Articles | Volume 8, issue 4
https://doi.org/10.5194/esd-8-1141-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/esd-8-1141-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Desertification, resilience, and re-greening in the African Sahel – a matter of the observation period?
Hannelore Kusserow
CORRESPONDING AUTHOR
Department of Earth Sciences, Institute of Geographical Sciences, Remote
Sensing and Geoinformatics, Freie Universität Berlin, Berlin, Germany
Related subject area
Dynamics of the Earth system: interactions
Continental heat storage: contributions from the ground, inland waters, and permafrost thawing
The rate of information transfer as a measure of ocean–atmosphere interactions
Evaluation of global teleconnections in CMIP6 climate projections using complex networks
On the additivity of climate responses to the volcanic and solar forcing in the early 19th century
Exploring the relationship between temperature forecast errors and Earth system variables
Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era
The biogeophysical effects of idealized land cover and land management changes in Earth system models
Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks
Complex network analysis of fine particulate matter (PM2.5): transport and clustering
CO2 surface variability: from the stratosphere or not?
Quantifying memory and persistence in the atmosphere–land and ocean carbon system
Salinity dynamics of the Baltic Sea
Impact of urbanization on the thermal environment of the Chengdu–Chongqing urban agglomeration under complex terrain
Sensitivity of land–atmosphere coupling strength to changing atmospheric temperature and moisture over Europe
Human impacts and their interactions in the Baltic Sea region
Exploring the coupled ocean and atmosphere system with a data science approach applied to observations from the Antarctic Circumnavigation Expedition
Accounting for surface waves improves gas flux estimation at high wind speed in a large lake
Multiscale fractal dimension analysis of a reduced order model of coupled ocean–atmosphere dynamics
Modelling sea-level fingerprints of glaciated regions with low mantle viscosity
Jarzynski equality and Crooks relation for local models of air–sea interaction
Interacting tipping elements increase risk of climate domino effects under global warming
A climate network perspective on the intertropical convergence zone
Spatiotemporal patterns of synchronous heavy rainfall events in East Asia during the Baiu season
Rankings of extreme and widespread dry and wet events in the Iberian Peninsula between 1901 and 2016
Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: a normal-mode perspective
Daytime low-level clouds in West Africa – occurrence, associated drivers, and shortwave radiation attenuation
Water transport among the world ocean basins within the water cycle
Economic impacts of a glacial period: a thought experiment to assess the disconnect between econometrics and climate sciences
Semi-equilibrated global sea-level change projections for the next 10 000 years
The synergistic impact of ENSO and IOD on Indian summer monsoon rainfall in observations and climate simulations – an information theory perspective
Climate change as an incentive for future human migration
Compound warm–dry and cold–wet events over the Mediterranean
Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory
Mesoscale atmospheric circulation controls of local meteorological elevation gradients on Kersten Glacier near Kilimanjaro summit
On the interconnections among major climate modes and their common driving factors
Eurasian autumn snow link to winter North Atlantic Oscillation is strongest for Arctic warming periods
Back to the future II: tidal evolution of four supercontinent scenarios
Concurrent wet and dry hydrological extremes at the global scale
Synthesis and evaluation of historical meridional heat transport from midlatitudes towards the Arctic
Amplified warming of seasonal cold extremes relative to the mean in the Northern Hemisphere extratropics
Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: a theory-guided causal effect network approach
Analysis of the position and strength of westerlies and trades with implications for Agulhas leakage and South Benguela upwelling
Organization of dust storms and synoptic-scale transport of dust by Kelvin waves
ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation
North Pacific subtropical sea surface temperature frontogenesis and its connection with the atmosphere above
The multi-scale structure of atmospheric energetic constraints on globally averaged precipitation
Potential of global land water recycling to mitigate local temperature extremes
Pipes to Earth's subsurface: the role of atmospheric conditions in controlling air transport through boreholes and shafts
Causal dependences between the coupled ocean–atmosphere dynamics over the tropical Pacific, the North Pacific and the North Atlantic
Moisture transport and Antarctic sea ice: austral spring 2016 event
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
David Docquier, Stéphane Vannitsem, and Alessio Bellucci
Earth Syst. Dynam., 14, 577–591, https://doi.org/10.5194/esd-14-577-2023, https://doi.org/10.5194/esd-14-577-2023, 2023
Short summary
Short summary
The climate system is strongly regulated by interactions between the ocean and atmosphere. However, many uncertainties remain in the understanding of these interactions. Our analysis uses a relatively novel approach to quantify causal links between the ocean surface and lower atmosphere based on satellite observations. We find that both the ocean and atmosphere influence each other but with varying intensity depending on the region, demonstrating the power of causal methods.
Clementine Dalelane, Kristina Winderlich, and Andreas Walter
Earth Syst. Dynam., 14, 17–37, https://doi.org/10.5194/esd-14-17-2023, https://doi.org/10.5194/esd-14-17-2023, 2023
Short summary
Short summary
The realistic representation of global teleconnections is an indispensable requirement for the reliable simulation of low-frequency climate variability and climate change. We present an application of the complex network framework to quantify and evaluate large-scale interactions within and between ocean and atmosphere in 22 historical CMIP6 climate projections with respect to two century-long reanalyses.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022, https://doi.org/10.5194/esd-13-1305-2022, 2022
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation, and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occurs and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022, https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary
Short summary
The stability of the Greenland Ice Sheet under global warming is crucial. Here, using PISM, we study how the interplay of feedbacks between the ice sheet, the atmosphere and solid Earth affects the long-term response of the Greenland Ice Sheet under constant warming. Our findings suggest four distinct dynamic regimes of the Greenland Ice Sheet on the route to destabilization under global warming – from recovery via quasi-periodic oscillations in ice volume to ice sheet collapse.
Na Ying, Wansuo Duan, Zhidan Zhao, and Jingfang Fan
Earth Syst. Dynam., 13, 1029–1039, https://doi.org/10.5194/esd-13-1029-2022, https://doi.org/10.5194/esd-13-1029-2022, 2022
Short summary
Short summary
A complex PM2.5 measurement network has been built to investigate transport patterns and cooperative regions in China. Network-based degree measurements are used to reveal the spatial transport pattern of PM2.5. The study also attempts to investigate the seasonal transport path of PM2.5. In addition, the cooperation regions of PM2.5 are quantified according to their synchronicity characteristics. The proposed study can be applied to other air pollutant data, such as ozone and NOx.
Michael J. Prather
Earth Syst. Dynam., 13, 703–709, https://doi.org/10.5194/esd-13-703-2022, https://doi.org/10.5194/esd-13-703-2022, 2022
Short summary
Short summary
Atmospheric CO2 fluctuations point to changes in fossil fuel emissions plus natural and perturbed variations in the natural carbon cycle. One unstudied source of variability is the stratosphere, where the influx of aged CO2-depleted air can cause surface fluctuations. Using modeling and, separately, scaling the observed N2O variability, I find that stratosphere-driven surface variability in CO2 is not a significant uncertainty (at most 10 % of the observed interannual variability).
Matthias Jonas, Rostyslav Bun, Iryna Ryzha, and Piotr Żebrowski
Earth Syst. Dynam., 13, 439–455, https://doi.org/10.5194/esd-13-439-2022, https://doi.org/10.5194/esd-13-439-2022, 2022
Short summary
Short summary
We interpret carbon dioxide emissions from fossil fuel burning and land use as a global stress–strain experiment to reflect the overall behavior of the atmosphere–land and ocean system in response to increasing CO2 emissions since 1850. The system has been trapped progressively in terms of persistence, while its ability to build up memory has been reduced. We expect system failures globally well before 2050 if the current trend in emissions is not reversed immediately and sustainably.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
Si Chen, Zhenghui Xie, Jinbo Xie, Bin Liu, Binghao Jia, Peihua Qin, Longhuan Wang, Yan Wang, and Ruichao Li
Earth Syst. Dynam., 13, 341–356, https://doi.org/10.5194/esd-13-341-2022, https://doi.org/10.5194/esd-13-341-2022, 2022
Short summary
Short summary
This study discusses the changes in the summer thermal environment in the Chengdu–Chongqing urban agglomeration due to urban expansion in complex terrain conditions in the recent 40 years, using high-resolution simulations with the WRF model. We quantify the influence of a single urban expansion factor and a single complex terrain factor on the urban thermal environment. Under the joint influence of complex terrain and urban expansion, the heat island effect caused by urbanization was enhanced.
Lisa Jach, Thomas Schwitalla, Oliver Branch, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 13, 109–132, https://doi.org/10.5194/esd-13-109-2022, https://doi.org/10.5194/esd-13-109-2022, 2022
Short summary
Short summary
The land surface can influence the occurrence of local rainfall through different feedback mechanisms. In Europe, this happens most frequently in summer. Here, we examine how differences in atmospheric temperature and moisture change where and how often the land surface can influence rainfall. The results show that the differences barely move the region of strong surface influence over Scandinavia and eastern Europe, but they can change the frequency of coupling events.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam., 12, 1169–1189, https://doi.org/10.5194/esd-12-1169-2021, https://doi.org/10.5194/esd-12-1169-2021, 2021
Short summary
Short summary
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote gas exchange at the air–water interface. In this study, for the first time, we measured enhanced gas exchanges by wind-induced waves at the surface of a large lake. We adapted an ocean-based model to account for the effect of surface waves on gas exchange in lakes. We finally show that intense wind events with surface waves contribute disproportionately to the annual CO2 gas flux in a large lake.
