascal Yiou, Pradeebane Vaittinada Ayar, and Aglaé Jézéquel
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-26, https://doi.org/10.5194/esd-2020-26, 2020
Revised manuscript not accepted
Short summary
Short summary
We investigate North Atlantic weather seasonality over 1979–2100 by classifying year-round fields of 500 hPa geopotential height from one reanalysis dataset and 12 climate models. Generally, models have seasonal structures similar to the reanalyses. Historical winter (summer) conditions decrease (increase), due to uniform Z500 increase (i.e. uniform warming). However, relative to the increasing Z500 seasonal cycle, future seasonality (spatial patterns, seasonal cycle) appears almost stationary.
Zilefac Elvis Asong, Mohamed Ezzat Elshamy, Daniel Princz, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, and Alex Cannon
Earth Syst. Sci. Data, 12, 629–645, https://doi.org/10.5194/essd-12-629-2020, https://doi.org/10.5194/essd-12-629-2020, 2020
Short summary
Short summary
This dataset provides an improved set of forcing data for large-scale hydrological models for climate change impact assessment in the Mackenzie River Basin (MRB). Here, the strengths of two historical datasets were blended to produce a less-biased long-record product for hydrological modelling and climate change impact assessment over the MRB. This product is then used to bias-correct climate projections from the Canadian Regional Climate Model under RCP8.5.
Giulia Carella, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer
Earth Syst. Sci. Data, 12, 1–20, https://doi.org/10.5194/essd-12-1-2020, https://doi.org/10.5194/essd-12-1-2020, 2020
Short summary
Short summary
Observations of relative humidity for ice clouds over the tropical oceans from a passive microwave sounder are downscaled by incorporating the high-resolution variability derived from simultaneous co-located cloud profiles from a lidar. By providing a method to generate pseudo-observations of relative humidity at high spatial resolution, this work will help revisit some of the current key barriers in atmospheric science.
Zilefac Elvis Asong, Mohamed Elshamy, Daniel Princz, Howard Wheater, John Pomeroy, Alain Pietroniro, and Alex Cannon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-249, https://doi.org/10.5194/hess-2019-249, 2019
Publication in HESS not foreseen
Anna Denvil-Sommer, Marion Gehlen, Mathieu Vrac, and Carlos Mejia
Geosci. Model Dev., 12, 2091–2105, https://doi.org/10.5194/gmd-12-2091-2019, https://doi.org/10.5194/gmd-12-2091-2019, 2019
Short summary
Short summary
This work is dedicated to a new model that reconstructs the surface ocean partial pressure of carbon dioxide (pCO2) over the global ocean on a monthly 1°×1° grid. The model is based on a feed-forward neural network and represents the nonlinear relationships between pCO2 and the ocean drivers. Reconstructed pCO2 has a satisfying accuracy compared to independent observational data and shows a good agreement in seasonal and interannual variability with three existing mapping methods.
Dae Il Jeong, Alex J. Cannon, and Xuebin Zhang
Nat. Hazards Earth Syst. Sci., 19, 857–872, https://doi.org/10.5194/nhess-19-857-2019, https://doi.org/10.5194/nhess-19-857-2019, 2019
Short summary
Short summary
Atmospheric ice accretion caused by freezing precipitation leads to severe damage and failure of buildings and infrastructure. This study investigates projected changes to extreme ice loads used to design infrastructure over North America for future periods of specified global mean temperature change using a Canadian regional climate model. Increases in ice accretion for latitudes higher than 40° N are substantial and would have clear implications for future building and infrastructure design.
Judith Meyer, Irene Kohn, Kerstin Stahl, Kirsti Hakala, Jan Seibert, and Alex J. Cannon
Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-1339-2019, https://doi.org/10.5194/hess-23-1339-2019, 2019
Short summary
Short summary
Several multivariate bias correction methods have been developed recently, but only a few studies have tested the effect of multivariate bias correction on hydrological impact projections. This study shows that incorporating or ignoring inter-variable relations between air temperature and precipitation can have a notable effect on the projected snowfall fraction. The effect translated to considerable consequences for the glacio-hydrological responses and streamflow components of the catchments.
Alex J. Cannon and Silvia Innocenti
Nat. Hazards Earth Syst. Sci., 19, 421–440, https://doi.org/10.5194/nhess-19-421-2019, https://doi.org/10.5194/nhess-19-421-2019, 2019
Short summary
Short summary
Rainfall intensity–duration–frequency (IDF) curves are used as the basis for water resource infrastructure design. Given intensification of the hydrological cycle with global warming, quantitative information on the future extreme rainfall hazard is needed by practitioners. Projected changes in annual maximum rainfall in high-resolution regional climate model simulations result in IDF curves that shift upward and steepen, with greater intensification at short durations and long return periods.
Yoann Robin, Mathieu Vrac, Philippe Naveau, and Pascal Yiou
Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019, https://doi.org/10.5194/hess-23-773-2019, 2019
Short summary
Short summary
Bias correction methods are used to calibrate climate model outputs with respect to observations. In this article, a non-stationary, multivariate and stochastic bias correction method is developed based on optimal transport, accounting for inter-site and inter-variable correlations. Optimal transport allows us to construct a joint distribution that minimizes energy spent in bias correction. Our methodology is tested on precipitation and temperatures over 12 locations in southern France.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 22, 5919–5933, https://doi.org/10.5194/hess-22-5919-2018, https://doi.org/10.5194/hess-22-5919-2018, 2018
Short summary
Short summary
We propose a method for unsupervised classification of the space–time–intensity structure of weather radar images. The resulting classes are interpreted as rain types, i.e. pools of rain fields with homogeneous statistical properties. Rain types can in turn be used to define stationary periods for further stochastic rainfall modelling. The application of rain typing to real data indicates that non-stationarity can be significant within meteorological seasons, and even within a single storm.
Zilefac Elvis Asong, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, Mohamed Ezzat Elshamy, Daniel Princz, and Alex Cannon
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-128, https://doi.org/10.5194/essd-2018-128, 2018
Preprint withdrawn
Short summary
Short summary
Cold regions hydrology is very sensitive to the impacts of climate warming. We need better hydrological models driven by reliable climate data in order to assess hydrologic responses to climate change. Cold regions often have sparse surface observations, particularly at high elevations that generate a major amount of runoff. We produce a long-term dataset that can be used to better understand and represent the seasonal/inter-annual variability of hydrological fluxes and the the timing of runoff.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Hui-Min Wang, Jie Chen, Alex J. Cannon, Chong-Yu Xu, and Hua Chen
Hydrol. Earth Syst. Sci., 22, 3739–3759, https://doi.org/10.5194/hess-22-3739-2018, https://doi.org/10.5194/hess-22-3739-2018, 2018
Short summary
Short summary
Facing a growing number of climate models, many selection methods were proposed to select subsets in the field of climate simulation, but the transferability of their performances to hydrological impacts remains doubtful. We investigate the transferability of climate simulation uncertainty to hydrological impacts using two selection methods, and conclude that envelope-based selection of about 10 climate simulations based on properly chosen climate variables is suggested for impact studies.
Guillaume Latombe, Ariane Burke, Mathieu Vrac, Guillaume Levavasseur, Christophe Dumas, Masa Kageyama, and Gilles Ramstein
Geosci. Model Dev., 11, 2563–2579, https://doi.org/10.5194/gmd-11-2563-2018, https://doi.org/10.5194/gmd-11-2563-2018, 2018
Short summary
Short summary
It is still unclear how climate conditions, and especially climate variability, influenced the spatial distribution of past human populations. Global climate models (GCMs) cannot simulate climate at sufficiently fine scale for this purpose. We propose a statistical method to obtain fine-scale climate projections for 15 000 years ago from coarse-scale GCM outputs. Our method agrees with local reconstructions from fossil and pollen data, and generates sensible climate variability maps over Europe.
