Articles | Volume 12, issue 4
https://doi.org/10.5194/esd-12-1253-2021
https://doi.org/10.5194/esd-12-1253-2021
Research article
 | 
25 Nov 2021
Research article |  | 25 Nov 2021

Is time a variable like the others in multivariate statistical downscaling and bias correction?

Yoann Robin and Mathieu Vrac

Related authors

Attributing the occurrence and intensity of extreme events with the flow analogues method
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3167,https://doi.org/10.5194/egusphere-2024-3167, 2024
Short summary
Human influence on growing-period frosts like in early April 2021 in central France
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023,https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Nonstationary extreme value analysis for event attribution combining climate models and observations
Yoann Robin and Aurélien Ribes
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020,https://doi.org/10.5194/ascmo-6-205-2020, 2020
Short summary
Multivariate bias corrections of climate simulations: which benefits for which losses?
Bastien François, Mathieu Vrac, Alex J. Cannon, Yoann Robin, and Denis Allard
Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020,https://doi.org/10.5194/esd-11-537-2020, 2020
Short summary
Multivariate stochastic bias corrections with optimal transport
Yoann Robin, Mathieu Vrac, Philippe Naveau, and Pascal Yiou
Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019,https://doi.org/10.5194/hess-23-773-2019, 2019
Short summary

Related subject area

Earth system change: climate prediction
Past and future response of the North Atlantic warming hole to anthropogenic forcing
Saïd Qasmi
Earth Syst. Dynam., 14, 685–695, https://doi.org/10.5194/esd-14-685-2023,https://doi.org/10.5194/esd-14-685-2023, 2023
Short summary
Performance-based sub-selection of CMIP6 models for impact assessments in Europe
Tamzin E. Palmer, Carol F. McSweeney, Ben B. B. Booth, Matthew D. K. Priestley, Paolo Davini, Lukas Brunner, Leonard Borchert, and Matthew B. Menary
Earth Syst. Dynam., 14, 457–483, https://doi.org/10.5194/esd-14-457-2023,https://doi.org/10.5194/esd-14-457-2023, 2023
Short summary
Emergent constraints for the climate system as effective parameters of bulk differential equations
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023,https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary
Ensemble forecast of an index of the Madden–Julian Oscillation using a stochastic weather generator based on circulation analogs
Meriem Krouma, Riccardo Silini, and Pascal Yiou
Earth Syst. Dynam., 14, 273–290, https://doi.org/10.5194/esd-14-273-2023,https://doi.org/10.5194/esd-14-273-2023, 2023
Short summary
Reconstructions and predictions of the global carbon budget with an emission-driven Earth system model
Hongmei Li, Tatiana Ilyina, Tammas Loughran, Aaron Spring, and Julia Pongratz
Earth Syst. Dynam., 14, 101–119, https://doi.org/10.5194/esd-14-101-2023,https://doi.org/10.5194/esd-14-101-2023, 2023
Short summary

Cited articles

Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resour. Res., 48, 9502, https://doi.org/10.1029/2011WR011524, 2012. a, b
Bartók, B., Tobin, I., Vautard, R., Vrac, M., Jin, X., Levavasseur, G., Denvil, S., Dubus, L., Parey, S., Michelangeli, P.-A., Troccoli, A., and Saint-Drenan, Y.-M.: A climate projection dataset tailored for the European energy sector, Clim. Serv., 16, 100138, https://doi.org/10.1016/j.cliser.2019.100138, 2019. a
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. a
Bhuiyan, M. A. E., Nikolopoulos, E. I., Anagnostou, E. N., Quintana-Seguí, P., and Barella-Ortiz, A.: A nonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula, Hydrol. Earth Syst. Sci., 22, 1371–1389, https://doi.org/10.5194/hess-22-1371-2018, 2018. a
Boé, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro‐meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007. a
Download
Short summary
We propose a new multivariate downscaling and bias correction approach called time-shifted multivariate bias correction, which aims to correct temporal dependencies in addition to inter-variable and spatial ones. Our method is evaluated in a perfect model experiment context where simulations are used as pseudo-observations. The results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted.
Altmetrics
Final-revised paper
Preprint