Tommaso Alberti, Reik V. Donner, and Stéphane Vannitsem
Earth Syst. Dynam., 12, 837–855, https://doi.org/10.5194/esd-12-837-2021, https://doi.org/10.5194/esd-12-837-2021, 2021
Short summary
Short summary
We provide a novel approach to diagnose the strength of the ocean–atmosphere coupling by using both a reduced order model and reanalysis data. Our findings suggest the ocean–atmosphere dynamics presents a rich variety of features, moving from a chaotic to a coherent coupled dynamics, mainly attributed to the atmosphere and only marginally to the ocean. Our observations suggest further investigations in characterizing the occurrence and spatial dependency of the ocean–atmosphere coupling.
Alan Bartholet, Glenn A. Milne, and Konstantin Latychev
Earth Syst. Dynam., 12, 783–795, https://doi.org/10.5194/esd-12-783-2021, https://doi.org/10.5194/esd-12-783-2021, 2021
Short summary
Short summary
Improving the accuracy of regional sea-level projections is an important aim that will impact estimates of sea-level hazard around the globe. The computation of sea-level fingerprints is a key component of any such projection, and to date these computations have been based on the assumption that elastic deformation accurately describes the solid Earth response on century timescales. We show here that this assumption is inaccurate in some glaciated regions characterized by low mantle viscosity.
Achim Wirth and Florian Lemarié
Earth Syst. Dynam., 12, 689–708, https://doi.org/10.5194/esd-12-689-2021, https://doi.org/10.5194/esd-12-689-2021, 2021
Short summary
Short summary
We show that modern concepts of non-equilibrium statistical mechanics can be applied to large-scale environmental fluid dynamics, where fluctuations are not thermal but come from turbulence. The work theorems developed by Jarzynski and Crooks are applied to air–sea interaction. Rather than looking at the average values of thermodynamic variables, their probability density functions are considered, which allows us to replace the inequalities of equilibrium statistical mechanics with equalities.
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Frederik Wolf, Aiko Voigt, and Reik V. Donner
Earth Syst. Dynam., 12, 353–366, https://doi.org/10.5194/esd-12-353-2021, https://doi.org/10.5194/esd-12-353-2021, 2021
Short summary
Short summary
In our work, we employ complex networks to study the relation between the time mean position of the intertropical convergence zone (ITCZ) and sea surface temperature (SST) variability. We show that the information hidden in different spatial SST correlation patterns, which we access utilizing complex networks, is strongly correlated with the time mean position of the ITCZ. This research contributes to the ongoing discussion on drivers of the annual migration of the ITCZ.
Frederik Wolf, Ugur Ozturk, Kevin Cheung, and Reik V. Donner
Earth Syst. Dynam., 12, 295–312, https://doi.org/10.5194/esd-12-295-2021, https://doi.org/10.5194/esd-12-295-2021, 2021
Short summary
Short summary
Motivated by a lacking onset prediction scheme, we examine the temporal evolution of synchronous heavy rainfall associated with the East Asian Monsoon System employing a network approach. We find, that the evolution of the Baiu front is associated with the formation of a spatially separated double band of synchronous rainfall. Furthermore, we identify the South Asian Anticyclone and the North Pacific Subtropical High as the main drivers, which have been assumed to be independent previously.
Margarida L. R. Liberato, Irene Montero, Célia Gouveia, Ana Russo, Alexandre M. Ramos, and Ricardo M. Trigo
Earth Syst. Dynam., 12, 197–210, https://doi.org/10.5194/esd-12-197-2021, https://doi.org/10.5194/esd-12-197-2021, 2021
Short summary
Short summary
Extensive, long-standing dry and wet episodes are frequent climatic extreme events (EEs) in the Iberian Peninsula (IP). A method for ranking regional extremes of persistent, widespread drought and wet events is presented, using different SPEI timescales. Results show that there is no region more prone to EE occurrences in the IP, the most extreme extensive agricultural droughts evolve into hydrological and more persistent extreme droughts, and widespread wet and dry EEs are anti-correlated.
Breno Raphaldini, André S. W. Teruya, Pedro Leite da Silva Dias, Lucas Massaroppe, and Daniel Yasumasa Takahashi
Earth Syst. Dynam., 12, 83–101, https://doi.org/10.5194/esd-12-83-2021, https://doi.org/10.5194/esd-12-83-2021, 2021
Short summary
Short summary
Several recent studies suggest a modulation of the Madden–Julian oscillation (MJO) by the quasi-biennial oscillation (QBO). The physics behind this interaction, however, remain poorly understood. In this study, we investigated the QBO–MJO interaction and the role of stratospheric ozone as a forcing mechanism. A normal-mode decomposition procedure combined with causality analysis reveals significant interactions between MJO-related modes and QBO-related modes.
Derrick K. Danso, Sandrine Anquetin, Arona Diedhiou, Kouakou Kouadio, and Arsène T. Kobea
Earth Syst. Dynam., 11, 1133–1152, https://doi.org/10.5194/esd-11-1133-2020, https://doi.org/10.5194/esd-11-1133-2020, 2020
Short summary
Short summary
The atmospheric and surface conditions that exist during the occurrence of daytime low-level clouds (LLCs) and their influence on solar radiation were investigated in West Africa. During the monsoon season, these LLCs are linked to high moisture flux driven by strong southwesterly winds from the Gulf of Guinea and significant background moisture levels. Their occurrence leads to a strong reduction in the incoming solar radiation and has large impacts on the surface energy budget.
David García-García, Isabel Vigo, and Mario Trottini
Earth Syst. Dynam., 11, 1089–1106, https://doi.org/10.5194/esd-11-1089-2020, https://doi.org/10.5194/esd-11-1089-2020, 2020
Short summary
Short summary
The global water cycle involves water-mass transport on land, in the atmosphere, in the ocean, and among them. The GRACE mission has allowed for the quantification of water-mass variations. It was a revolution in the understanding of Earth dynamics. Here, we develop and apply a novel method, based on GRACE data and atmospheric models, that allows systematic estimation of water-mass exchange among ocean basins. This is valuable for understanding the role of the ocean within the water cycle.
Marie-Noëlle Woillez, Gaël Giraud, and Antoine Godin
Earth Syst. Dynam., 11, 1073–1087, https://doi.org/10.5194/esd-11-1073-2020, https://doi.org/10.5194/esd-11-1073-2020, 2020
Short summary
Short summary
To illustrate the fact that future economic damage from global warming is often highly underestimated, we applied two different statistically based damage functions available in the literature to a global cooling of 4 °C. We show that the gross domestic product (GDP) projections obtained are at odds with the state of the planet during an ice age. We conclude that such functions do not provide relevant information on potential damage from a large climate change, be it cooling or warming.
Jonas Van Breedam, Heiko Goelzer, and Philippe Huybrechts
Earth Syst. Dynam., 11, 953–976, https://doi.org/10.5194/esd-11-953-2020, https://doi.org/10.5194/esd-11-953-2020, 2020
Short summary
Short summary
We made projections of global mean sea-level change during the next 10 000 years for a range in climate forcing scenarios ranging from a peak in carbon dioxide concentrations in the next decades to burning most of the available carbon reserves over the next 2 centuries. We find that global mean sea level will rise between 9 and 37 m, depending on the emission of greenhouse gases. In this study, we investigated the long-term consequence of climate change for sea-level rise.
Praveen Kumar Pothapakula, Cristina Primo, Silje Sørland, and Bodo Ahrens
Earth Syst. Dynam., 11, 903–923, https://doi.org/10.5194/esd-11-903-2020, https://doi.org/10.5194/esd-11-903-2020, 2020
Short summary
Short summary
Information exchange (IE) from the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO) to Indian summer monsoon rainfall (ISMR) is investigated. Observational data show that IOD and ENSO synergistically exchange information on ISMR variability over central India. IE patterns observed in three global climate models (GCMs) differ from observations. Our study highlights new perspectives that IE metrics could bring to climate science.
Min Chen and Ken Caldeira
Earth Syst. Dynam., 11, 875–883, https://doi.org/10.5194/esd-11-875-2020, https://doi.org/10.5194/esd-11-875-2020, 2020
Short summary
Short summary
We examine the implications of future motivation for humans to migrate by analyzing today’s relationships between climatic factors and population density, with all other factors held constant. Such analyses are unlikely to make accurate predictions but can still be useful for informing discussions about the broad range of incentives that might influence migration decisions. Areas with the highest projected population growth rates tend to be the areas most adversely affected by climate change.
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
Simon Opie, Richard G. Taylor, Chris M. Brierley, Mohammad Shamsudduha, and Mark O. Cuthbert
Earth Syst. Dynam., 11, 775–791, https://doi.org/10.5194/esd-11-775-2020, https://doi.org/10.5194/esd-11-775-2020, 2020
Short summary
Short summary
Knowledge of the relationship between climate and groundwater is limited and typically undermined by the scale, duration and accessibility of observations. Using monthly satellite measurements newly compiled over 14 years in the tropics and sub-tropics, we show that the imprint of precipitation history on groundwater, i.e. hydraulic memory, is longer in drylands than humid environments with important implications for the understanding and management of groundwater resources under climate change.