Mathieu Vrac
Hydrol. Earth Syst. Sci., 22, 3175–3196, https://doi.org/10.5194/hess-22-3175-2018, https://doi.org/10.5194/hess-22-3175-2018, 2018
Short summary
Short summary
This study presents a multivariate bias correction method named R2D2 to adjust both the 1d-distributions and inter-variable/site dependence structures of climate simulations in a high-dimensional context, while providing some stochasticity. R2D2 is tested on temperature and precipitation reanalyses and illustrated on future simulations. In both cases, R2D2 is able to correct the spatial and physical dependence, opening proper use of climate simulations for impact (e.g. hydrological) models.
Adjoua Moise Famien, Serge Janicot, Abe Delfin Ochou, Mathieu Vrac, Dimitri Defrance, Benjamin Sultan, and Thomas Noël
Earth Syst. Dynam., 9, 313–338, https://doi.org/10.5194/esd-9-313-2018, https://doi.org/10.5194/esd-9-313-2018, 2018
Short summary
Short summary
This study uses the cumulative distribution function transform (CDF-t) method to provide bias-corrected data over Africa using WFDEI as a reference dataset. It is shown that CDF-t is very effective in removing the biases and reducing the high inter-GCM scattering. Differences with other bias-corrected GCM data are mainly due to the differences among the reference datasets, particularly for surface downwelling shortwave radiation, which has a significant impact in terms of simulated maize yields.
Andrew M. Snauffer, William W. Hsieh, Alex J. Cannon, and Markus A. Schnorbus
The Cryosphere, 12, 891–905, https://doi.org/10.5194/tc-12-891-2018, https://doi.org/10.5194/tc-12-891-2018, 2018
Short summary
Short summary
Estimating winter snowpack throughout British Columbia is challenging due to the complex terrain, thick forests, and high snow accumulations present. This paper describes a way to make better snow estimates by combining publicly available data using machine learning, a branch of artificial intelligence research. These improved estimates will help water resources managers better plan for changes in rivers and lakes fed by spring snowmelt and will aid other research that supports such planning.
Yoann Robin, Pascal Yiou, and Philippe Naveau
Nonlin. Processes Geophys., 24, 393–405, https://doi.org/10.5194/npg-24-393-2017, https://doi.org/10.5194/npg-24-393-2017, 2017
Short summary
Short summary
If climate is viewed as a chaotic dynamical system, its trajectories yield on an object called an attractor. Being perturbed by an external forcing, this attractor could be modified. With Wasserstein distance, we estimate on a derived Lorenz model the impact of a forcing similar to climate change. Our approach appears to work with small data sizes. We have obtained a methodology quantifying the deformation of well-known attractors, coherent with the size of data available.
Emanuele Bevacqua, Douglas Maraun, Ingrid Hobæk Haff, Martin Widmann, and Mathieu Vrac
Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, https://doi.org/10.5194/hess-21-2701-2017, 2017
Short summary
Short summary
We develop a conceptual model to quantify the risk of compound events (CEs), i.e. extreme impacts to society which are driven by statistically dependent climatic variables. Based on this model we study compound floods, i.e. joint storm surge and high river level, in Ravenna (Italy). The model includes meteorological predictors which (1) provide insight into the physical processes underlying CEs, as well as into the temporal variability, and (2) allow us to statistically downscale CEs.
Pascal Yiou, Aglaé Jézéquel, Philippe Naveau, Frederike E. L. Otto, Robert Vautard, and Mathieu Vrac
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, https://doi.org/10.5194/ascmo-3-17-2017, 2017
Short summary
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Claudia Volosciuk, Douglas Maraun, Mathieu Vrac, and Martin Widmann
Hydrol. Earth Syst. Sci., 21, 1693–1719, https://doi.org/10.5194/hess-21-1693-2017, https://doi.org/10.5194/hess-21-1693-2017, 2017
Short summary
Short summary
For impact modeling, infrastructure design, or adaptation strategy planning, high-quality climate data on the point scale are often demanded. Due to the scale gap between gridbox and point scale and biases in climate models, we combine a statistical bias correction and a stochastic downscaling model and apply it to climate model-simulated precipitation. The method performs better in summer than in winter and in winter best for mild winter climate (Mediterranean) and worst for continental winter.
Jérôme Pernin, Mathieu Vrac, Cyril Crevoisier, and Alain Chédin
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 115–136, https://doi.org/10.5194/ascmo-2-115-2016, https://doi.org/10.5194/ascmo-2-115-2016, 2016
Short summary
Short summary
Here, we propose a classification methodology of various space-time atmospheric datasets into discrete air mass groups homogeneous in temperature and humidity through a probabilistic point of view: both the classification process and the data are probabilistic. Unlike conventional classification algorithms, this methodology provides the probability of belonging to each class as well as the corresponding uncertainty, which can be used in various applications.
Benjamin Grouillet, Denis Ruelland, Pradeebane Vaittinada Ayar, and Mathieu Vrac
Hydrol. Earth Syst. Sci., 20, 1031–1047, https://doi.org/10.5194/hess-20-1031-2016, https://doi.org/10.5194/hess-20-1031-2016, 2016
Short summary
Short summary
This original paper provides a guideline to select statistical downscaling methods (SDMs) in climate change impact studies (CCIS) to minimize uncertainty from downscaling. Three SDMs were applied to NCEP reanalysis and 2 GCM data values. We then analyzed the sensitivity of the hydrological model to the various downscaled data via 5 hydrological indicators representing the main features of the hydrograph. Our results enable selection of the appropriate SDMs to be used to build climate scenarios.
P. Yiou, M. Boichu, R. Vautard, M. Vrac, S. Jourdain, E. Garnier, F. Fluteau, and L. Menut
Clim. Past, 10, 797–809, https://doi.org/10.5194/cp-10-797-2014, https://doi.org/10.5194/cp-10-797-2014, 2014
Related subject area
Earth system change: climate prediction
Past and future response of the North Atlantic warming hole to anthropogenic forcing
Performance-based sub-selection of CMIP6 models for impact assessments in Europe
Emergent constraints for the climate system as effective parameters of bulk differential equations
Ensemble forecast of an index of the Madden–Julian Oscillation using a stochastic weather generator based on circulation analogs
Reconstructions and predictions of the global carbon budget with an emission-driven Earth system model
PInc-PanTher estimates of Arctic permafrost soil carbon under the GeoMIP G6solar and G6sulfur experiments
El Niño–Southern Oscillation (ENSO) predictability in equilibrated warmer climates
Investigation of the extreme wet–cold compound events changes between 2025–2049 and 1980–2004 using regional simulations in Greece
Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system
Resilience of UK crop yields to compound climate change
Evaluating uncertainty in aerosol forcing of tropical precipitation shifts
A non-stationary extreme-value approach for climate projection ensembles: application to snow loads in the French Alps
Atmospheric regional climate projections for the Baltic Sea region until 2100
Balanced estimate and uncertainty assessment of European climate change using the large EURO-CORDEX regional climate model ensemble
Extreme metrics from large ensembles: investigating the effects of ensemble size on their estimates
Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles
Is time a variable like the others in multivariate statistical downscaling and bias correction?
Trivial improvements in predictive skill due to direct reconstruction of the global carbon cycle
Abrupt climate change as a rate-dependent cascading tipping point
Bayesian estimation of Earth's climate sensitivity and transient climate response from observational warming and heat content datasets
Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate
Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-Earth
A new view of heat wave dynamics and predictability over the eastern Mediterranean
Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?
