Articles | Volume 13, issue 4
https://doi.org/10.5194/esd-13-1491-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-1491-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigation of the extreme wet–cold compound events changes between 2025–2049 and 1980–2004 using regional simulations in Greece
Iason Markantonis
CORRESPONDING AUTHOR
Environmental Research Laboratory, NCSR “Demokritos”, 15341 Agia
Paraskevi, Greece
Department of Physics, University of Patras, University Campus 26504 Rio, Patras, Greece
Diamando Vlachogiannis
Environmental Research Laboratory, NCSR “Demokritos”, 15341 Agia
Paraskevi, Greece
Athanasios Sfetsos
Environmental Research Laboratory, NCSR “Demokritos”, 15341 Agia
Paraskevi, Greece
Ioannis Kioutsioukis
Department of Physics, University of Patras, University Campus 26504 Rio, Patras, Greece
Related authors
Iason Markantonis, Diamando Vlachogiannis, Athanasios Sfetsos, Ioannis Kioutsioukis, and Nadia Politi
Adv. Sci. Res., 19, 145–158, https://doi.org/10.5194/asr-19-145-2023, https://doi.org/10.5194/asr-19-145-2023, 2023
Short summary
Short summary
This paper examines the simulataneous exceedance of daily accumulated precipitation (RR) and minimum (TN) temperature thresholds in Greece for the period 1980–2004 and for each month in the period November to April. Available data from observations and projection simulations are used to calculate the probabilities of extreme wet-cold compound events at the past. Models are validated by the observational data.
Ioannis Kioutsioukis, Christian Hogrefe, Paul A. Makar, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Olivia E. Clifton, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aura Lupascu, Kester Momoh, Juan Luis Perez-Camaño, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Ranjeet Sokhi, and Stefano Galmarini
Atmos. Chem. Phys., 25, 12923–12953, https://doi.org/10.5194/acp-25-12923-2025, https://doi.org/10.5194/acp-25-12923-2025, 2025
Short summary
Short summary
Deposition is key in air quality modeling. An unprecedented evaluation of the Air Quality Model Evaluation International Initiative phase 4 models is performed on different deposition schemes in relation to the land use and land cover (LULC) used. Among the results, LULC masks have to be harmonized and up-to-date information used in place of masks that are outdated and too coarse. Alternatively, LULC masks should be evaluated and intercompared when multiple model results are analyzed.
Christian Hogrefe, Stefano Galmarini, Paul A. Makar, Ioannis Kioutsioukis, Olivia E. Clifton, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camanyo, Jonathan E. Pleim, Young-Hee Ryu, Roberto San Jose, Martijn Schaap, Donna B. Schwede, and Ranjeet Sokhi
Atmos. Chem. Phys., 25, 12629–12656, https://doi.org/10.5194/acp-25-12629-2025, https://doi.org/10.5194/acp-25-12629-2025, 2025
Short summary
Short summary
Performed under the umbrella of Phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in regional-scale models. The results also strongly suggest that improvement and harmonization of the representation of land use in these models would serve the community in their future development efforts.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W. Shephard, Ranjeet S. Sokhi, and Stefano Galmarini
Atmos. Chem. Phys., 25, 3049–3107, https://doi.org/10.5194/acp-25-3049-2025, https://doi.org/10.5194/acp-25-3049-2025, 2025
Short summary
Short summary
The large range of sulfur and nitrogen deposition estimates from air quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulfur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by hydrometeors, aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, gas deposition via plant cuticles and soil, and land use data.
Iason Markantonis, Diamando Vlachogiannis, Athanasios Sfetsos, Ioannis Kioutsioukis, and Nadia Politi
Adv. Sci. Res., 19, 145–158, https://doi.org/10.5194/asr-19-145-2023, https://doi.org/10.5194/asr-19-145-2023, 2023
Short summary
Short summary
This paper examines the simulataneous exceedance of daily accumulated precipitation (RR) and minimum (TN) temperature thresholds in Greece for the period 1980–2004 and for each month in the period November to April. Available data from observations and projection simulations are used to calculate the probabilities of extreme wet-cold compound events at the past. Models are validated by the observational data.
Brian T. Dinkelacker, Pablo Garcia Rivera, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Geosci. Model Dev., 15, 8899–8912, https://doi.org/10.5194/gmd-15-8899-2022, https://doi.org/10.5194/gmd-15-8899-2022, 2022
Short summary
Short summary
The performance of a chemical transport model in reproducing PM2.5 concentrations and composition was evaluated at the finest scale using measurements from regulatory sites as well as a network of low-cost monitors. Total PM2.5 mass is reproduced well by the model during the winter when compared to regulatory measurements, but in the summer PM2.5 is underpredicted, mainly due to difficulties in reproducing regional secondary organic aerosol levels.