Thomas Mölg, Douglas R. Hardy, Emily Collier, Elena Kropač, Christina Schmid, Nicolas J. Cullen, Georg Kaser, Rainer Prinz, and Michael Winkler
Earth Syst. Dynam., 11, 653–672, https://doi.org/10.5194/esd-11-653-2020, https://doi.org/10.5194/esd-11-653-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro summit are like sample spots of the climate in the tropical mid-troposphere. Measurements of air temperature, air humidity, and precipitation with automated weather stations show that the differences in these meteorological elements between two altitudes (~ 5600 and ~ 5900 m) vary significantly over the day and the seasons, in concert with airflow dynamics around the mountain. Knowledge of these variations will improve atmosphere and cryosphere models.
Xinnong Pan, Geli Wang, Peicai Yang, Jun Wang, and Anastasios A. Tsonis
Earth Syst. Dynam., 11, 525–535, https://doi.org/10.5194/esd-11-525-2020, https://doi.org/10.5194/esd-11-525-2020, 2020
Short summary
Short summary
The variations in oceanic and atmospheric modes play important roles in global and regional climate variability. The relationships between their variations and regional climate variability have been extensively examined, but the interconnections among these climate modes remain unclear. We show that the base periods and their harmonic oscillations that appear to be related to QBO, ENSO, and solar activities act as key connections among the climatic modes with synchronous behaviors.
Martin Wegmann, Marco Rohrer, María Santolaria-Otín, and Gerrit Lohmann
Earth Syst. Dynam., 11, 509–524, https://doi.org/10.5194/esd-11-509-2020, https://doi.org/10.5194/esd-11-509-2020, 2020
Short summary
Short summary
Predicting the climate of the upcoming season is of big societal benefit, but finding out which component of the climate system can act as a predictor is difficult. In this study, we focus on Eurasian snow cover as such a component and show that knowing the snow cover in November is very helpful in predicting the state of winter over Europe. However, this mechanism was questioned in the past. Using snow data that go back 150 years into the past, we are now very confident in this relationship.
Hannah S. Davies, J. A. Mattias Green, and Joao C. Duarte
Earth Syst. Dynam., 11, 291–299, https://doi.org/10.5194/esd-11-291-2020, https://doi.org/10.5194/esd-11-291-2020, 2020
Short summary
Short summary
We have confirmed that there is a supertidal cycle associated with the supercontinent cycle. As continents drift due to plate tectonics, oceans also change size, controlling the strength of the tides and causing periods of supertides. In this work, we used a coupled tectonic–tidal model of Earth's future to test four different scenarios that undergo different styles of ocean closure and periods of supertides. This has implications for the Earth system and for other planets with liquid oceans.
Paolo De Luca, Gabriele Messori, Robert L. Wilby, Maurizio Mazzoleni, and Giuliano Di Baldassarre
Earth Syst. Dynam., 11, 251–266, https://doi.org/10.5194/esd-11-251-2020, https://doi.org/10.5194/esd-11-251-2020, 2020
Short summary
Short summary
We show that floods and droughts can co-occur in time across remote regions on the globe and introduce metrics that can help in quantifying concurrent wet and dry hydrological extremes. We then link wet–dry extremes to major modes of climate variability (i.e. ENSO, PDO, and AMO) and provide their spatial patterns. Such concurrent extreme hydrological events may pose risks to regional hydropower production and agricultural yields.
Yang Liu, Jisk Attema, Ben Moat, and Wilco Hazeleger
Earth Syst. Dynam., 11, 77–96, https://doi.org/10.5194/esd-11-77-2020, https://doi.org/10.5194/esd-11-77-2020, 2020
Short summary
Short summary
Poleward meridional energy transport (MET) has significant impact on the climate in the Arctic. In this study, we quantify and intercompare MET at subpolar latitudes from six reanalysis data sets. The results indicate that the spatial distribution and temporal variations of MET differ substantially among the reanalysis data sets. Our study suggests that the MET estimated from reanalyses is useful for the evaluation of energy transports but should be used with great care.
Mia H. Gross, Markus G. Donat, Lisa V. Alexander, and Steven C. Sherwood
Earth Syst. Dynam., 11, 97–111, https://doi.org/10.5194/esd-11-97-2020, https://doi.org/10.5194/esd-11-97-2020, 2020
Short summary
Short summary
This study explores the amplified warming of cold extremes relative to average temperatures for both the recent past and future in the Northern Hemisphere and the possible physical processes that are driving this. We find that decreases in snow cover and
warmer-than-usual winds are driving the disproportionate rates of warming in cold extremes relative to average temperatures. These accelerated warming rates in cold extremes have implications for tourism, insect longevity and human health.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam., 11, 17–34, https://doi.org/10.5194/esd-11-17-2020, https://doi.org/10.5194/esd-11-17-2020, 2020
Short summary
Short summary
Drivers from both the mid-latitudes and the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Ashok Kumar Pokharel and Michael L. Kaplan
Earth Syst. Dynam., 10, 651–666, https://doi.org/10.5194/esd-10-651-2019, https://doi.org/10.5194/esd-10-651-2019, 2019
Short summary
Short summary
This study contributes to a better understanding of how large-scale dust transport can be organized from northwest Africa to the US, Amazon basin, and Europe and might be due in part to Kelvin waves. We also think there is still a need to study major historical dust events that occurred in this region to confirm that this location is suitable and responsible for the generation of the Kelvin waves and the transport of dust on a regular basis.
Christoph Heinze, Veronika Eyring, Pierre Friedlingstein, Colin Jones, Yves Balkanski, William Collins, Thierry Fichefet, Shuang Gao, Alex Hall, Detelina Ivanova, Wolfgang Knorr, Reto Knutti, Alexander Löw, Michael Ponater, Martin G. Schultz, Michael Schulz, Pier Siebesma, Joao Teixeira, George Tselioudis, and Martin Vancoppenolle
Earth Syst. Dynam., 10, 379–452, https://doi.org/10.5194/esd-10-379-2019, https://doi.org/10.5194/esd-10-379-2019, 2019
Short summary
Short summary
Earth system models for producing climate projections under given forcings include additional processes and feedbacks that traditional physical climate models do not consider. We present an overview of climate feedbacks for key Earth system components and discuss the evaluation of these feedbacks. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research.
Leying Zhang, Haiming Xu, Jing Ma, Ning Shi, and Jiechun Deng
Earth Syst. Dynam., 10, 261–270, https://doi.org/10.5194/esd-10-261-2019, https://doi.org/10.5194/esd-10-261-2019, 2019
Short summary
Short summary
Net heat flux dominates the frontogenesis of the NPSTF from October to December, while oceanic meridional temperature advection contributes equally as much or even more net heat flux in January and February. The atmosphere is critical to frontogenesis through net heat flux and the Aleutian low, the latter of which benefits meridional temperature advection.
Miguel Nogueira
Earth Syst. Dynam., 10, 219–232, https://doi.org/10.5194/esd-10-219-2019, https://doi.org/10.5194/esd-10-219-2019, 2019
Mathias Hauser, Wim Thiery, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 10, 157–169, https://doi.org/10.5194/esd-10-157-2019, https://doi.org/10.5194/esd-10-157-2019, 2019
Short summary
Short summary
We develop a method to keep the amount of water in the soil at the present-day level, using only local water sources in a global climate model. This leads to less drying over many land areas, but also decreases river runoff. We find that temperature extremes in the 21st century decrease substantially using our method. This provides a new perspective on how land water can influence regional climate and introduces land water management as potential tool for local mitigation of climate change.
Elad Levintal, Nadav G. Lensky, Amit Mushkin, and Noam Weisbrod
Earth Syst. Dynam., 9, 1141–1153, https://doi.org/10.5194/esd-9-1141-2018, https://doi.org/10.5194/esd-9-1141-2018, 2018
Stéphane Vannitsem and Pierre Ekelmans
Earth Syst. Dynam., 9, 1063–1083, https://doi.org/10.5194/esd-9-1063-2018, https://doi.org/10.5194/esd-9-1063-2018, 2018
Short summary
Short summary
The El Niño–Southern Oscillation phenomenon is a slow dynamics present in the coupled ocean–atmosphere tropical Pacific system which has important teleconnections with the northern extratropics. These teleconnections are usually believed to be the source of an enhanced predictability in the northern extratropics at seasonal to decadal timescales. This question is challenged by investigating the causality between these regions using an advanced technique known as convergent cross mapping.
Monica Ionita, Patrick Scholz, Klaus Grosfeld, and Renate Treffeisen
Earth Syst. Dynam., 9, 939–954, https://doi.org/10.5194/esd-9-939-2018, https://doi.org/10.5194/esd-9-939-2018, 2018
Short summary
Short summary
In austral spring 2016 the Antarctic region experienced anomalous sea ice retreat in all sectors, with sea ice extent in October and November 2016 being the lowest in the Southern Hemisphere over the observational record (1979–present). The extreme sea ice retreat was accompanied by the wettest and warmest spring on record, over large areas covering the Indian ocean, the Ross Sea, and the Weddell Sea.