Dating hiatuses: a statistical model of the recent slowdown in global warming and the next one
Calibrating large-ensemble European climate projections using observational data
Reduced global warming from CMIP6 projections when weighting models by performance and independence
Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models
Historical and future anthropogenic warming effects on droughts, fires and fire emissions of CO2 and PM2.5 in equatorial Asia when 2015-like El Niño events occur
The impact of regional climate model formulation and resolution on simulated precipitation in Africa
Bayesian deconstruction of climate sensitivity estimates using simple models: implicit priors and the confusion of the inverse
Intensification of the hydrological cycle expected in West Africa over the 21st century
Winter hydrometeorological extreme events modulated by large-scale atmospheric circulation in southern Ontario
Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective
Human influence on European winter wind storms such as those of January 2018
September Arctic sea ice minimum prediction – a skillful new statistical approach
ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing
Predicting near-term variability in ocean carbon uptake
A mathematical approach to understanding emergent constraints
Seasonal prediction skill of East Asian summer monsoon in CMIP5 models
Assessing the impact of a future volcanic eruption on decadal predictions
Projections of East Asian summer monsoon change at global warming of 1.5 and 2 °C
Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble
Regional scaling of annual mean precipitation and water availability with global temperature change
Irreversible ocean thermal expansion under carbon dioxide removal
Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols
Selecting a climate model subset to optimise key ensemble properties
Return levels of temperature extremes in southern Pakistan
On the meaning of independence in climate science
Minimal change of thermal continentality in Slovakia within the period 1961–2013
Saïd Qasmi
Earth Syst. Dynam., 14, 685–695, https://doi.org/10.5194/esd-14-685-2023, https://doi.org/10.5194/esd-14-685-2023, 2023
Short summary
Short summary
A new statistical method combining climate models and observations confirms the anthropogenic role in the cooling of the North Atlantic warming hole. Aerosols increase sea surface temperature (SST), while greenhouse gases contribute to the cooling over the 1870–2020 period. The method is able to reduce model uncertainty in the SST projections by 65% in the short term and up to 50% in the long term, excluding previous unlikely temperature increase scenarios.
Tamzin E. Palmer, Carol F. McSweeney, Ben B. B. Booth, Matthew D. K. Priestley, Paolo Davini, Lukas Brunner, Leonard Borchert, and Matthew B. Menary
Earth Syst. Dynam., 14, 457–483, https://doi.org/10.5194/esd-14-457-2023, https://doi.org/10.5194/esd-14-457-2023, 2023
Short summary
Short summary
We carry out an assessment of an ensemble of general climate models (CMIP6) based on the ability of the models to represent the key physical processes that are important for representing European climate. Filtering the models with the assessment leads to more models with less global warming being removed, and this shifts the lower part of the projected temperature range towards greater warming. This is in contrast to the affect of weighting the ensemble using global temperature trends.
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023, https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary
Short summary
Emergent constraints (ECs) reduce the spread of projections between climate models. ECs estimate changes to climate features impacting adaptation policy, and with this high profile, the method is under scrutiny. Asking
What is an EC?, we suggest they are often the discovery of parameters that characterise hidden large-scale equations that climate models solve implicitly. We present this conceptually via two examples. Our analysis implies possible new paths to link ECs and physical processes.
Meriem Krouma, Riccardo Silini, and Pascal Yiou
Earth Syst. Dynam., 14, 273–290, https://doi.org/10.5194/esd-14-273-2023, https://doi.org/10.5194/esd-14-273-2023, 2023
Short summary
Short summary
We present a simple system to forecast the Madden–Julian Oscillation (MJO). We use atmospheric circulation as input to our system. We found a good-skill forecast of the MJO amplitude within 40 d using this methodology. Comparing our results with ECMWF and machine learning forecasts confirmed the good skill of our system.
Hongmei Li, Tatiana Ilyina, Tammas Loughran, Aaron Spring, and Julia Pongratz
Earth Syst. Dynam., 14, 101–119, https://doi.org/10.5194/esd-14-101-2023, https://doi.org/10.5194/esd-14-101-2023, 2023
Short summary
Short summary
For the first time, our decadal prediction system based on Max Planck Institute Earth System Model enables prognostic atmospheric CO2 with an interactive carbon cycle. The evolution of CO2 fluxes and atmospheric CO2 growth is reconstructed well by assimilating data products; retrospective predictions show high confidence in predicting changes in the next year. The Earth system predictions provide valuable inputs for understanding the global carbon cycle and informing climate-relevant policy.
Aobo Liu, John C. Moore, and Yating Chen
Earth Syst. Dynam., 14, 39–53, https://doi.org/10.5194/esd-14-39-2023, https://doi.org/10.5194/esd-14-39-2023, 2023
Short summary
Short summary
Permafrost thaws and releases carbon (C) as the Arctic warms. Most earth system models (ESMs) have poor estimates of C stored now, so their future C losses are much lower than using the permafrost C model with climate inputs from six ESMs. Bias-corrected soil temperatures and plant productivity plus geoengineering lowering global temperatures from a no-mitigation baseline scenario to a moderate emissions level keep C in the soil worth about USD 0–70 (mean 20) trillion in climate damages by 2100.
Yiyu Zheng, Maria Rugenstein, Patrick Pieper, Goratz Beobide-Arsuaga, and Johanna Baehr
Earth Syst. Dynam., 13, 1611–1623, https://doi.org/10.5194/esd-13-1611-2022, https://doi.org/10.5194/esd-13-1611-2022, 2022
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is one of the dominant climatic phenomena in the equatorial Pacific. Understanding and predicting how ENSO might change in a warmer climate is both societally and scientifically important. We use 1000-year-long simulations from seven climate models to analyze ENSO in an idealized stable climate. We show that ENSO will be weaker and last shorter under the warming, while the skill of ENSO prediction will unlikely change.
Iason Markantonis, Diamando Vlachogiannis, Athanasios Sfetsos, and Ioannis Kioutsioukis
Earth Syst. Dynam., 13, 1491–1504, https://doi.org/10.5194/esd-13-1491-2022, https://doi.org/10.5194/esd-13-1491-2022, 2022
Short summary
Short summary
This work focuses on the study of daily wet–cold compound events in Greece in the period November–April. We firstly study the historic period 1980–2004 in which we validate projection models with observations. Then we compare the model results with future period 2025–2049 RCP4.5 and RCP8.5 scenarios. The aim of the study is to calculate the probability of the events and to locate the areas where those are higher and how the probabilities will change at the future.
Rashed Mahmood, Markus G. Donat, Pablo Ortega, Francisco J. Doblas-Reyes, Carlos Delgado-Torres, Margarida Samsó, and Pierre-Antoine Bretonnière
Earth Syst. Dynam., 13, 1437–1450, https://doi.org/10.5194/esd-13-1437-2022, https://doi.org/10.5194/esd-13-1437-2022, 2022
Short summary
Short summary
Near-term climate change projections are strongly affected by the uncertainty from internal climate variability. Here we present a novel approach to reduce such uncertainty by constraining decadal-scale variability in the projections using observations. The constrained ensembles show significant added value over the unconstrained ensemble in predicting global climate 2 decades ahead. We also show the applicability of regional constraints for attributing predictability to certain ocean regions.
Louise J. Slater, Chris Huntingford, Richard F. Pywell, John W. Redhead, and Elizabeth J. Kendon
Earth Syst. Dynam., 13, 1377–1396, https://doi.org/10.5194/esd-13-1377-2022, https://doi.org/10.5194/esd-13-1377-2022, 2022
Short summary
Short summary
This work considers how wheat yields are affected by weather conditions during the three main wheat growth stages in the UK. Impacts are strongest in years with compound weather extremes across multiple growth stages. Future climate projections are beneficial for wheat yields, on average, but indicate a high risk of unseen weather conditions which farmers may struggle to adapt to and mitigate against.