Pablo Garcia Rivera, Brian T. Dinkelacker, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Atmos. Chem. Phys., 22, 2011–2027, https://doi.org/10.5194/acp-22-2011-2022, https://doi.org/10.5194/acp-22-2011-2022, 2022
Short summary
Short summary
The contribution of various pollution sources to the variability of fine PM in an urban area was examined using as an example the city of Pittsburgh. Biomass burning aerosol shows the largest variability during the winter with local maxima within the city and in the suburbs. During both periods the largest contributing source to the average PM2.5 is particles from outside the modeling domain. The average population-weighted PM2.5 concentration does not change significantly with resolution.
Ksakousti Skyllakou, Pablo Garcia Rivera, Brian Dinkelacker, Eleni Karnezi, Ioannis Kioutsioukis, Carlos Hernandez, Peter J. Adams, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 17115–17132, https://doi.org/10.5194/acp-21-17115-2021, https://doi.org/10.5194/acp-21-17115-2021, 2021
Short summary
Short summary
Significant reductions in pollutant emissions took place in the US from 1990 to 2010. The reductions in sulfur dioxide emissions from electric-generating units have dominated the reductions in fine particle mass. The reductions in transportation emissions have led to a 30 % reduction of elemental concentrations and of organic particulate matter by a factor of 3. On the other hand, changes in biomass burning and biogenic secondary organic aerosol have been modest.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Cited articles
Abraj, M. A. M. and Hewaarachchi, A. P.: Joint return period estimation of
daily maximum and minimum temperatures using copula method, Adv. Appl. Stat., 66, 175–190, https://doi.org/10.17654/AS066020175, 2021.
Aghakouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I.,
Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., and Sadegh,
M.: Climate Extremes and Compound Hazards in a Warming World, Annu. Rev. Earth Planet. Sci., 48, 519–548, https://doi.org/10.1146/ANNUREV-EARTH-071719-055228, 2020.
Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Ali, E., Cramer, W., Carnicer, J., Georgopoulou, E., Hilmi, N. J. M., le
Cozannet, G., Lionello, P., Pörtner, H.-O., Roberts, D. C., Tignor, M.,
Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf,
S., Löschke, S., Möller, V., Okem, A., and Rama, B.: SPM 2233 CCP4
Mediterranean Region to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, Climate Change, 2233–2272, https://doi.org/10.1017/9781009325844.021, 2022.
Anagnostopoulou, C. and Tolika, K.: Extreme precipitation in Europe:
Statistical threshold selection based on climatological criteria, Theor. Appl. Climatol., 107, 479–489, https://doi.org/10.1007/s00704-011-0487-8, 2012.
Cardoso, R. M., Soares, P. M. M., Lima, D. C. A., and Miranda, P. M. A.:
Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF
regional climate high-resolution projections for Portugal, Clim.Dynam., 52, 129–157, https://doi.org/10.1007/s00382-018-4124-4, 2019.
Cartalis, C., Chrysoulakis, N., Feidas, H., and Pitsitakis, N.: International Journal of Remote Sensing Categorization of cold period weather types in Greece on the basis of the photointerpretation of NOAA/AVHRR imagery Categorization of cold period weather types in Greece on the basis of the photointerpretation of NOAA/AVHRR imagery, Taylor & Francis, https://doi.org/10.1080/01431160310001632684, 2010.
Christensen, O. B.: Regional climate change in Denmark according to a global 2-degree-warming scenario, Danish Climate Centre Report 06-02, Danish Meteorological Institute, Ministry of Transport and Energy, p. 17, 2006.
Chukwudum, Q. C. and Nadarajah, S.: Bivariate Extreme Value Analysis of
Rainfall and Temperature in Nigeria, Environ. Model. Assess., 27, 343–362, https://doi.org/10.1007/s10666-021-09781-7, 2022.
Cong, R. G. and Brady, M.: The interdependence between rainfall and temperature: Copula analyses, Scient.World J., 2012, 405675, https://doi.org/10.1100/2012/405675, 2012.
Curtis, S., Fair, A., Wistow, J., v. Val, D., and Oven, K.: Impact of
extreme weather events and climate change for health and social care
systems, Environ. Health, 16, 23–32, https://doi.org/10.1186/s12940-017-0324-3, 2017.
de Luca, P., Messori, G., Faranda, D., Ward, P. J., and Coumou, D.: Compound
warm-dry and cold-wet events over the Mediterranean, Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, 2020.