Cited articles
Andrews, F. W.: The flowering plants of the Anglo-Egyptian Sudan, Vol. 1 (1950) 237 pp., Vol. 2 (1952) 485 pp., Vol. 3 (1956) 579 pp., 1950–1956.
Anyamba, A. and Tucker, C. J.: Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003, J. Arid Environ., 63, 596–614, 2005.
Anyamba, A., Small, J. L., Tucker, C. J., and Pak, E. W.: Thirty-two years of Sahelian zone growing season non-stationary NDVI3g patterns and trends, Remote Sensing, 6, 3101–3122, https://doi.org/10.3390/rs6043101, 2014.
Aubréville, A.: Les Combretum des savanes boisées de l'Afrique occidentale Française, Trav. Sect. Techn. Agric. Trop. Minist. Colonies, Paris, 711–19, 1944.
Aubréville, A.: Climats, forêts et désertification de l'Afrique tropical, Société d'Éditions Géographiques Maritimes et Coloniales, Paris, 352 pp., 1949.
Aubréville, A.: Flore forestière Soudano-Guinéenne, Société d'Edititions Géographiques Maritimes et Coloniales, Paris, 523 pp., 1950.
Bachmann, M., Tungalagsaikhan, P., Ruppert, T., and Dech, S.: Calibration and pre-processing of a multi-decadal AVHRR time series, in: Remote Sensing time series, revealing land surface dynamics, edietd by: Kuenzer, C., Dech, S., and Wagner, W., Springer, Berlin, 43–73, 2015.
Barbier, N., Couteron, P., Lejoly, J., Deblauwe, V., and Lejeune, O.: Self organised vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems, J. Ecol., 94, 537–547, https://doi.org/10.1111/j.1365-2745.2006.01126.x, 2006.
Bégué, A., Vintrou, E., Ruelland, D., Claden, M., and Dessay, N.: Can a 25-year trend in Soudano-Sahelian vegetation dynamics be interpreted in terms of land use change? A remote sensing approach, Global Environ. Chang., 21, 413–420, https://doi.org/10.1016/j.gloenvcha.2011.02.002, 2011.
Behnke, R. H. and Mortimore, M. (Eds.): The End of Desertification? Disputing environmental change in the drylands, Springer, Berlin, 560 pp., 2016.
Berhaut, J.: Flore du Sénégal, 2nd Edn., Dakar, 485 pp., 1967.
Bernus, E. and Hamidou, S. A. (Eds.): Atlas du Niger, Les Atlas Jeune Afrique, Paris, 64 pp., 1980.
Boubacar, Y: Land and natural resource governance: development issues and anti-desertification initiatives in Niger, in: The End of Desertification? Disputing environmental change in the drylands, edited by: Behnke, R. H. and Mortimore, M., Springer, Berlin, 179–200, 2016.
Boudet, G. and Lebrun, J. P.: Catalogue des plantes vasculaires du Mali, I.E.M.V.T., Maisons Alfort, 480 pp., 1986.
Bovill, E. W.: The encroachment of the Sahara on the Soudan, J. African Soc. 20, 174–185, 1921.
Brandt, M., Romankiewicz, C., Spiekermann, R., and Samimi, C.: Environmental change in time series – An interdisciplinary study in the Sahel of Mali and Senegal, J. Arid Environ., 105, 52–63, https://doi.org/10.1016/j.jaridenv.2014.02.019, 2014a.
Brandt, M., Verger, A., Diouf, A. A., Baret, F., and Samimi, C.: Local vegetation trends in the Sahel of Mali and Senegal using long time series FAPAR satellite products and field measurement (1982–2010), Remote Sensing, 6, 24082–434, https://doi.org/10.3390/rs6032408, 2014b.
Brandt, M., Grau, T., Mbow, C., and Samimi, C.: Modeling soil and woody vegetation in the Senegalese Sahel in the context of environmental change, Land, 3, 770–792, https://doi.org/10.3390/land3030770, 2014c.
Brandt, M., Verger, A., Diouf, A. A., Baret, F., and Samimi, C.: Local vegetation trends in the Sahel of Mali and Senegal using long time series FAPAR satellite products and field measurement (1982–2010), Remote Sensing, 6, 2408–2434, https://doi.org/10.3390/rs6032408, 2014d.
Brandt, M., Mbow, C., Diouf, A. A., Verger, A., Samimi, C., and Fensholt, R.: Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel, Glob. Change Biol., 21, 1610–1620, https://doi.org/10.1111/gcb.12807, 2015.
Brandt, M., Hiernaux, P., Tagesson, T., Verger, A., Rasmussen, K., Diouf, A. A., Mbow, C., Mougin, E., and Fensholt, R.: Woody plant cover estimation in drylands from Earth Observation based seasonal metrics, Remote Sens. Environ., 172, 28–38, https://doi.org/10.1016/j.rse.2015.10.036, 2016a.
Brandt, M., Hiernaux, P., Rasmussen, K., Mbow, C., Kergoat, L., Tagesson, T., Ibrahim, Y. Z., Wélé, A., Tucker, C. J., and Fensholt, R.: Assessing woody vegetation trends in Sahelian drylands using MODIS based saisonal metrics, Remote Sens. Environ., 183, 215–225, https://doi.org/10.1016/j.rse.2016.05.027, 2016b.
Brandt, M., Tappan, G., Diouf, A. A., Beye, G., Mbow, C., and Fensholt, R.: Woody vegetation die off and regeneration in response to rainfall variability in the West African Sahel, Remote Sensing, 9, 1–21, https://doi.org/10.3390/rs9010039, 2017a.
Brandt, M., Rasmussen, K., Penuelas, J., Tian, F., Schurgers, G., Verger, A., Mertz, O., Palmer, J. R. B., and Fensholt, R.: Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa, Nature Ecology and Evolution, 1–5, 0081, https://doi.org/10.1038/s41559-017-0081, 2017b.
Breman, H. and Kessler, J.-J.: Woody plants in Agro-Ecosystems of semi-arid regions, Springer, Berlin, 340 pp., 1995.
BRGM: Carte géologique de L'Oudalan, 1:200 000, 1970.
Brink, A. B. and Eva, H. D.: Monitoring 25 years of land cover change dynamics in Africa: a sample based remote sensing approach, Appl. Geogr., 29, 501–512, https://doi.org/10.1016/j.apgeog.2008.10.004, 2009.
Brücher, T., Claussen, M., and Raddatz, T.: Implications of land use change in tropical northern Africa under global warming, Earth Syst. Dynam., 6, 769–780, https://doi.org/10.5194/esd-6-769-2015, 2015.
Chevalier, A.: Les zones et les provinces botanique de l'Afrique occidentale française, C. R. Acad. Sci., 130, Paris, 1205–1208, 1900.
Clos-Arceduc, M.: Etude sur photographies aériennes d'une formation végétale sahélienne: La brousse tigrée, Bull. de l'I.F.A.N., T. XVIII, A, 3, 678–684, 1956.
Cornet, A. F., Montana, C., Delhoume, J. P., and Lopez-Portillo, J.: Water flows and the dynamics of desert vegetation stripes, in: Landscape boundaries consequences for biotic diversity and ecological flows, edited by: Hansen, A. J. and Di Castro, F., Ecol. Studies, 92, Springer, Berlin, 327–345, 1992.
Couteron, P.: Contractions du couvert végétal et sécheresse. Exemples au nord du Burkina Faso, in: Fonctionnement et gestion des écosystèmes forestiers contractés sahéliens, edited by: D'Herbès, J. M., Ambouta, J. M. K., and Peltier, R., John Libbey, Paris, 69–79, 1997.
Darbyshire, I., Kordofani, M., Farag, I., Candiga, R., and Pickering, H. (Eds.): The plants of Sudan and South Sudan. An annotated checklist, KEW Publishing Royal Botanic Gardens, KEW, 400 pp., 2015.
Dardel, C., Kergoat, L., Hiernaux, P., Grippa, M., Mougin, E., Ciais, P., and Nguyen, C.-C.: Rain-Use-Efficiency: what it tells us about the conflicting Sahel greening and Sahelian Paradox, Remote Sensing, 6, 3446–3474, https://doi.org/10.3390/rs6043446, 2014a.
Dardel, C., Kergoat, L., Hiernaux, P., Mougin, E., Grippa, M., and Tucker, C. J.: Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger), Remote Sens. Environ., 140, 350–364, 2014b.
Dekker, S. C., Rietkerk, M., and Bierkens, F. P.: Coupling microscale vegetation-soil water and macroscale vegetation-precipitation feedbacks in semiarid ecosystems, Glob. Change Biol., 13, 671–678, https://doi.org/10.1111/j.1365-2486.2007.01327.x, 2007.
Deutsche Stiftung Weltbevölkerung (DSW): Datenreport 2017, available at: http://www.weltbevoelkerung.de/ (last access: 25 August 2017), 2016.
