Articles | Volume 10, issue 4
Earth Syst. Dynam., 10, 847–858, 2019
Earth Syst. Dynam., 10, 847–858, 2019

Research article 05 Dec 2019

Research article | 05 Dec 2019

Analysis of the position and strength of westerlies and trades with implications for Agulhas leakage and South Benguela upwelling

Nele Tim et al.

Related authors

The importance of external climate forcing for the variability and trends of coastal upwelling in past and future climate
Nele Tim, Eduardo Zorita, Birgit Hünicke, Xing Yi, and Kay-Christian Emeis
Ocean Sci., 12, 807–823,,, 2016
Short summary
The relationship between Arabian Sea upwelling and Indian monsoon revisited
X. Yi, B. Hünicke, N. Tim, and E. Zorita
Ocean Sci. Discuss.,,, 2015
Revised manuscript not accepted
Short summary
Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation
N. Tim, E. Zorita, and B. Hünicke
Ocean Sci., 11, 483–502,,, 2015
Short summary

Related subject area

Dynamics of the Earth system: interactions
Accounting for surface waves improves gas flux estimation at high wind speed in a large lake
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam., 12, 1169–1189,,, 2021
Short summary
Multiscale fractal dimension analysis of a reduced order model of coupled ocean–atmosphere dynamics
Tommaso Alberti, Reik V. Donner, and Stéphane Vannitsem
Earth Syst. Dynam., 12, 837–855,,, 2021
Short summary
Modelling sea-level fingerprints of glaciated regions with low mantle viscosity
Alan Bartholet, Glenn A. Milne, and Konstantin Latychev
Earth Syst. Dynam., 12, 783–795,,, 2021
Short summary
Jarzynski equality and Crooks relation for local models of air–sea interaction
Achim Wirth and Florian Lemarié
Earth Syst. Dynam., 12, 689–708,,, 2021
Short summary
Interacting tipping elements increase risk of climate domino effects under global warming
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619,,, 2021
Short summary

Cited articles

Bakun, A., Field, D. B., Redondo-Rodriguez, A., and Weeks, S. J.: Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems, Glob. Change Biol., 16, 1213–1228,, 2010. a
Beal, L. M. and Bryden, H. L.: Observations of an Agulhas undercurrent, Deep-Sea Res. Pt. I, 44, 1715–1724,, 1997. a
Beal, L. M. and Elipot, S.: Broadening not strengthening of the Agulhas Current since the early 1990s, Nature, 540, 570–573,, 2016. a
Biastoch, A., Böning, C. W., Schwarzkopf, F. U., and Lutjeharms, J.: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies, Nature, 462, 495–498,, 2009. a, b, c
Blanke, B., Speich, S., Bentamy, A., Roy, C., and Sow, B.: Modeling the structure and variability of the southern Benguela upwelling using QuikSCAT wind forcing, J. Geophys. Res.-Oceans, 110, C07018,, 2005. a
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Final-revised paper