Demiroglu, O. C., Kučerová, J., and Ozcelebi, O.: Snow reliability
and climate elasticity: Case of a Slovak ski resort, Tourism Rev., 70, 1–12, https://doi.org/10.1108/TR-01-2014-0003, 2015.
Dzupire, N. C., Ngare, P., and Odongo, L.: A copula based bi-variate model
for temperature and rainfall processes, Scient. African, 8, e00365, https://doi.org/10.1016/J.SCIAF.2020.E00365, 2020.
Field, C., Barros, V., Stocker, T., and Dahe, Q.: Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change, Cambridge University Press, ISBN 9781139177245, https://doi.org/10.1017/CBO9781139177245, 2012.
Fonseca, D., Carvalho, M. J., Marta-Almeida, M., Melo-Gonçalves, P., and
Rocha, A.: Recent trends of extreme temperature indices for the Iberian
Peninsula, Phys. Chem. Earth Pt. A/B/C , 94, 66–76, https://doi.org/10.1016/J.PCE.2015.12.005, 2016.
García-Ruiz, J. M., López-Moreno, I. I., Vicente-Serrano, S. M.,
Lasanta-Martínez, T., and Beguería, S.: Mediterranean water resources in a global change scenario, Earth-Sci. Rev., 105, 121–139, https://doi.org/10.1016/J.EARSCIREV.2011.01.006, 2011.
Goulden, C.: Methods of statistical analysis, Wiley, https://psycnet.apa.org/record/1939-03374-000 (last access: 1 November 2022), 1939.
Hao, Z., Singh, V. P., and Hao, F.: Compound Extremes in Hydroclimatology: A
Review, Water, 10, 718, https://doi.org/10.3390/W10060718, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., de Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/QJ.3803, 2020.
Hochman, A., Marra, F., Messori, G., Pinto, J. G., Raveh-Rubin, S., Yosef, Y., and Zittis, G.: Extreme weather and societal impacts in the eastern Mediterranean, Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, 2022.
Houston, T. G., Changnon, S. A., Ae, T. G. H., and Changnon, S. A.: Freezing
rain events: a major weather hazard in the conterminous US, Nat. Hazards, 40, 485–494, https://doi.org/10.1007/S11069-006-9006-0, 2006.
Ionita, M.: The Impact of the East Atlantic/Western Russia Pattern on the
Hydroclimatology of Europe from Mid-Winter to Late Spring, Climate, 2, 296–309, https://doi.org/10.3390/CLI2040296, 2014.
Konisky, D. M., Hughes, L., and Kaylor, C. H.: Extreme weather events and
climate change concern, Climatic Change, 134, 533–547, https://doi.org/10.1007/s10584-015-1555-3, 2016.
Kundzewicz, Z. W., Radziejewski, M., and Pińskwar, I.: Precipitation
extremes in the changing climate of Europe, Clim. Res., 31, 51–58, https://doi.org/10.3354/CR031051, 2006.
Lazoglou, G. and Anagnostopoulou, C.: Joint distribution of temperature and
precipitation in the Mediterranean, using the Copula method, Theor. Appl. Climatol., 135, 1399–1411, https://doi.org/10.1007/s00704-018-2447-z, 2019.
Lemus-Canovas, M.: Changes in compound monthly precipitation and temperature
extremes and their relationship with teleconnection patterns in the
Mediterranean, J. Hydrol., 608, 127580, https://doi.org/10.1016/J.JHYDROL.2022.127580, 2022.
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., Mcinnes,
K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound
event framework for understanding extreme impacts, WIREs Clim. Change, 5, 113–128, https://doi.org/10.1002/WCC.252, 2014.
Lhotka, O. and Kyselý, J.: Precipitation–temperature relationships over Europe in CORDEX regional climate models, Int. J. Climatol., 42, 4868–4880, https://doi.org/10.1002/joc.7508, 2022.
Llasat, M. C., Turco, M., Quintana-Seguí, P., and Llasat-Botija, M.: The snow storm of 8 March 2010 in Catalonia (Spain): a paradigmatic wet-snow event with a high societal impact, Nat. Hazards Earth Syst. Sci., 14, 427–441, https://doi.org/10.5194/nhess-14-427-2014, 2014.
López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E.,
Lorenzo-Lacruz, J., Kenawy, A., and Beniston, M.: Effects of the North
Atlantic Oscillation (NAO) on combined temperature and precipitation winter
modes in the Mediterranean mountains: Observed relationships and projections
for the 21st century, Global Planet, Change, 77, 62–76,
https://doi.org/10.1016/J.GLOPLACHA.2011.03.003, 2011.