Devisse, J. and Vernet, R.: Le bassin des vallées du Niger: chronologie et espaces, in: Vallées du Niger, Éditions de la Réunion des musées nationaux, edited by: Devisse, J., Paris, 11–37, 1993.
De Wispelaere: Dynamique de la desertification au Sahel du Burkina Faso, Cartographie de l'évolution et recherché méthodologiques sur les applications de la télédetection, CIRAD-EMVT, Maisons-Alfort, 546 pp., 1990.
D'Herbès, J. M. and Valentin, C.: Land surface conditions of the Niamey region: ecological and hydrological implications, J. Hydrol., 188–189, 18–42, 1997.
D'Herbès, J. M., Valentin, C., and Thiéry, J. M.: La brousse tigrée au Niger: synthèse des connaissances acquises, Hypothèses sur la genèse et les facteurs déterminant les différentes structures contractées, in: Fonctionnement et gestion des écosystèmes forestiers contractés sahéliens, edited by: d'Herbès, J. M., Ambouta, J. M. K., and Peltier, R., John Libbey, Paris, 131–152, 1997.
Di Bernardo, G., Hirscheider, A. and Sommer, S.: Synthetic landscape classification, in: Charactérisation par les techniques de télédétection de la dynamique de la désertification à la périphérie du Sahara, Projet 958 (83) TEL 1, edited by: List, F. K., Bodechtel, J., Jaskolla, F., and Mainguet, M., Final Report, Freie Universitaet Berlin, 36–60, 1986.
Diouf, A. A., Brandt, M., Verger, A., El Jarroudi, M., Djaby, B., Fensholt, R., Ndione, J. A., and Tychon, B.: Fodder biomass monitoring in sahelian rangelans using phonological metrics from FAPAR time series, Remote Sensing, 7, 9122–9148, https://doi.org/10.3390/rs70709122, 2015.
Diouf, A. A., Hiernaux, P., Brandt, M., Faye, G., Djaby, B., Diop, M. B., Ndione, J. A., and Tychon, B.: Do agrometeorological data improve optical satellite-based estimations of the herbaceous yield in sahelian semi-arid ecosystems?, Remote Sensing, 8, 668, https://doi.org/10.3390/rs8080668, 2016.
Druyan, L. M.: Review article, Advances in the study of sub-saharan drought, Int. J. Climatol., 9, 77–90, 1989.
El Amin, H. M.: Trees and shrubs of the Sudan, Ithaka Press, Exeter, 484 pp., 1990.
FAO: Land and Water Resources Survey in the Jebel Marra Area, Republic of the Sudan, Reconnaissance vegetation Survey, FAO, Rome, 63 pp., 1968a.
FAO: Land and Water Resources Survey in the Jebel Marra Area, Republic of the Sudan, Agronomy, FAO, Rome, 97 pp., 1968b.
FAO: Land and Water Resources Survey in the Jebel Marra Area, Republic of the Sudan, Land Use Survey, FAO, Rome, HTS (map 1:250.000), London, 9–33, 1968c.
FAO: Land and Water Resources Survey in the Jebel Marra Area, Republic of the Sudan, Forestry page, FAO, Rome, 8–22, 1968d.
FAO: Agricultural Development in the Jebel Marra Area, Annex I: Land Resources, FAO, Rome, 58 pp. plus Annex, 1977.
Fensholt, R., Sandholt, I., and Schultz Rasmussen, M.: Evaluation of MODIS LAI, FAPAR and the relation between FAPAR and NDVI in a semi-arid environment using in situ measurements, Remote Sens. Environ., 91, 490–507, https://doi.org/10.1016/j.re.2004.04.009, 2004.
Fensholt, R., Rasmussen, K., Kaspersen, P., Huber S., Horion, S., and Swinnen, E.: Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships, Remote Sensing, 5, 664–686, https://doi.org/10.3390/rs5020664, 2013.
Fensholt, R., Horion, S., Tagesson, T., Ehammer, A., Grogan, K., Tian, F., Huber, S., Verbesselt, J., Prince, S., Tucker, C., and Rasmussen, K: Assessment of vegetation trends in drylands from time series of earth observation data, in: Remote Sensing time series, revealing land surface dynamics, eduited by: Kuenzer, C., Dech, S., and Wagner, W., Springer, Berlin, 159–182, 2015.
Furon, R.: Le Sahel Soudanaise, La Géograhie, 51, 149–163, 1929.
Geerling, Ch.: Guide de terrain des ligneux sahéliens et soudano-guinéens, Sect. de Conservation et d'Aménagement de la Nature Université Agronomique de Wageningen, Pays-Bas, Wageningen, 340 pp., 1982.
Gessner, U., Knauer, K., Kuenzer, C., and Dech, S.: Land surface phenology in a West African savanna: impact of land use, land cover and fire, in: Remote Sensing time series, revealing land surface dynamics, edited by: Kuenzer, C., Dech, S., and Wagner, W., Springer, Berlin, 203–223, 2015.
Gilad, E., von Hardenberg, J., Provenzalec, A., Shachake, M., and Meron, E.: A mathematical model of plants as ecosystem engineers, J. Theor. Biol., 244, 680–691, 2007.
Gonzales, P.: Desertification and a shift of forest species in the West African Sahel, Climate Res., 17, 217–228, 2001.
Gonzales, P., Sy, H., and Tucker, C. J.: Local knowledge and remote sensing of forest biodiversity and forest carbon across the Sahel, Proceedings of the 16th Danish Sahel Workshop, Aarhus, 5–6 January 2004, 23–36, 2004.
Gonzales, P., Tucker, C. J., and Sy, H.: Tree density and species decline in the African Sahel attributable to climate, J. Arid Environ., 78, 55–64, 2012.
Greigert, J. and Pougnet, R. (coordinat.): Republique du Niger, Carte Geologique, 1:2 000 000, 1965.
Hahn, A. and Kusserow, H.: Spatial and temporal distribution of algae in soil crusts in the Sahel of W Africa, Preliminary results, Willdenowia, 28, 227–238, 1998.
Harrison, M. N. and Jackson, J. K.: Ecological classification of the Vegetation of the Sudan, Sudan Forestry Department Bull. 2., Khartoum, 109 pp., 1958.
Hein, L. and De Ridder, N.: Desertification in the Sahel: a reinterpretation, Glob. Change Biol., 12, 751–758, 2006.
Hein, L., De Ridder, N., Hiernaux, P., Leemans, R., De Witt, A., and Schaepman, M.: Desertification in the Sahel: towards better accounting for ecosystem dynamics in the interpretation of remote sensing images, J. Arid Environ., 75, 1164–1172, 2011.
Helldén, U.: Desertifcation – Time for assessment?, Ambio, 20, 372–383, 1991.
Helldén, U. and Tottrup, C.: Regional desertification: a global synthesis, Global Planet. Change, 64, 169–176, https://doi.org/10.1016/j.gloplacha.2008.10.006, 2008.
Herrman, S. M. and Hutchinson, C. F.: The changing contexts of the desertification debate, J. Arid Environ., 63, 538–555, 2005.
Herrmann, S. M., Anyamba, A., and Tucker, C. T.: Recent trends in vegetation dynamics in the African Sahel and their relationship to climate, Global Environ. Change, 15, 68–79, 2005.
Herrmann, S. M. and Sop, T. K.: The map is not the territory: how satellite remote sensing and ground evidence have re-shaped the image of Sahelian desertification, in: The End of Desertification? Disputing environmental change in the drylands, edited by: Behnke, R., H. and Mortimore, M., Springer, Berlin, 117–145, 2016.
Herrmann, S. M. and Tappan, G. G.: Vegetation impoverishment despite greening: A case study from central Senegal, J. Arid Environ., 90, 55–66, https://doi.org/10.1016/j.jaridenv.2012.10.020, 2013.
Hiernaux, P. and Gérard, B.: The influence of vegetation pattern on the productivity, diversity and stability of vegetation: the case of “brousse tigrée” in the Sahel, Acta Oecol., 20, 147–158, 1999.
Hiernaux, P., Cissé, M. J., and Diarra, L.: Bilan d'une saison des pluies 1984 très déficitaire dans le Gourma (Sahel malien), Première campagne de suivi et télédétection expérimentale. ILCA, (Doc. Prog. 140), Addis Ababa, 44 pp., 1984.
Hiernaux, P., Diarra, L., Trichon, V., Baup, F., Soumaguel, N., and Mougin, E.: Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali), J. Hydrol., 375, 103–113, https://doi.org/10.1016/j.jhydrol.2009.01.043, 2009a.
Hiernaux, P., Mougin, E., Diarra, L., Soumaguel, N., Lavenu, F., Tracol, Y., and Diawara, M.: Sahelian rangeland response to changes in rainfall over two decades in the Gourma region, Mali, J. Hydrol., 375, 114–127, https://doi.org/10.1016/j.jhydrol.2008.11.005, 2009b.
Hiernaux, P., Ayantunde, A., Kalilou, A., Mougin, E., Gérard, B., Baup, F., Grippa, M., and Djaby, B.: Trends in productivity of crops, fallow and rangelands in Southwest Niger: Impact of land use, management and variable rainfall, J. Hydrol., 375, 65–77, https://doi.org/10.1016/j.jhydrol.2009.01.032, 2009c.