Amy H. Peace, Ben B. B. Booth, Leighton A. Regayre, Ken S. Carslaw, David M. H. Sexton, Céline J. W. Bonfils, and John W. Rostron
Earth Syst. Dynam., 13, 1215–1232, https://doi.org/10.5194/esd-13-1215-2022, https://doi.org/10.5194/esd-13-1215-2022, 2022
Short summary
Short summary
Anthropogenic aerosol emissions have been linked to driving climate responses such as shifts in the location of tropical rainfall. However, the interaction of aerosols with climate remains one of the most uncertain aspects of climate modelling and limits our ability to predict future climate change. We use an ensemble of climate model simulations to investigate what impact the large uncertainty in how aerosols interact with climate has on predicting future tropical rainfall shifts.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022, https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
Short summary
Anticipating risks related to climate extremes is critical for societal adaptation to climate change. In this study, we propose a statistical method in order to estimate future climate extremes from past observations and an ensemble of climate change simulations. We apply this approach to snow load data available in the French Alps at 1500 m elevation and find that extreme snow load is projected to decrease by −2.9 kN m−2 (−50 %) between 1986–2005 and 2080–2099 for a high-emission scenario.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Guillaume Evin, Samuel Somot, and Benoit Hingray
Earth Syst. Dynam., 12, 1543–1569, https://doi.org/10.5194/esd-12-1543-2021, https://doi.org/10.5194/esd-12-1543-2021, 2021
Short summary
Short summary
This research paper proposes an assessment of mean climate change responses and related uncertainties over Europe for mean seasonal temperature and total seasonal precipitation. An advanced statistical approach is applied to a large ensemble of 87 high-resolution EURO-CORDEX projections. For the first time, we provide a comprehensive estimation of the relative contribution of GCMs and RCMs, RCP scenarios, and internal variability to the total variance of a very large ensemble.
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021, https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Short summary
We address the question of how large an initial condition ensemble of climate model simulations should be if we are concerned with accurately projecting future changes in temperature and precipitation extremes. We find that for most cases (and both models considered), an ensemble of 20–25 members is sufficient for many extreme metrics, spatial scales and time horizons. This may leave computational resources to tackle other uncertainties in climate model simulations with our ensembles.
Stefanie Talento and Andrey Ganopolski
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, https://doi.org/10.5194/esd-12-1275-2021, 2021
Short summary
Short summary
We propose a model for glacial cycles and produce an assessment of possible trajectories for the next 1 million years. Under natural conditions, the next glacial inception would most likely occur ∼50 kyr after present. We show that fossil-fuel CO2 releases can have an extremely long-term effect. Potentially achievable CO2 anthropogenic emissions during the next centuries will most likely provoke ice-free conditions in the Northern Hemisphere landmasses throughout the next half a million years.
Yoann Robin and Mathieu Vrac
Earth Syst. Dynam., 12, 1253–1273, https://doi.org/10.5194/esd-12-1253-2021, https://doi.org/10.5194/esd-12-1253-2021, 2021
Short summary
Short summary
We propose a new multivariate downscaling and bias correction approach called
time-shifted multivariate bias correction, which aims to correct temporal dependencies in addition to inter-variable and spatial ones. Our method is evaluated in a
perfect model experimentcontext where simulations are used as pseudo-observations. The results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted.
Aaron Spring, István Dunkl, Hongmei Li, Victor Brovkin, and Tatiana Ilyina
Earth Syst. Dynam., 12, 1139–1167, https://doi.org/10.5194/esd-12-1139-2021, https://doi.org/10.5194/esd-12-1139-2021, 2021
Short summary
Short summary
Numerical carbon cycle prediction models usually do not start from observed carbon states due to sparse observations. Instead, only physical climate is reconstructed, assuming that the carbon cycle follows indirectly. Here, we test in an idealized framework how well this indirect and direct reconstruction with perfect observations works. We find that indirect reconstruction works quite well and that improvements from the direct method are limited, strengthening the current indirect use.
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam., 12, 819–835, https://doi.org/10.5194/esd-12-819-2021, https://doi.org/10.5194/esd-12-819-2021, 2021
Short summary
Short summary
Tipping of one climate subsystem could trigger a cascade of subsequent tipping points and even global-scale climate tipping. Sequential shifts of atmosphere, sea ice and ocean have been recorded in proxy archives of past climate change. Based on this we propose a conceptual model for abrupt climate changes of the last glacial. Here, rate-induced tipping enables tipping cascades in systems with relatively weak coupling. An early warning signal is proposed that may detect such a tipping.
Philip Goodwin and B. B. Cael
Earth Syst. Dynam., 12, 709–723, https://doi.org/10.5194/esd-12-709-2021, https://doi.org/10.5194/esd-12-709-2021, 2021
Short summary
Short summary
Climate sensitivityis a key measure of how sensitive Earth's climate is to human release of greenhouse gasses, such as from fossil fuels. However, there is still uncertainty as to the value of climate sensitivity, in part because different climate feedbacks operate over multiple timescales. This study assesses hundreds of millions of climate simulations against historical observations to reduce uncertainty in climate sensitivity and future climate warming.
Laura A. McBride, Austin P. Hope, Timothy P. Canty, Brian F. Bennett, Walter R. Tribett, and Ross J. Salawitch
Earth Syst. Dynam., 12, 545–579, https://doi.org/10.5194/esd-12-545-2021, https://doi.org/10.5194/esd-12-545-2021, 2021
Short summary
Short summary
We use a reduced-complexity climate model trained by observations to show that at the current rate of human release of CO2, total cumulative emissions will pass the 66 % likelihood of limiting warming to 1.5° or 2°C in about 10 and 35 years, respectively. We also show that complex climate models often used to guide policy tend to warm faster than observed over the past few decades. To achieve the Paris Climate Agreement, CO2 and CH4 emissions must be severely curtailed in the next decade.
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, https://doi.org/10.5194/esd-12-173-2021, 2021
Short summary
Short summary
This paper presents and evaluates a set of retrospective decadal predictions with the EC-Earth3 climate model. These experiments successfully predict past changes in surface air temperature but show poor predictive capacity in the subpolar North Atlantic, a well-known source region of decadal climate variability. The poor predictive capacity is linked to an initial shock affecting the Atlantic Ocean circulation, ultimately due to a suboptimal representation of the Labrador Sea density.
Assaf Hochman, Sebastian Scher, Julian Quinting, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Dynam., 12, 133–149, https://doi.org/10.5194/esd-12-133-2021, https://doi.org/10.5194/esd-12-133-2021, 2021
Short summary
Short summary
Skillful forecasts of extreme weather events have a major socioeconomic relevance. Here, we compare two approaches to diagnose the predictability of eastern Mediterranean heat waves: one based on recent developments in dynamical systems theory and one leveraging numerical ensemble weather forecasts. We conclude that the former can be a useful and cost-efficient complement to conventional numerical forecasts for understanding the dynamics of eastern Mediterranean heat waves.
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020, https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Short summary
As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data.
J. Isaac Miller and Kyungsik Nam
Earth Syst. Dynam., 11, 1123–1132, https://doi.org/10.5194/esd-11-1123-2020, https://doi.org/10.5194/esd-11-1123-2020, 2020
Short summary
Short summary
We augment an energy balance model with a novel measure of the oceans' multidecadal temperatures cycles to assess the contributions of model forcings and natural variability to the so-called hiatus in global warming. The model partially explains the recent slowdown and explains nearly all of the subsequent warming. The natural cycle suggests the possibility of a much longer hiatus over roughly 2023–2061.