Moalafhi, D. B., Evans, J. P., and Sharma, A.: Evaluating global reanalysis
datasets for provision of boundary conditions in regional climate modelling,
Clim. Dynam., 47, 2727–2745, https://doi.org/10.1007/s00382-016-2994-x, 2016.
Moberg, A., Jones, P. D., Lister, D., Walther, A., Brunet, M., Jacobeit, J.,
Alexander, L. v., Della-Marta, P. M., Luterbacher, J., Yiou, P., Chen, D.,
Tank, A. M. G. K., Saladié, O., Sigró, J., Aguilar, E., Alexandersson, H., Almarza, C., Auer, I., Barriendos, M., Begert, M., Bergström, H., Böhm, R., Butler, C. J., Caesar, J., Drebs, A.,
Founda, D., Gerstengarbe, F. W., Micela, G., Maugeri, M., Österle, H.,
Pandzic, K., Petrakis, M., Srnec, L., Tolasz, R., Tuomenvirta, H., Werner,
P. C., Linderholm, H., Philipp, A., Wanner, H., and Xoplaki, E.: Indices for
daily temperature and precipitation extremes in Europe analyzed for the
period 1901–2000, Clim. Dynam., 111, 22106, https://doi.org/10.1029/2006JD007103, 2006.
Nelsen, R.: An introduction to copulas, Springer, New York, NY, https://doi.org/10.1007/0-387-28678-0, 2007.
Pandey, P. K., Das, L., Jhajharia, D., and Pandey, V.: Modelling of
interdependence between rainfall and temperature using copula, Model. Earth Syst. Environ., 4, 867–879, https://doi.org/10.1007/S40808-018-0454-9, 2018.
Pestereva, N. M., Popova, N. Y., and Shagarov, L. M.: Modern Climate Change
and Mountain Skiing Tourism: the Alps and the Caucasus, 1602–1617, European Res., 30, 1602–1617, 2012.
Politi, N., Nastos, P. T., Sfetsos, A., Vlachogiannis, D., and Dalezios, N.
R.: Evaluation of the AWR-WRF model configuration at high resolution over
the domain of Greece, Atmos. Res., 208, 229–245, https://doi.org/10.1016/J.ATMOSRES.2017.10.019, 2018.
Politi, N., Sfetsos, A., Vlachogiannis, D., Nastos, P. T., and Karozis, S.:
A Sensitivity Study of High-Resolution Climate Simulations for Greece, Climate, 8, 44, https://doi.org/10.3390/CLI8030044, 2020.
Politi, N., Vlachogiannis, D., Sfetsos, A., and Nastos, P. T.: High-resolution dynamical downscaling of ERA-Interim temperature and
precipitation using WRF model for Greece, Clim. Dynam., 57, 799–825, https://doi.org/10.1007/s00382-021-05741-9, 2021.
Politi, N., Vlachogiannis, D., Sfetsos, A., and Nastos, P. T.: High resolution projections for extreme temperatures and precipitation over Greece, https://doi.org/10.21203/rs.3.rs-1263740/v1, in review, 2022.
Pongrácz, R., Bartholy, J., Gelybó, G., and Szabó, P.: Detected
and expected trends of extreme climate indices for the carpathian basin,
Springer, 15–28, https://doi.org/10.1007/978-1-4020-8876-6_2, 2009.
Raziei, T., Daryabari, J., Bordi, I., Modarres, R., and Pereira, L. S.:
Spatial patterns and temporal trends of daily precipitation indices in Iran,
Climatic Change, 124, 239–253, https://doi.org/10.1007/s10584-014-1096-1, 2014.
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008.
Sadegh, M., Moftakhari, H., v. Gupta, H., Ragno, E., Mazdiyasni, O., Sanders, B., Matthew, R., and AghaKouchak, A.: Multihazard Scenarios for Analysis of Compound Extreme Events, Geophys. Res. Lett., 45, 5470–5480, https://doi.org/10.1029/2018GL077317, 2018.
Samuelsson, P., Jones, C. G., Willén, U., Ullerstig, A., Gollvik, S.,
Hansson, U., Jansson, C., Kjellström, E., Nikulin, G., and Wyser, K.:
The Rossby Centre Regional Climate model RCA3: model description and
performance, Tellus A, 63, 4–23, https://doi.org/10.1111/J.1600-0870.2010.00478.X, 2016.
