Articles | Volume 13, issue 2
https://doi.org/10.5194/esd-13-809-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-809-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Indian Ocean marine biogeochemical variability and its feedback on simulated South Asia climate
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Anton Y. Dvornikov
Shirshov Institute of Oceanology, Russian Academy of Sciences,
Moscow, Russia
Stanislav D. Martyanov
Shirshov Institute of Oceanology, Russian Academy of Sciences,
Moscow, Russia
William Cabos
Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
Vladimir A. Ryabchenko
Shirshov Institute of Oceanology, Russian Academy of Sciences,
Moscow, Russia
Matthias Gröger
Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research, Warnemünde, Rostock
18119, Germany
Daniela Jacob
Climate Service Center Germany (GERICS), Hamburg, Germany
Alok Kumar Mishra
Department of Earth and Environmental Sciences, Indian Institute of
Science Education and Research Bhopal, India
Pankaj Kumar
Department of Earth and Environmental Sciences, Indian Institute of
Science Education and Research Bhopal, India
Related authors
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Shunya Koseki, Rubén Vázquez, William Cabos, Claudia Gutiérrez, Dmitry V. Sein, and Marie-Lou Bachèlery
Earth Syst. Dynam., 15, 1401–1416, https://doi.org/10.5194/esd-15-1401-2024, https://doi.org/10.5194/esd-15-1401-2024, 2024
Short summary
Short summary
Using a high-resolution regionally coupled model, we suggest that Dakar Niño variability will be reinforced under the Representative Concentration Pathway (RCP) 8.5 scenario. This may be induced by intensified surface heat flux anomalies and, secondarily, by anomalies in horizontal and vertical advection. Increased sea surface temperature (SST) variability can be associated with stronger wind variability, attributed to amplified surface temperature anomalies between ocean and land.
Iván M. Parras-Berrocal, Rubén Vázquez, William Cabos, Dimitry V. Sein, Oscar Álvarez, Miguel Bruno, and Alfredo Izquierdo
Ocean Sci., 19, 941–952, https://doi.org/10.5194/os-19-941-2023, https://doi.org/10.5194/os-19-941-2023, 2023
Short summary
Short summary
Global warming may strongly affect dense water formation in the eastern Mediterranean, potentially impacting basin circulation and water properties. We find that at the end of the century dense water formation is reduced by 75 % for the Adriatic, 84 % for the Aegean, and 83 % for the Levantine Sea. This reduction is caused by changes in the temperature and salinity of surface and intermediate waters, which strengthen the vertical stratification, hampering deep convection.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
Alba de la Vara, Iván M. Parras-Berrocal, Alfredo Izquierdo, Dmitry V. Sein, and William Cabos
Earth Syst. Dynam., 13, 303–319, https://doi.org/10.5194/esd-13-303-2022, https://doi.org/10.5194/esd-13-303-2022, 2022
Short summary
Short summary
We study with the regionally coupled climate model ROM the impact of climate change on the Tyrrhenian Sea circulation, as well as the possible mechanisms and consequences in the NW Mediterranean Sea. Our results show a shift towards the summer circulation pattern by the end of the century. Also, water flowing via the Corsica Channel is more stratified and smaller in volume. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions in the future.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Joni-Pekka Pietikäinen, Kevin Sieck, Lars Buntemeyer, Thomas Frisius, Christine Nam, Peter Hoffmann, Christina Pop, Diana Rechid, and Daniela Jacob
EGUsphere, https://doi.org/10.5194/egusphere-2025-1586, https://doi.org/10.5194/egusphere-2025-1586, 2025
Short summary
Short summary
This paper introduces REMO2020, a modernized version of the well-known and widely used REMO regional climate model. We demonstrate why REMO2020 will be our new model version for future dynamical downscaling activities. It outperforms our previous model version in many analyzed areas and is the biggest update to REMO so far. It also supports climate service needs based developments through new more modular structure.
