Articles | Volume 12, issue 4
Earth Syst. Dynam., 12, 1253–1273, 2021
https://doi.org/10.5194/esd-12-1253-2021
Earth Syst. Dynam., 12, 1253–1273, 2021
https://doi.org/10.5194/esd-12-1253-2021
Research article
25 Nov 2021
Research article | 25 Nov 2021

Is time a variable like the others in multivariate statistical downscaling and bias correction?

Yoann Robin and Mathieu Vrac

Related authors

Human influence on growing-period frosts like the early April 2021 in Central France
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-41,https://doi.org/10.5194/nhess-2022-41, 2022
Revised manuscript under review for NHESS
Short summary
Nonstationary extreme value analysis for event attribution combining climate models and observations
Yoann Robin and Aurélien Ribes
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020,https://doi.org/10.5194/ascmo-6-205-2020, 2020
Short summary
Multivariate bias corrections of climate simulations: which benefits for which losses?
Bastien François, Mathieu Vrac, Alex J. Cannon, Yoann Robin, and Denis Allard
Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020,https://doi.org/10.5194/esd-11-537-2020, 2020
Short summary
Multivariate stochastic bias corrections with optimal transport
Yoann Robin, Mathieu Vrac, Philippe Naveau, and Pascal Yiou
Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019,https://doi.org/10.5194/hess-23-773-2019, 2019
Short summary
Detecting changes in forced climate attractors with Wasserstein distance
Yoann Robin, Pascal Yiou, and Philippe Naveau
Nonlin. Processes Geophys., 24, 393–405, https://doi.org/10.5194/npg-24-393-2017,https://doi.org/10.5194/npg-24-393-2017, 2017
Short summary

Related subject area

Earth system change: climate prediction
Atmospheric regional climate projections for the Baltic Sea region until 2100
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022,https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Balanced estimate and uncertainty assessment of European climate change using the large EURO-CORDEX regional climate model ensemble
Guillaume Evin, Samuel Somot, and Benoit Hingray
Earth Syst. Dynam., 12, 1543–1569, https://doi.org/10.5194/esd-12-1543-2021,https://doi.org/10.5194/esd-12-1543-2021, 2021
Short summary
Extreme metrics from large ensembles: investigating the effects of ensemble size on their estimates
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021,https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles
Stefanie Talento and Andrey Ganopolski
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021,https://doi.org/10.5194/esd-12-1275-2021, 2021
Short summary
Trivial improvements in predictive skill due to direct reconstruction of the global carbon cycle
Aaron Spring, István Dunkl, Hongmei Li, Victor Brovkin, and Tatiana Ilyina
Earth Syst. Dynam., 12, 1139–1167, https://doi.org/10.5194/esd-12-1139-2021,https://doi.org/10.5194/esd-12-1139-2021, 2021
Short summary

Cited articles

Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resour. Res., 48, 9502, https://doi.org/10.1029/2011WR011524, 2012. a, b
Bartók, B., Tobin, I., Vautard, R., Vrac, M., Jin, X., Levavasseur, G., Denvil, S., Dubus, L., Parey, S., Michelangeli, P.-A., Troccoli, A., and Saint-Drenan, Y.-M.: A climate projection dataset tailored for the European energy sector, Clim. Serv., 16, 100138, https://doi.org/10.1016/j.cliser.2019.100138, 2019. a
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. a
Bhuiyan, M. A. E., Nikolopoulos, E. I., Anagnostou, E. N., Quintana-Seguí, P., and Barella-Ortiz, A.: A nonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula, Hydrol. Earth Syst. Sci., 22, 1371–1389, https://doi.org/10.5194/hess-22-1371-2018, 2018. a
Boé, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro‐meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007. a
Download
Short summary
We propose a new multivariate downscaling and bias correction approach called time-shifted multivariate bias correction, which aims to correct temporal dependencies in addition to inter-variable and spatial ones. Our method is evaluated in a perfect model experiment context where simulations are used as pseudo-observations. The results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted.
Altmetrics
Final-revised paper
Preprint