Christopher H. O'Reilly, Daniel J. Befort, and Antje Weisheimer
Earth Syst. Dynam., 11, 1033–1049, https://doi.org/10.5194/esd-11-1033-2020, https://doi.org/10.5194/esd-11-1033-2020, 2020
Short summary
Short summary
This study examines how the output of large single-model ensembles can be calibrated using observational data to provide improved future projections over Europe. Using an out-of-sample
imperfect modeltest, in which calibration techniques are applied to individual climate model realisations, these techniques are shown to generally improve the reliability of European climate projections for the next 40 years, particularly for regional surface temperature.
Lukas Brunner, Angeline G. Pendergrass, Flavio Lehner, Anna L. Merrifield, Ruth Lorenz, and Reto Knutti
Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, https://doi.org/10.5194/esd-11-995-2020, 2020
Short summary
Short summary
In this study, we weight climate models by their performance with respect to simulating aspects of historical climate and their degree of interdependence. Our method is found to increase projection skill and to correct for structurally similar models. The weighted end-of-century mean warming (2081–2100 relative to 1995–2014) is 3.7 °C with a likely (66 %) range of 3.1 to 4.6 °C for the strong climate change scenario SSP5-8.5; this is a reduction of 0.4 °C compared with the unweighted mean.
Femke J. M. M. Nijsse, Peter M. Cox, and Mark S. Williamson
Earth Syst. Dynam., 11, 737–750, https://doi.org/10.5194/esd-11-737-2020, https://doi.org/10.5194/esd-11-737-2020, 2020
Short summary
Short summary
One of the key questions in climate science is how much more heating we will get for a given rise in carbon dioxide in the atmosphere. A new generation of models showed that this might be more than previously expected. Comparing the new models to observed temperature rise since 1970, we show that there is no need to revise the estimate upwards. Air pollution, whose effect on climate warming is poorly understood, stopped rising, allowing us to better constrain the greenhouse gas signal.
Hideo Shiogama, Ryuichi Hirata, Tomoko Hasegawa, Shinichiro Fujimori, Noriko N. Ishizaki, Satoru Chatani, Masahiro Watanabe, Daniel Mitchell, and Y. T. Eunice Lo
Earth Syst. Dynam., 11, 435–445, https://doi.org/10.5194/esd-11-435-2020, https://doi.org/10.5194/esd-11-435-2020, 2020
Short summary
Short summary
Based on climate simulations, we suggested that historical warming increased chances of drought exceeding the severe 2015 event in equatorial Asia due to El Niño. The fire and fire emissions of CO2/PM2.5 will largely increase at 1.5 and 2 °C warming. If global warming reaches 3 °C, as is expected from the current mitigation policies, chances of fire and CO2/PM2.5 emissions exceeding the 2015 event become approximately 100 %. Future climate policy has to consider these climate change effects.
Minchao Wu, Grigory Nikulin, Erik Kjellström, Danijel Belušić, Colin Jones, and David Lindstedt
Earth Syst. Dynam., 11, 377–394, https://doi.org/10.5194/esd-11-377-2020, https://doi.org/10.5194/esd-11-377-2020, 2020
Short summary
Short summary
Regional Climate Models constitute a downscaling tool to provide high-resolution data for impact and adaptation studies. However, there is no unique definition of the added value of downscaling as it depends on many factors. We investigate the impact of spatial resolution and model formulation on downscaled rainfall in Africa. Our results show that improvements in downscaled rainfall compared to the driving reanalysis are often related to model formulation and not always to higher resolution.
James D. Annan and Julia C. Hargreaves
Earth Syst. Dynam., 11, 347–356, https://doi.org/10.5194/esd-11-347-2020, https://doi.org/10.5194/esd-11-347-2020, 2020
Short summary
Short summary
We explore the implicit assumptions that underlie many published probabilistic estimates of the equilibrium climate sensitivity – that is, the amount the climate will warm under a doubling of the atmospheric CO2 concentration. We demonstrate that many such estimates have made assumptions that would be difficult to justify and show how the calculations can be repeated in a more defensible manner. Our results show some significant differences from previous calculations.
Stella Todzo, Adeline Bichet, and Arona Diedhiou
Earth Syst. Dynam., 11, 319–328, https://doi.org/10.5194/esd-11-319-2020, https://doi.org/10.5194/esd-11-319-2020, 2020
Short summary
Short summary
This study uses climate projections over West Africa to investigate the future changes in different aspects of its hydrological cycle. Over the 21st century, temperatures are expected to increase at a faster rate (+0.5 °C per decade) than the global average (+0.3 °C per decade), leading to an intensification of the hydrological cycle on average of +11 % per °C over the Sahel (more intense precipitation and longer dry spells) and +3 % per °C over the Guinea Coast (more intense precipitation).
Olivier Champagne, Martin Leduc, Paulin Coulibaly, and M. Altaf Arain
Earth Syst. Dynam., 11, 301–318, https://doi.org/10.5194/esd-11-301-2020, https://doi.org/10.5194/esd-11-301-2020, 2020
Short summary
Short summary
Southern Ontario has seen more high flows in winter recently due to earlier snowmelt. We show that 10 mm of daily rain and temperature higher than 5 °C are necessary conditions to generate winter high flows in the historical period. These conditions are associated with high pressure on the east coast bringing warm and wet conditions from the south. In the future, as snowfall decreases, warm events will generate less high flows, while rainfall will become a greater high-flow contributor.
Tímea Haszpra, Mátyás Herein, and Tamás Bódai
Earth Syst. Dynam., 11, 267–280, https://doi.org/10.5194/esd-11-267-2020, https://doi.org/10.5194/esd-11-267-2020, 2020
Short summary
Short summary
We investigate the changes in the ENSO phenomenon and the alterations of its precipitation-related teleconnections in the CESM-LE. To avoid the disadvantages of the subjective choices of traditional temporal methods, we use an ensemble-based snapshot framework providing instantaneous quantities computed over the ensemble dimension of the simulation. We find that ENSO teleconnections undergo considerable changes, and the ENSO amplitude remarkably increases by 2100.
Robert Vautard, Geert Jan van Oldenborgh, Friederike E. L. Otto, Pascal Yiou, Hylke de Vries, Erik van Meijgaard, Andrew Stepek, Jean-Michel Soubeyroux, Sjoukje Philip, Sarah F. Kew, Cecilia Costella, Roop Singh, and Claudia Tebaldi
Earth Syst. Dynam., 10, 271–286, https://doi.org/10.5194/esd-10-271-2019, https://doi.org/10.5194/esd-10-271-2019, 2019
Short summary
Short summary
The effect of human activities on the probability of winter wind storms like the ones that occurred in Western Europe in January 2018 is analysed using multiple model ensembles. Despite a significant probability decline in observations, we find no significant change in probabilities due to human influence on climate so far. However, such extreme events are likely to be slightly more frequent in the future. The observed decrease in storminess is likely to be due to increasing roughness.
Monica Ionita, Klaus Grosfeld, Patrick Scholz, Renate Treffeisen, and Gerrit Lohmann
Earth Syst. Dynam., 10, 189–203, https://doi.org/10.5194/esd-10-189-2019, https://doi.org/10.5194/esd-10-189-2019, 2019
Short summary
Short summary
Based on a simple statistical model we show that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous months' oceanic and atmospheric conditions. Our statistical model skillfully captures the interannual variability of the September sea ice extent and could provide a valuable tool for identifying relevant regions and oceanic and atmospheric parameters that are important for the sea ice development in the Arctic.