Hiernaux, P., Dardel, C., Kergoat, L., and Mougin, E.: Desertification, adaptation and relience in the Sahel: lessons from long term monitoring of agro-ecosystems, in: The End of Desertification? Disputing environmental change in the drylands, edited by: Behnke, R. H. and Mortimore, M., Springer, Berlin, 147–178, 2016.
Higginbottom, T. P. and Symeonakis, E.: Assessing land degradation and desertification using vegetation index data: current frameworks and future directions, Remote Sensing, 6, 9552–9575, https://doi.org/10.3390/rs6109552, 2014.
Hofbauer, M.: Mali und Westafrika in vorkolonialer Zeit. Die Reiche Ghana, Mali und Songhay, in: Wegweiser zur Geschichte Mali, Im Auftrag des Zentrums für Militärgeschichte und Sozialwissenschaften der Bundeswehr, edited by: Hofbauer, M. and Münch, P., Ferdinand Schöningh, Paderborn, 19–34, 2013.
Hoffmann, B. G.: Mungo Park's Reise in das Innere von Afrika in den Jahren 1795, 1796 und 1797, Neuere Geschichte der See- und Land Reisen, 12. Bd., Hamburg, 534 pp., 1799.
Horion, S., Fensholt, R., Tagesson, T., and Ehammer, A.: Using earth observation-based dry season NDVI trends for assessment of changes in tree cover in the Sahel, Int. J. Remote Sens., 35, 2493–2515, https://doi.org/10.1080/01431161.2014.883104, 2014.
Hunting Technical Services (HTS): Jebel Marra Investigations – Report on Phase 1, Studies, London, 113 pp., 1958.
Hunting Technical Services (HTS): Western Savannah Development project Phase II – Annex I (Soils and Vegetation), HTS, London, 33–40, 1976.
Hunting Technical Services (HTS): Western Savanna Development Corporation. Mapping Land Use Change from Landsat Satellite Imagery, Results of a pilot study in southern Darfur, HTS, London, 40 pp., 1985a.
Hunting Technical Services (HTS): Jebel Marra Rural Development Project, Range and Livestock Development in the Jebel Marra Project Area, Appendices, HTS, London, 26 pp., 1985b.
Hunting Technical Services (HTS): Western Savannah Development Corporation. Monitoring Vegetation and Land Use Change in selected areas of South Darfur – a methodology using SPOT satellite imagery, Final report, HTS, Hertfordshire, 59 pp. plus Annex, 1989.
Hunting Technical Services (HTS): Jebel Marra Rural Development Project, Land Use Planning Studies, Final report, London, 1995.
Ibrahim, F. N.: Ecological Imbalance in the Republic of Sudan. Desertification in Darfur, Ph.D., University of Bayreuth, Bayreuth, 215 pp., 1984.
Ibrahim, S. and Schulz, E.: At the sources of fear. The Guidimouna record (SE-Niger) and the history of desertification, Zbl. Geol. Paläont., in press, 2018.
International Crisis Group (ICG): The Central Sahel: A perfect sandstorm, Africa Report No. 227, 2015, available at: http://www.crisisgroup/, last access: 4 July 2016.
International Energy Agency (IEA): Africa Energy Outlook, available at: http://www.iea.org/ (last access: 8 April 2016), 2014.
Institute Géographique National Paris (IGN): Carte de l'Afrique de l'Ouest au 1:200 000, feuille Sokolo, République du Mali – Feuille ND-29-XVIII, IGN Paris, February 1961.
Institute Géographique National Paris (IGN): Carte de l'Afrique de l'Ouest au 1:200 000, feuille Ouallam, République du Niger – Feuille ND-31-XV, IGN Paris, March 1961.
Institute Géographique National Paris (IGN): Carte de l'Afrique de l'Ouest au 1:500 000, feuille Hombori, République du Mali, Republique de Haute Volta – Feuille ND-30-N.E., IGN Paris, April 1961.
Ivits, E., Cherlet, M., Horion, S., and Fensholt, R.: Global biogeographical pattern of ecosystem functional types derived from earth observation data, Remote Sensing, 5, 3305–3330, https://doi.org/10.3390/rs5073305, 2013.
Janke, B.: Zum Problem der Vegetationsstreifen (Brousse tigrée) im semiariden Afrika. Geoökologische Untersuchungen in West-Niger, Die Erde, 107, 31–46, 1976.
Jones, B.: Dessiccation and the West African colonies, Geogr. J., 16, 401–423, 1938.
Jones, C. G., Lawton, J. H., and Shachak, M.: Organisms as ecosystem engineers, OIKOS, 69, 3733–3786, 1994.
Jones, C. G., Lawton, J. H., and Shachak, M.: Positive and negative effects of organisms as physical ecosystem engineers, Ecology, 78, 1946–1957, https://doi.org/10.1890/00129–658, 1997.
Kaptué, A. T., Prihodko, L., and Hanan, N. P.: On regreening and degradation in Sahelian watersheds, P. Natl. Acad. Sci. USA, 1–6, 12133–12138, https://doi.org/10.1073/pnas.1509645112, 2015.
Kirsch-Jung, K. P. and Kusserow, H.: Monitoring land degradation and erosion control measures: Analysis of multitemporal satellite data of the West African Sahel – Proceedings 12th International Soil Conservation Organisation Conference, Beijing, China, 26–31 May 2002, Volume IV, 17–20, 2002.
Ki Zerbo, J.: Die Geschichte Schwarz-Afrikas, Fischer, Frankfurt a.M., 774 pp., 1992.
Kletter, A. Y., von Hardenberg, J., and Meron, E.: Ostwald ripening in dryland vegetation, Commun. Pur. Appl. Anal., 11, 262–273, https://doi.org/10.3934/cpaa.2012.11.261, 2012.
Knauer, K., Gessner, U., Dech, S., and Kuenzer, C.: Remote sensing of vegetation dynamics in West Africa, Int. J. Remote Sens., 35, 6357–6396, https://doi.org/10.1080/01431161.2014.954062, 2014.
Knauer, K., Gessner, U., Fensholt, R., Forkuor, G., and Kuenzer, C.: Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment, Remote Sens., 9, 132, https://doi.org/10.3390/rs9020132, 2017.
Krings, T.: Kulturgeographischer Wandel in der Kontaktzone von Nomaden und Bauern im Sahel Obervolta – am Beispiel des Oudalan, Hamburger Geographische Studien, 36, 116 pp., 1980.
Krings, T.: Sahel – Senegal, Mauretanien, Mali, Niger – Islamische und traditionelle schwarzafrikanische Kultur zwischen Atlantik und Tschadsee, Du Mont, Köln, 429 pp., 1982.
Krings, T.: Agrarwissen bäuerlicher Gruppen in Mali/Westafrika, Abh. Anthropogeographie, Sonderheft 3, Reimer Verlag, Berlin, 301 pp., 1991a.
Krings, T.: Kulturbaumparks in den Agrarlandschaften Westafrikas – eine Form autochthoner Agroforstwirtschaft, Die Erde, 122, 117–129, 1991b.
Krings, T.: Sahelländer, Wissenschaftliche Buchgesellschaft, Darmstadt, 220 pp., 2006.
Kusserow, H.: Reconnaissance, cartography and inventory of woody vegetation by the support of LANDSAT MSS data, in: Charactérisation par les techniques de télédétection de la dynamique de la désertification à la périphérie du Sahara, edited by: List, F. K., Bodechtel, J., Jaskolla, F., and Mainguet, M., Projet 958 (83) TEL 1, Final Report, Freie Universitaet Berlin, 89–135, 1986.
Kusserow, H.: Assessing vegetation dynamics in desertification prone areas in Mali using Landsat data [Anwendung von Landsat-Daten zur Erfassung der Vegetationsdynamik in desertifikationsgefährdeten Gebieten Malis], Die Erde, 121, 39–53, 1990.
Kusserow, H.: Quantitative and qualitative survey of vegetation dynamics. Example South-Sahel in Mali [Quantitative und qualitative Erfassung von Vegetationsänderungen, Ein Beispiel aus dem Südsahel Malis], Die Erde, 125, 35–56, 1994.
Kusserow, H.: Einsatz von Fernerkundungsdaten zur Vegetationsklassifizierung im Südsahel Malis. Ein multitemporaler Vergleich zur Erfassung der Dynamik von Trockengehölzen, PhD, Wissenschaftl. Schriftenreihe Umweltmonitoring, 1, Berlin, 146 pp., 1995.
Kusserow, H.: Lutte contre la désertification au Niger: utilisation des images satellites pour le suivi d'impact. Cas de PASP et PDRT, TZ-Verlagsgesellschaft, Roßdorf, 50 pp., 2001.
Kusserow, H: Etude du devéloppement à long terme de la zone pastorale et des zones avoisinantes au Niger entre 1970 et 2000, Rapport final, GTZ, Frankfurt, p. 49 Annex I, 43 pp., Annex II, 63 pp., 2002a.
Kusserow, H.: Etude de l'évolution de la dégradation du couvert végétal au Guidimakha/ Mauritanie 1988/89-1998/99 sur la base d'une interprétation multitemporelle d'images satellites, Rapport final, ECO/GTZ, Frankfurt, 25 pp., 2002b.