Schepsmeier, U., Stoeber, J., Christian, E., and Maintainer, B.: Package
“VineCopula” Type Package Title Statistical inference of vine copulas, GitHub, https://github.com/tnagler/VineCopula (last access: 1 November 2022), 2013.
Singh, H., Najafi, M. R., and Cannon, A. J.: Characterizing non-stationary
compound extreme events in a changing climate based on large-ensemble
climate simulations, Clim. Dynam., 56, 1389–1405,
https://doi.org/10.1007/s00382-020-05538-2, 2021.
Sklar, M.: Fonctions de repartition a n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, 8, 229–231, 1959.
Spiridonov, V., Somot, S., and Déqué, M.: ALADIN-Climate: from the
origins to present date, ALADIN Newslett., 29, 89–92, 2005.
Tavakol, A., Rahmani, V., and Harrington, J.: Probability of compound
climate extremes in a changing climate: A copula-based study of hot, dry,
and windy events in the central United States, Environ. Res. Lett., 15, 104058, https://doi.org/10.1088/1748-9326/ABB1EF, 2020.
Tošić, I. and Unkašević, M.: Extreme daily precipitation in
Belgrade and their links with the prevailing directions of the air
trajectories, Theor. Appl. Climatol., 111, 97–107,
https://doi.org/10.1007/s00704-012-0647-5, 2013.
Trujillo, E., Molotch, N. P., Goulden, M. L., Kelly, A. E., and Bales, R.
C.: Elevation-dependent influence of snow accumulation on forest greening,
Nat. Geosci., 5, 705–709, https://doi.org/10.1038/ngeo1571, 2012.
Vajda, A., Tuomenvirta, H., Juga, I., Nurmi, P., Jokinen, P., and Rauhala,
J.: Severe weather affecting European transport systems: The identification,
classification and frequencies of events, Nat. Hazards, 72, 169–188, https://doi.org/10.1007/s11069-013-0895-4, 2014.
van Meijgaard, E., van Ulft, L. H., van de Berg, W. J., Bosveld, F. C., van den Hurk, B. J. J. M., Lenderink, G., and Siebesma, A. P.: The KNMI regional atmospheric climate model RACMO version 2.1, KNMI, https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR302.pdf (last access: 1 November 2022), 2008.
Vogel, J., Paton, E., and Aich, V.: Seasonal ecosystem vulnerability to
climatic anomalies in the Mediterranean, Biogeosciences, 18, 5903–5927, https://doi.org/10.5194/bg-18-5903-2021, 2021.
Wu, X., Hao, Z., Hao, F., and Zhang, X.: Variations of compound precipitation and temperature extremes in China during 1961–2014, Sci. Total Environ., 663, 731–737, https://doi.org/10.1016/J.SCITOTENV.2019.01.366, 2019.
Zanocco, C., Boudet, H., Nilson, R., Satein, H., Whitley, H., and Flora, J.:
Place, proximity, and perceived harm: extreme weather events and views about
climate change, Climatic Change, 149, 349–365, https://doi.org/10.1007/s10584-018-2251-x, 2018.
Zhang, W., Luo, M., Gao, S., Chen, W., Hari, V., and Khouakhi, A.: Compound
Hydrometeorological Extremes: Drivers, Mechanisms and Methods, Front. Earth Sci., 9, 941, https://doi.org/10.3389/feart.2021.673495, 2021.
Zhou, S., Zhang, Y., Williams, A. P., and Gentine, P.: Projected increases
in intensity, frequency, and terrestrial carbon costs of compound drought
and aridity events, Sci. Adv., 5, eaau5740,
https://doi.org/10.1126/sciadv.aau5740, 2019.
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks
associated with compound events, Am. Assoc. Adv. Sci., 3, e1700263, https://doi.org/10.1126/sciadv.1700263, 2017.
Zscheischler, J., Orth, R., and Seneviratne, S. I.: Bivariate return periods
of temperature and precipitation explain a large fraction of European crop
yields, Biogeosciences, 14, 3309–3320, https://doi.org/10.5194/bg-14-3309-2017, 2017.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Short summary
This work focuses on the study of daily wet–cold compound events in Greece in the period November–April. We firstly study the historic period 1980–2004 in which we validate projection models with observations. Then we compare the model results with future period 2025–2049 RCP4.5 and RCP8.5 scenarios. The aim of the study is to calculate the probability of the events and to locate the areas where those are higher and how the probabilities will change at the future.
This work focuses on the study of daily wet–cold compound events in Greece in the period...
Altmetrics
Final-revised paper
Preprint