Gab Abramowitz, Nadja Herger, Ethan Gutmann, Dorit Hammerling, Reto Knutti, Martin Leduc, Ruth Lorenz, Robert Pincus, and Gavin A. Schmidt
Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, https://doi.org/10.5194/esd-10-91-2019, 2019
Short summary
Short summary
Best estimates of future climate projections typically rely on a range of climate models from different international research institutions. However, it is unclear how independent these different estimates are, and, for example, the degree to which their agreement implies robustness. This work presents a review of the varied and disparate attempts to quantify and address model dependence within multi-model climate projection ensembles.
Nicole S. Lovenduski, Stephen G. Yeager, Keith Lindsay, and Matthew C. Long
Earth Syst. Dynam., 10, 45–57, https://doi.org/10.5194/esd-10-45-2019, https://doi.org/10.5194/esd-10-45-2019, 2019
Short summary
Short summary
This paper shows that the absorption of carbon dioxide by the ocean is predictable several years in advance. This is important because fossil-fuel-derived carbon dioxide is largely responsible for anthropogenic global warming and because carbon dioxide emission management and global carbon cycle budgeting exercises can benefit from foreknowledge of ocean carbon absorption. The promising results from this new forecast system justify the need for additional oceanic observations.
Femke J. M. M. Nijsse and Henk A. Dijkstra
Earth Syst. Dynam., 9, 999–1012, https://doi.org/10.5194/esd-9-999-2018, https://doi.org/10.5194/esd-9-999-2018, 2018
Short summary
Short summary
State-of-the-art climate models sometimes differ in their prediction of key aspects of climate change. The technique of
emergent constraintsuses observations of current climate to improve those predictions, using relationships between different climate models. Our paper first classifies the different uses of the technique, and continues with proposing a mathematical justification for their use. We also highlight when the application of emergent constraints might give biased predictions.
Bo Huang, Ulrich Cubasch, and Christopher Kadow
Earth Syst. Dynam., 9, 985–997, https://doi.org/10.5194/esd-9-985-2018, https://doi.org/10.5194/esd-9-985-2018, 2018
Short summary
Short summary
We find that CMIP5 models show more significant improvement in predicting zonal winds with initialisation than without initialisation based on the knowledge that zonal wind indices can be used as potential predictors for the EASM. Given the initial conditions, two models improve the seasonal prediction skill of the EASM, while one model decreases it. The models have different responses to initialisation due to their ability to depict the EASM–ESNO coupled mode.
Sebastian Illing, Christopher Kadow, Holger Pohlmann, and Claudia Timmreck
Earth Syst. Dynam., 9, 701–715, https://doi.org/10.5194/esd-9-701-2018, https://doi.org/10.5194/esd-9-701-2018, 2018
Jiawei Liu, Haiming Xu, and Jiechun Deng
Earth Syst. Dynam., 9, 427–439, https://doi.org/10.5194/esd-9-427-2018, https://doi.org/10.5194/esd-9-427-2018, 2018
Short summary
Short summary
A novel method based on
present–futurerelationship in observed climate and model-simulated future climate is applied to give more reliable projections of East Asian summer monsoon intensity and associated precipitation changes at 1.5 and 2 °C warming levels. Projected future changes suggest decreased precipitation over the Meiyu belt and increased precipitation over the high latitudes of East Asia and central China, together with a considerable weakening of EASM intensity.
Michael Wehner, Dáithí Stone, Dann Mitchell, Hideo Shiogama, Erich Fischer, Lise S. Graff, Viatcheslav V. Kharin, Ludwig Lierhammer, Benjamin Sanderson, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 299–311, https://doi.org/10.5194/esd-9-299-2018, https://doi.org/10.5194/esd-9-299-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change challenged the scientific community to describe the impacts of stabilizing the global temperature at its 21st Conference of Parties. A specific target of 1.5 °C above preindustrial levels had not been seriously considered by the climate modeling community prior to the Paris Agreement. This paper analyzes heat waves in simulations designed for this target. We find there are reductions in extreme temperature compared to a 2 °C target.
Peter Greve, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 227–240, https://doi.org/10.5194/esd-9-227-2018, https://doi.org/10.5194/esd-9-227-2018, 2018
Short summary
Short summary
Assessing projected hydroclimatological changes is crucial, but associated with large uncertainties. We statistically assess here the response of precipitation and water availability to global temperature change, enabling us to estimate the significance of drying/wetting tendencies under anthropogenic climate change. We further show that opting for a 1.5 K warming target just slightly influences the mean response but could substantially reduce the risk of experiencing extreme changes.
Dana Ehlert and Kirsten Zickfeld
Earth Syst. Dynam., 9, 197–210, https://doi.org/10.5194/esd-9-197-2018, https://doi.org/10.5194/esd-9-197-2018, 2018
Short summary
Short summary
This study uses a global climate model to explore the extent to which sea level rise due to thermal expansion of the ocean is reversible if the atmospheric concentration of carbon dioxide (CO2) declines. It is found that sea level continues to rise for several decades after atmospheric CO2 starts to decline and does not return to the pre-industrial level for over thousand years after atmospheric CO2 is restored to the pre-industrial concentration.
Michael F. Wehner, Kevin A. Reed, Burlen Loring, Dáithí Stone, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 187–195, https://doi.org/10.5194/esd-9-187-2018, https://doi.org/10.5194/esd-9-187-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios using a high-resolution global climate model. We find more frequent and intense tropical cyclones, but a reduction in weaker storms.
Nadja Herger, Gab Abramowitz, Reto Knutti, Oliver Angélil, Karsten Lehmann, and Benjamin M. Sanderson
Earth Syst. Dynam., 9, 135–151, https://doi.org/10.5194/esd-9-135-2018, https://doi.org/10.5194/esd-9-135-2018, 2018
Short summary
Short summary
Users presented with large multi-model ensembles commonly use the equally weighted model mean as a best estimate, ignoring the issue of near replication of some climate models. We present an efficient and flexible tool that finds a subset of models with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments.
Maida Zahid, Richard Blender, Valerio Lucarini, and Maria Caterina Bramati
Earth Syst. Dynam., 8, 1263–1278, https://doi.org/10.5194/esd-8-1263-2017, https://doi.org/10.5194/esd-8-1263-2017, 2017
Short summary
Short summary
The southern part of Pakistan (Sindh province) has been exposed to frequent and intense temperature extremes recently and is highly vulnerable to their impacts due to lack of information on recurrence of extremes. In this paper for the first time we estimated the return levels of daily maximum temperatures and daily maximum wet-bulb temperatures over the different return periods in Sindh, which would help the local administrations to prioritize the regions in terms of adaptations.
James D. Annan and Julia C. Hargreaves
Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, https://doi.org/10.5194/esd-8-211-2017, 2017
Short summary
Short summary
The concept of independence has been frequently raised in climate science, but has rarely been defined and discussed in a theoretically robust and quantifiable manner. Improved understanding of this topic is critical to better understanding of climate change. In this paper, we introduce a unifying approach based on the statistical definition of independence, and illustrate with simple examples how it can be applied to practical questions.
Jozef Vilček, Jaroslav Škvarenina, Jaroslav Vido, Paulína Nalevanková, Radoslav Kandrík, and Jana Škvareninová
Earth Syst. Dynam., 7, 735–744, https://doi.org/10.5194/esd-7-735-2016, https://doi.org/10.5194/esd-7-735-2016, 2016
Short summary
Short summary
Thermal continentality plays an important role not only in the basic characterisation of the climate in particular regions but also in the phytogeographic distribution of plants and ecosystem formation. Due to ongoing climate change, questions surrounding the changes of thermal continentality are very relevant. Our results show that the continentality of Slovakia increased in the period 1961 to 2013; however, this trend is not significant.