Kusserow, H.: Analyse comparative de l'évolution du couvert végétal dans le Ouaddaï-Biltine, Tchad, Rapport final, GTZ, Frankfurt, 19 pp., 2005.
Kusserow, H.: Suivi de l'évaluation des succès des mesures anti érosives et des ressources naturelles dans la région de Tahoua et Tillabéri – Phase II, Rapport final, FICOD/ KfW, Niamey, Niger, 29 pp. plus Annexe, 2010.
Kusserow, H.: The African Sahel – field of tension between desertification and salafism [Die Sahelzone Afrikas im Spannungsfeld zwischen Desertifikation und Salafismus], Zbl. Geol. Paläont. I, 1, 117–150, 2014.
Kusserow, H. and Haenisch, H.: Monitoring the dynamics of the “Tiger Bush” (brousse tigrée) in the West African Sahel (Niger) by a combination of Landsat MSS and TM, SPOT, aerial- and kite photographs, Photogrammetrie, Fernerkundung, Geoinformation, 2, 77–94, 1999.
Kusserow, H. and Oestreich, A.: Rainfall development in the West African Sahel in this century – periodic oscillation or decline? A case study of Niger, Zbl. Geol. Paläont., 1, 115–131, 1998.
Kusserow, H., Langsdorf, A., and Salifou, I: Genetic diversity of wild growing forage plants in West African Sahel studied for the example of Alysicarpus ovalifolius and Zornia glochidiata, Plant Research and Development, 50, 30–41, 1999.
Larwanou, M. and Saadou, M.: The role of human interventions in tree dynamics and environmental rehabilitation in the Sahel zone of Niger, J. Arid Environ., 75, 194–200, https://doi.org/10.1016/j.jaridenv.2010.09.016, 2011.
Lebel, T. and Ali, A.: Recent trends in the central and western Sahel rainfall regime (1990–2007), J. Hydrol., 375, 52–64, 2009.
Lebon, J. H. G.: Land Use in Sudan – The World Land Use Survey, Monograph 4, Geographical Publications, 222 pp., 1965.
Le Houérou, H. N.: The grazing land ecosystems of the African Sahel, Ecological Studies 75, Springer, Berlin, 282 pp., 1989.
Lejeune, O., Tlidi, M., and Couteron, P.: Localized vegetation patches: a self-organize response to resource scarcity, Phys. Rev., 66, 010901, https://doi.org/10.1103/PhysRevE.66.010901, 2002.
Lenz, O.: Reise durch Marokko, die Sahara und den Sudan, Zweiter Band, Brockhaus, Leipzig, 385 pp., 1892.
Lester-Garland, L. V.: Some plants from Jebel Marra, Darfur, J. Bot., 59, 46–48, 1921.
Mainguet, M.: Desertification. Natural Background and Human Mismanagement, Springer, Berlin, 306 pp., 1991.
Mainguet, M.: Aridity, Drought and human developments, Springer, Berlin, 302 pp., 1999.
Maranz, S.: Tree mortality in the African Sahel indicates an anthropogenic ecosystem displaced by climate change, J. Biogeogr., 2009, 1181–1193, https://doi.org/10.1111/j.1365-2699.2008.02081.x, 2009.
Mbow, C., Fensholt, R., Rasmussen, K., and Diop, D.: Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground-based measurements, J. Arid Environ., 97, 56–65, https://doi.org/10.1016/j.jaridenv.2013.05.011, 2013.
Mbow, C., Fensholt, R., Nielsen, T. T. and Rasmussen, K.: Advances in monitoring vegetation and land use dynamics in the Sahel, Geogr. Tidsskr., 114, , 84–91, https://doi.org/10.1080/00167223.2014.886515, 2014.
Mbow, C., Brandt, M., Ouedraogo, I., de Leeuw, J., and Marshall, M.: What four decades of Earth Observation tell us about land degradation in the Sahel?, Remote Sensing, 7, 4048–4067, https://doi.org/10.3390/rs70404048, 2015.
Mensching, H. G.: Desertifikation. Ein weltweites Problem der ökologischen Verwüstung in den Trockengebieten der Erde, Wissenschaftliche Buchgesellschaft, Darmstadt, 170 pp., 1990.
Meron, E.: Pattern-formation approach to modelling spatially extended ecosystems, Ecol. Model., 234, 70–82, https://doi.org/10.1016/j.ecolmodel.2011.05.035, 2012.
Miehe, S.: Vegetation Ecology of the Jebel Marra Massif in the semiarid Sudan, Dissertationes Botanicae, 113, Cramer, Berlin, 171 pp., 1988.
Miehe, S., Kluge, J., von Wehrden, H., and Retzer, V.: Long-term degradation of Sahelian rangeland detected by 27 years of field study in Senegal, J. Appl. Ecol., 47, 692–700, https://doi.org/10.1111/j.1365-2664.2010.01815.x, 2010.
Monod, T.: Modes “Contracté” et “Diffus” de la Végétation Saharienne, in: Biology of deserts, Symp. Biol. Hot and Cold Deserts, edited by: Cloudsley-Thompson, J. L., Institute of Biology, London, 35–44, 1954.
Mortimore, M.: What are the issues? Have the issues changed? in: Natural Resource Management in Sahel – Lessons Learnt: Proceedings of the 17th Danish Sahel Workshop, Roskilde, Denmark, edited by: Møllegaard, M., 6–7 November 2006.
Mortimore, M.: Changing paradigms for people-centered development in the Sahel, in: The End of Desertification? Disputing environmental change in the drylands, edited by: Behnke, R. H. and Mortimore, M., Springer, Berlin, 65–98, 2016.
Müller, C., Cramer, W., Hare, W. L., and Lotze-Campen, H.: Climate change risk for African agriculture, P. Natl. Acad. Sci. UAS, 108, 4313–4315, https://doi.org/10.1073/pnas.1015078108, 2011.
Nicholson, S. E.: The historical climatology in Africa, Climate and History, 249–270, 1981.
Nicholson, S. E.: Long-term changes in African Rainfall, Weather, 44, 42–55, 1989.
Nicholson, S. E.: On the question of the “recovery” of the rains in the West African Sahel, J. Arid Environ., 63, 615–641, 2005.
Nicholson, S. E.: The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability, ISRN Meteorology, 453521, 32 pp., https://doi.org/10.1155/2013/453521, 2013.
Nicholson, S. E., Tucker, C. J., and Ba, M. B.: Desertification, Drought and surface vegetation: an example from the West African Sahel, B. Am. Meteorol. Soc., 79 815–829, 1998.
Nicholson, S. E., Dezfuli, A. K., and Klotter, D.: A two-century precipitation data set for the continent of Africa, B. Am. Meteorol. Soc., 93, 1219–1231, 2012.
Olsson, L., Ekhlundh, L., and Ardö, J.: A recent greening of the Sahel – trends, pattern and potential causes, J. Arid Environ., 63, 556–566, 2005.
Ouedraogo, I., Tigabu, M., Savadogo, P., Compaore, H., Oden, P. C., and Ouadba, J. M.: Land cover change and its relation with population dynamics in Burkina Faso, West Africa, Land Degrad. Dev., 21, 453–462, https://doi.org/10.1002/ldr.981, 2010.
Peyre de Fabregues, B. and Lebrun, J.-P.: Catalogue des plants vasculaires du Niger, Inst. D'Elevage et de Medicine Veterinaire des Pays Tropicaux, Etude Botanique 3, Maison Alfort, 433 pp., 1976.
Pias, J.: La Végétation du Tschad, Traveaux et Documents de L'O.R.S.T.O.M., 6, Paris, 47 pp., 1970.
Poupon, H.: Structure et dynamique de la strate ligneuse d'une steppe sahélienne au nord du Sénégal, Traveaux et Documents de L'O.R.S.T.O.M.,115, Paris, 351 pp., 1980.
Prince, S. D.: Where does desertification occur? Mapping dryland degradation at regional to global scales, in: The End of Desertification? Disputing environmental change in the drylands, edietd by: Behnke, R., H. and Mortimore, M., Springer, Berlin, 225–265, 2016.
Prince, S. D., Wessels, K. J., Tucker, C. J., and Nicholson, S. E.: Desertification in the Sahel: a reinterpretation of a reinterpretation, Glob. Change Biol., 13, 1308–1313, https://doi.org/10.1111/j.1365-2486.2007.01356.x, 2007.
Quézel, P.: Flore et végétation des plateaux du Darfur Nord-Occidental et du Jebel Gourgeil, Dossieurs de la R.C.P., 45, Marseille, 146 pp., 1969.
Ramsey, D. M. C.: The Forest Ecology of Central Darfur, The Republic of The Sudan, Ministry of Agriculture, Forest Department Forests Bulletin, 1, Khartoum, 45 pp., 1958.
Rasmussen, K.: Land degradation in the Sahel-Sudan: the conceptual basis, Geografisk Tidsskrift, Bind si02, 1999, 1999.