Cited articles
Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM
precipitation to produce unbiased climate change scenarios over large areas
and small, Water Resour. Res., 48, W09502, https://doi.org/10.1029/2011WR011524, 2012. a, b, c, d
Beltrami, E.: Sulle funzioni bilineari, Giornale di Matematiche ad Uso degli
Studenti Delle Universita, 11, 98–106, 1873. a
Berg, P., Feldmann, H., and Panitz, H.-J.: Bias correction of high resolution
regional climate model data, J. Hydrol., 448–449, 80–92,
https://doi.org/10.1016/j.jhydrol.2012.04.026, 2012. a
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé,
I.: The Effective Number of Spatial Degrees of Freedom of a Time-Varying
Field, J. Climate, 12, 1990–2009,
https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2, 1999. a
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional
probability density function transform for climate model simulations of
multiple variables, Clim. Dynam., 50, 31–49,
https://doi.org/10.1007/s00382-017-3580-6, 2018a. a, b, c, d
Cannon, A. J.: Multivariate Bias Correction of Climate Model Outputs, available at: https://CRAN.R-project.org/package=MBC (last access: 20 May 2019), 2018b. a
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of simu-
lated precipitation by quantile mapping: how well do methods preserve
relative changes in quantiles and extremes?, J. Climate, 28, 6938–6959,
https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. a, b
Casanueva, A., Bedia, J., Herrera García, S., Fernández, J., and Gutiérrez,
J.: Direct and component-wise bias correction of multi-variate climate
indices: the percentile adjustment function diagnostic tool, Climatic Change, 147, 411–425, https://doi.org/10.1007/s10584-018-2167-5, 2018. a
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On
the need for bias correction of regional climate change projections of
temperature and precipitation, Geophys. Res. Lett., 35, L20709,
https://doi.org/10.1029/2008GL035694, 2008. a
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R.: The
Schaake Shuffle: A Method for Reconstructing Space–Time Variability in
Forecasted Precipitation and Temperature Fields, J. Hydrometeorol., 5,
243–262, 2004. a
Defrance, D., Ramstein, G., Charbit, S., Vrac, M., Famien, A. M., Sultan, B.,
Swingedouw, D., Dumas, C., Gemenne, F., Alvarez-Solas, J., and Vanderlinden,
J.-P.: Consequences of rapid ice sheet melting on the Sahelian population
vulnerability, P. Natl. Acad. Sci. USA, 114, 6533–6538,
https://doi.org/10.1073/pnas.1619358114, 2017. a
Dekens, L., Parey, S., Grandjacques, M., and Dacunha-Castelle, D.: Multivariate
distribution correction of climate model outputs: A generalization of
quantile mapping approaches: Multivariate distribution correction of climate
model outputs, Environmetrics, 28, e2454, https://doi.org/10.1002/env.2454, 2017. a
Déqué, M.: Frequency of precipitation and temperature extremes over France in
an anthropogenic scenario: Model results and statistical correction according
to observed values, Global Planet. Change, 57, 16–26,
https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007. a
der Megreditchian, G.: Meteorological networks optimization from a statistical point of view, Comput. Stat. Data An., 9, 57–75,
https://doi.org/10.1016/0167-9473(90)90071-O, 1990. a
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013. a
Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions ”Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012. a
Famien, A. M., Janicot, S., Ochou, A. D., Vrac, M., Defrance, D., Sultan, B., and Noël, T.: A bias-corrected CMIP5 dataset for Africa using the CDF-t method – a contribution to agricultural impact studies, Earth Syst. Dynam., 9, 313–338, https://doi.org/10.5194/esd-9-313-2018, 2018. a
Flamary, R. and Courty, N.: POT Python Optimal Transport library, available at: https://pythonot.github.io/ (last access: 8 June 2019), 2017. a
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012. a
Guo, L.-Y., Gao, Q., Jiang, Z.-H., and Li, L.: Bias correction and projection
of surface air temperature in LMDZ multiple simulation over central and
eastern China, Adv. Clim. Change Res., 9, 81–92,
https://doi.org/10.1016/j.accre.2018.02.003, 2018. a
Guo, Q., Chen, J., Zhang, X., Shen, M., Chen, H., and Guo, S.: A new two-stage
multivariate quantile mapping method for bias correcting climate model
outputs, Clim. Dynam., 53, 3603–3623, https://doi.org/10.1007/s00382-019-04729-w,
2019. a
Haddad, Z. and Rosenfeld, D.: Optimality of empirical Z-R relations, Q. J. Roy. Meteor. Soc., 123, 1283–1293, https://doi.org/10.1002/qj.49712354107, 1997. a
Jordan, C.: Mémoire sur les formes bilinéaires, J. Math. Pures Appl., 19,
35–54, 1874a. a
Jordan, C.: Sur la réduction des formes bilinéaires, C. R. Acad. Sci., Paris, France, 614–617, 1874b. a
Kallache, M., Vrac, M., Naveau, P., and Michelangeli, P.-A.: Non-stationary
probabilistic downscaling of extreme precipitation, J. Geophys. Res.-Atmos.,
116, D05113, https://doi.org/10.1029/2010JD014892, 2011. a
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019. a
Levina, E., Rothman, A., and Zhu, J.: Sparse estimation of large covariance
matrices via a nested Lasso penalty, Ann. Appl. Stat., 2, 245–263,
https://doi.org/10.1214/07-aoas139, 2008. a
Maraun, D.: Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue, J. Climate, 26, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1,
2013. a
Marti, O., Braconnot, P., Dufresne, J.-L., Bellier, J., Benshila, R., Bony, S., Brockmann, P., Cadule, P., Caubel, A., Codron, F., de NOBLET, N., Denvil, S., Fairhead, L., Fichefet, T., Foujols, M.-A., Friedlingstein, P., Goosse, H., Grandpeix, J., Guilyardi, E., and Talandier, C.: Key features of the IPSL
ocean atmosphere model and its sensitivity to atmospheric resolution, Clim.
Dynam., 34, 1–26, https://doi.org/10.1007/S00382-009-0640-6, 2010. a
Mehrotra, R. and Sharma, A.: Correcting for systematic biases in multiple raw
GCM variables across a range of timescales, J. Hydrol., 520, 214–223,
https://doi.org/10.1016/j.jhydrol.2014.11.037, 2015. a
Mehrotra, R. and Sharma, A.: A Multivariate Quantile-Matching Bias Correction
Approach with Auto- and Cross-Dependence across Multiple Time Scales:
Implications for Downscaling, J. Climate, 29, 3519–3539,
https://doi.org/10.1175/JCLI-D-15-0356.1, 2016. a, b
Mehrotra, R. and Sharma, A.: A Resampling Approach for Correcting Systematic
Spatiotemporal Biases for Multiple Variables in a Changing Climate, Water
Resour. Res., 55, 754–770, https://doi.org/10.1029/2018WR023270, 2019. a
Meyer, J., Kohn, I., Stahl, K., Hakala, K., Seibert, J., and Cannon, A. J.: Effects of univariate and multivariate bias correction on hydrological impact projections in alpine catchments, Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-1339-2019, 2019. a
Mezzadri, F.: How to generate random matrices from the classical compact
groups, Not. Am. Math. Soc., 54, 592–604, 2007. a
Michelangeli, P.-A., Vrac, M., and Loukos, H.: Probabilistic downscaling
approaches: Application to wind cumulative distribution functions, Geophys.
Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401, 2009. a
Möller, A., Lenkoski, A., and Thorarinsdottir, T. L.: Multivariate
probabilistic forecasting using ensemble Bayesian model averaging and
copulas, Q. J. Roy. Meteor. Soc., 139, 982–991, https://doi.org/10.1002/qj.2009, 2013. a
Nahar, J., Johnson, F., and Sharma, A.: Addressing Spatial Dependence Bias in
Climate Model Simulations—An Independent Component Analysis Approach, Water
Resour. Res., 54, 827–841, https://doi.org/10.1002/2017WR021293, 2018. a
Panofsky, H. and Brier, G.: Some applications of statistics to meteorology,
Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA, 103 pp., 1958. a
Piani, C. and Haerter, J.: Two dimensional bias correction of temperature and
precipitation copulas in climate models, Geophys. Res. Lett., 39, L20401,
https://doi.org/10.1029/2012GL053839, 2012. a
Räty, O., Räisänen, J., Bosshard, T., and Donnelly, C.: Intercomparison of
Univariate and Joint Bias Correction Methods in Changing Climate From a
Hydrological Perspective, Climate, 6, 33, https://doi.org/10.3390/cli6020033, 2018. a
Ribes, A., Thao, S., and Cattiaux, J.: Describing the relationship between a
weather event and climate change: a new statistical approach, J. Climate,
https://doi.org/10.1175/JCLI-D-19-0217.1, online first, 2020. a
Robin, Y.: SBCK (Statistical Bias Correction Kit), GitHub, available at: https://github.com/yrobink/SBCK, last access: 20 May 2019. a
Santambrogio, F.: Optimal Transport for Applied Mathematicians, Birkhaüser,
Basel, Switzerland, vol. 87, 2015. a
Schefzik, R., Thorarinsdottir, T. L., and Gneiting, T.: Uncertainty
Quantification in Complex Simulation Models Using Ensemble Copula Coupling,
Stat. Sci., 28, 616–640, https://doi.org/10.1214/13-STS443, 2013. a
Schuhmacher, D., Bähre, B., Gottschlich, C., Hartmann, V., Heinemann, F., and
Schmitzer, B.: transport: Computation of Optimal Transport Plans and
Wasserstein Distances, r package version 0.11-1, available at: https://cran.r-project.org/package=transport (last access: 11 March 2020), 2019. a
Stewart, G. W.: On the Early History of the Singular Value Decomposition, SIAM Rev., 35, 551–566, https://doi.org/10.1137/1035134, 1993. a
Stott, P. A., Christidis, N., Otto, F. E. L., Sun, Y., Vanderlinden, J.-P., van Oldenborgh, G. J., Vautard, R., von Storch, H., Walton, P., Yiou, P., and
Zwiers, F. W.: Attribution of extreme weather and climate-related events,
WIRES Clim. Change, 7, 23–41, https://doi.org/10.1002/wcc.380, 2016. a
Tobin, I., Vautard, R., Balog, I., Bréon, F.-M., Jerez, S., Ruti, P. M.,
Thais, F., Vrac, M., and Yiou, P.: Assessing climate change impacts on
European wind energy from ENSEMBLES high-resolution climate projections,
Climatic Change, 128, 99–112, https://doi.org/10.1007/s10584-014-1291-0, 2015. a
Tramblay, Y., Ruelland, D., Somot, S., Bouaicha, R., and Servat, E.: High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco, Hydrol. Earth Syst. Sci., 17, 3721–3739, https://doi.org/10.5194/hess-17-3721-2013, 2013. a
Verkade, J., Brown, J., Reggiani, P., and Weerts, A.: Post-processing ECMWF
precipitation and temperature ensemble reforecasts for operational hydrologic
forecasting at various spatial scales, J. Hydrol., 501, 73–91,
https://doi.org/10.1016/j.jhydrol.2013.07.039, 2013. a
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux,
J.-M.: A 50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003,
2010. a
Villani, C.: Optimal transport – Old and new, in: Grundlehren der
mathematischen Wissenschaften, Springer-Verlag, Berlin, Heidelberg, Germany, 992 pp.,
2008. a
Voisin, N., Schaake, J. C., and Lettenmaier, D. P.: Calibration and Downscaling Methods for Quantitative Ensemble Precipitation Forecasts, Weather Forecast., 25, 1603–1627, https://doi.org/10.1175/2010WAF2222367.1, 2010. a
Vrac, M. and Friederichs, P.: Multivariate–Intervariable, Spatial, and
Temporal–Bias Correction, J. Climate, 28, 218–237,
https://doi.org/10.1175/JCLI-D-14-00059.1, 2015.
a, b, c
Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., and Somot, S.: Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment, Nat. Hazards Earth Syst. Sci., 12, 2769–2784, https://doi.org/10.5194/nhess-12-2769-2012, 2012. a
Vrac, M., Noël, T., and Vautard, R.: Bias correction of precipitation through Singularity Stochastic Removal: Because Occurrences matter, J. Geophys. Res.-Atmos., 121, 5237–5258, https://doi.org/10.1002/2015JD024511, 2016. a, b, c
Wahl, T., Jain, S., Bender, J., Meyers, S., and Luther, M.: Increasing risk of
compound flooding from storm surge and rainfall for major US cities, Nat.
Clim. Chang., 5, 1093–1097, https://doi.org/10.1038/nclimate2736, 2015. a
Wasko, C., Sharma, A., and Westra, S.: Reduced spatial extent of extreme storms
at higher temperatures, Geophys. Res. Lett., 43, 4026–4032,
https://doi.org/10.1002/2016GL068509, 2016. a
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505–7514, https://doi.org/10.1002/2014WR015638, 2014. a
Xu, C.-Y.: From GCMs to river flow: A review of downscaling methods and
hydrologic modelling approaches, Prog. Phys. Geog., 23, 229–249,
https://doi.org/10.1177/030913339902300204, 1999. a
Yang, W., Gardelin, M., Olsson, J., and Bosshard, T.: Multi-variable bias correction: application of forest fire risk in present and future climate in Sweden, Nat. Hazards Earth Syst. Sci., 15, 2037–2057, https://doi.org/10.5194/nhess-15-2037-2015, 2015. a
Yiou, P., Jézéquel, A., Naveau, P., Otto, F. E. L., Vautard, R., and Vrac, M.: A statistical framework for conditional extreme event attribution, Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, 2017. a
Zscheischler, J. and Seneviratne, S.: Dependence of drivers affects risks
associated with compound events, Sci. Adv, 3, e1700263,
https://doi.org/10.1126/sciadv.1700263, 2017. a
Zscheischler, J., Westra, S., Hurk, B., Seneviratne, S., Ward, P., Pitman, A.,
AghaKouchak, A., Bresch, D., Leonard, M., Wahl, T., and Zhang, X.: Future
climate risk from compound events, Nat. Clim. Chang, 8, 469–477,
https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Zscheischler, J., Fischer, E. M., and Lange, S.: The effect of univariate bias adjustment on multivariate hazard estimates, Earth Syst. Dynam., 10, 31–43, https://doi.org/10.5194/esd-10-31-2019, 2019. a
Short summary
Recently, multivariate bias correction (MBC) methods designed to adjust climate simulations have been proposed. However, they use different approaches, leading potentially to different results. Therefore, this study intends to intercompare four existing MBC methods to provide end users with aid in choosing such methods for their applications. To do so, a wide range of evaluation criteria have been used to assess the ability of MBC methods to correct statistical properties of climate models.
Recently, multivariate bias correction (MBC) methods designed to adjust climate simulations have...
Altmetrics
Final-revised paper
Preprint