Rasmussen, K., Fog, B., and Madsen, J. E.: Desertification in reverse? Observations from northern Burkina Faso, Global Environ. Chang., 11, 271–281, 2001.
Rasmussen, K., Nielsen, T. T., Mbow, C., and Wardell, A.: Land degradation in the Sahel: an apparent scientific contradiction, in: Natural Resource Management in Sahel – Lessons Learnt: Proceedings of the 17th Danish Sahel Workshop, Roskilde, Denmark, edited by: Møllegaard, M., 6–7 November 2006, 37–43, 2006.
Rasmussen, K., Fensholt, R., Fog, B., Rasmussen, L. V., and Yanogo, I.: Explaining NDVI trends in northern Burkina Faso, Geogr. Tidsskr., 114, 17–24, https://doi.org/10.1080/00167223.2014.890522, 2014.
Rasmussen, K., D'haen, S., Fensholt, R., Fog, B., Horion, S., Nielsen, J. O., Rasmussen, L. V., and Reenberg, A.: Environmental change in the Sahel: reconciling contrasting evidence and interpretations, Reg. Environ Change, 16, 673–680, https://doi.org/10.1007/s10113-015-0778-1, 2016.
Reichelt, R.: Géologie du Gourma, un “seuil” et un basin du précambrien supérieur, Mémoires du B.R.G.M., 5, Paris, 213 pp., 1972.
Reichelt, R.: Sahel: Wiederkunft einer alten Wüste, Spektrum der Wissenschaft 7, 33–38, 1987.
Reichelt, R.: L'Hydraulique Pastorale et la Desertification au Sahel des Nomades en Afrique de l'Ouest – Réalités et Perspectives, Geologisches Jahrbuch, C, 52, Stuttgart, 32 pp., 1989.
Reichelt, R., Faure, H., and Maley, J.: Die Entwicklung des Klimas im randtropischen Sahara-Sahelbereich während des Jungquartärs – ein Beitrag zur angewandten Klimakunde, Petermanns Geographische Mitteilung 136/2+3, 69–79, 1992.
Rietkerk, M., Dekker, S. C., de Ruiter, P. C., and van de Koppel, J.: Self-Organized Patchiness and Catastrophic Shifts in Ecosystems, Science, 305, 1926–1929, 2004.
Rietkerk, M., Brovkin, V., Bodegom Van, P. M., Claussen, M., Dekker, S. C., Dijkstra, H. A., Goryachkin, S. V., Kabat, P., Nes Van, E. H., Neutel, A.-M., Nicholson, S. E., Nobre, C., Petoukhov, V., Provenzale, A., Scheffer, M., and Seneviratne, S. I.: Local ecosystem feedbacks and critical transitions in the climate, Ecol. Complex., 8, 223–228, 2011.
Roberty, G.: Les associations végétales de la vallée moyenne du Niger, Veröff. Geobot. Inst. Rübel Zürich, 22, Hans Huber, Bern, 168 pp., 1946.
Sambou, A., Theilade, I., Fensholt, R., and Raebild, A.: Decline of woody vegetation in a saline landscape in the Groundnut basin, Senegal, Reg. Environ. Change, 16, 1765–1777, https://doi.org/10.1007/s10113-016-0929-z, 2016.
Sanogo, S., Fink, A. H., Omotosho, J. A., Ba, A., Redl, R., and Ermert, V.: Spatio-temporal characteristics of the recent rainfall recovery in West Africa, Int. J. Climatol., 35, 4589–4650, https://doi.org/10.1002/joc.4309, 2015.
Schulz, E.: Der Südrand der Sahara, Wuerzb. Geogr. Abh., 69, 167–210, 1988.
Schulz, E. and Pommel. S.: Die anthropogene Entstehung des Sahel, Wuerzb. Geogr. Arbeiten, 84, 263–288, 1992.
Schulz, E., Abichou, A., Adamou, A., Ousseini, I., and Ballouche, A.: The desert in the Sahara. Transitions and boundaries, in: Holocene Palaeoenvironmental History of the Central Sahara, edited by: Baumhauer, R. and Runge, J., 29, 63–90, 2009.
Sendzimir, J., Reij, C. P., and Magnuszewski, P.: Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger, Ecol. Soc., 16, 3, https://doi.org/10.5751/ES-04198-160301, 2011.
Spiekermann, R., Brandt, M., and Samimi, C.: Woody vegetation and land cover changes in the Sahel of Mali, Int. J. Appl. Earth Obs., 34, 113–121, https://doi.org/10.1016/j.jag.2014.08.007, 2015.
Stebbing, E. P.: The encroaching Sahara: the threat to the West African colonies, Geogr. J., 85, 506–524, 1935.
Stebbing, E. P.: The advance of the Sahara, Geogr. J., 91, 356–359, 1938.
Thiéry, J. M., D'Herbes, J.-M., and Valentin, C.: A model simulating the genesis of banded vegetation patterns in Niger, J. Ecol., 83, 497–507, 1995.
Thomas, D. S. G. and Middleton, N. J.: Desertification: Exploding the Myth, Wiley and Sons, Chichester, 194 pp., 1994.
Tong, X., Brandt, M., Hiernaux, P., Herrmann, S. M., Tian, F., Prishchepov, A. V., and Fensholt, R.: Revisiting the coupling between NDVI trends and cropland changes in the Sahel drylands: a case study in western Niger, Remote. Sens. Environ., 191, 286–296, https://doi.org/10.1016/j.rse.2017.01.030, 2017.
Toutain, B. and De Wispelaere, G.: Paturages de l'O.R.D. du Sahel et de la zone de délestage au nord-est de Fada N'Gourma (Haut-Volta), I.E.M.V.T., Ètude Agropastorale 51, Maisons-Alfort, Tome 1, 134 pp. plus Annex, Tome 2, 120 pp. plus Annex, Tome 3, 239 pp. plus Annex, 1978.
Trochain, J.: Contribution a l'étude de la végétation du Sénégal, Mem. de l'Inst. Français d'Afrique Noire, 2, Paris, 433 pp., 1940.
Tucker, C. J. and Nicholson, S. E.: Variations in the size of the Sahara desert from 1980 to 1997, Ambio, 28, 587–591, 1999.
Tucker, C. J., Dregne, H. E., and Newcomb, W. W.: Expansion and contraction of the Sahara desert from 1980 to 1990, Science, 253, 299–301, 1991.
UNCCD: International convention to combat desertification, available at: http://www.unccd.int/ (last access: 2 January 2017), 1994.
UNCOD: Desertification: its causes and consequences, Pergamon press, Oxford, 448 pp., 1977.
UNDP: Human development Report 2015, 288 pp., available at: http://hdr.undp.org/ (last access: 25 April 2016), 2015.
UNICEF: Generation 2030, Africa. Child demographics in Africa, 68 pp., available at: http://www.unicef.org/ (last access: 15 May 2016), 2014.
Valentin, C., d'Herbes, J. M., and Poesen, J.: Soil and water components of banded vegetation patterns, Catena, 37, 1–24, 1999.
Vincke, C., Diédhiou, I., and Grouzis, M.: Long term dynamics and structure of woody vegetation in the Ferlo (Senegal), J. Arid Environ., 74, 268–276, https://doi.org/10.1016/j.jaridenv.2009.08.006, 2010.
von Hardenberg, J., Meron, E., Shachak, M., and Zarmi, Y.: Diversity of Vegetation Patterns and Desertification, Phys. Rev. Lett., 87, 198101–198104, https://doi.org/10.1103/PhysRevLett.87.198101, 2001.
von Hardenberg, J., Kletter, A. Y., Yizhaq, H., Nathan, J., and Meron, E.: Periodic versus scale-free patterns in dryland vegetation, P. Roy. Soc. Lond. B Bio., 277, 1771–1776, https://doi.org/10.1098/rspb.2009.2208, 2010.
von Maydell, H.-J.: Trees and Shrubs in the Sahel – Their characteristics and uses, Schriftenreihe der GTZ, 196, Eschborn, 525 pp., 1986.
Weiss, C.: Al Qaeda has launched more than 100 attacks in West Africa in 2016, The Long War Journal, available at: http://www.longwarjournal.org/ (last access: 4 January 2017), 2016.
Wezel, A.: Local knowledge of vegetation changes in Sahelian Africa – implications for local resource management, Proceedings of the 16th Danish Sahel Workshop, Aarhus, 5–6 January 2004, 37–51, 2004.
White, L. P.: Brousse tigrée patterns in souther Niger, J. Ecol., 58, 549–553, 1970.
Wickens, G. E.: The flora of Jebel Marra (Sudan Republic) and its geographical affinities, Royal Botanic Gardens, Kew Bulletin Additional series V, KEW, 368 pp., 1976.
Short summary
Sahel greening and browning are discussed based on the relevance of edaphic factors, the importance of the observation period, and modifications in the vegetation pattern. The key findings are that (i) vegetation recovery predominantly depends on soil types, (ii) botanical investigations and EO-based time series show a substantial decline in the diversity and cover density of woody species compared to pre-drought conditions, (iii) and pattern formation is a key indicator for ecosystem changes.
Sahel greening and browning are discussed based on the relevance of edaphic factors, the...
Special issue
Altmetrics
Final-revised paper
Preprint