Shunya Koseki, Rubén Vázquez, William Cabos, Claudia Gutiérrez, Dmitry V. Sein, and Marie-Lou Bachèlery
Earth Syst. Dynam., 15, 1401–1416, https://doi.org/10.5194/esd-15-1401-2024, https://doi.org/10.5194/esd-15-1401-2024, 2024
Short summary
Short summary
Using a high-resolution regionally coupled model, we suggest that Dakar Niño variability will be reinforced under the Representative Concentration Pathway (RCP) 8.5 scenario. This may be induced by intensified surface heat flux anomalies and, secondarily, by anomalies in horizontal and vertical advection. Increased sea surface temperature (SST) variability can be associated with stronger wind variability, attributed to amplified surface temperature anomalies between ocean and land.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Iván M. Parras-Berrocal, Rubén Vázquez, William Cabos, Dimitry V. Sein, Oscar Álvarez, Miguel Bruno, and Alfredo Izquierdo
Ocean Sci., 19, 941–952, https://doi.org/10.5194/os-19-941-2023, https://doi.org/10.5194/os-19-941-2023, 2023
Short summary
Short summary
Global warming may strongly affect dense water formation in the eastern Mediterranean, potentially impacting basin circulation and water properties. We find that at the end of the century dense water formation is reduced by 75 % for the Adriatic, 84 % for the Aegean, and 83 % for the Levantine Sea. This reduction is caused by changes in the temperature and salinity of surface and intermediate waters, which strengthen the vertical stratification, hampering deep convection.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Swantje Preuschmann, Tanja Blome, Knut Görl, Fiona Köhnke, Bettina Steuri, Juliane El Zohbi, Diana Rechid, Martin Schultz, Jianing Sun, and Daniela Jacob
Adv. Sci. Res., 19, 51–71, https://doi.org/10.5194/asr-19-51-2022, https://doi.org/10.5194/asr-19-51-2022, 2022
Short summary
Short summary
The main aspect of the paper is to obtain transferable principles for the development of digital knowledge transfer products. As such products are still unstandardised, the authors explored challenges and approaches for product developments. The authors report what they see as useful principles for developing digital knowledge transfer products, by describing the experience of developing the Net-Zero-2050 Web-Atlas and the "Bodenkohlenstoff-App".
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Gaurav Tiwari, Vishal Bobde, Pankaj Kumar, and Alok Kumar Mishra
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-10, https://doi.org/10.5194/wcd-2022-10, 2022
Revised manuscript not accepted
Short summary
Short summary
Our modeling approach has improved significantly (~30 % to 60 %) the simulation of North Indian Ocean tropical cyclones’ track and intensity. The results are promising. This technique can be used for real-time cyclone predictions over the study region to provide more accurate cyclone related warnings and alerts for better planning and preparedness.
Alba de la Vara, Iván M. Parras-Berrocal, Alfredo Izquierdo, Dmitry V. Sein, and William Cabos
Earth Syst. Dynam., 13, 303–319, https://doi.org/10.5194/esd-13-303-2022, https://doi.org/10.5194/esd-13-303-2022, 2022
Short summary
Short summary
We study with the regionally coupled climate model ROM the impact of climate change on the Tyrrhenian Sea circulation, as well as the possible mechanisms and consequences in the NW Mediterranean Sea. Our results show a shift towards the summer circulation pattern by the end of the century. Also, water flowing via the Corsica Channel is more stratified and smaller in volume. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions in the future.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Kevin Sieck, Christine Nam, Laurens M. Bouwer, Diana Rechid, and Daniela Jacob
Earth Syst. Dynam., 12, 457–468, https://doi.org/10.5194/esd-12-457-2021, https://doi.org/10.5194/esd-12-457-2021, 2021
Short summary
Short summary
This paper presents new estimates of future extreme weather in Europe, including extreme heat, extreme rainfall and meteorological drought. These new estimates were achieved by repeating model calculations many times, thereby reducing uncertainties of these rare events at low levels of global warming at 1.5 and 2 °C above
pre-industrial temperature levels. These results are important, as they help to assess which weather extremes could increase at moderate warming levels and where.
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
Stelios Myriokefalitakis, Matthias Gröger, Jenny Hieronymus, and Ralf Döscher
Ocean Sci., 16, 1183–1205, https://doi.org/10.5194/os-16-1183-2020, https://doi.org/10.5194/os-16-1183-2020, 2020
Short summary
Short summary
Global inorganic and organic nutrient deposition fields are coupled to PISCES to investigate their effect on ocean biogeochemistry. Pre-industrial deposition fluxes are lower compared to the present day, resulting in lower oceanic productivity. Future changes result in a modest decrease in the nutrients put into the global ocean. This work provides a first assessment of the atmospheric organic nutrients' contribution, highlighting the importance of their representation in biogeochemistry models.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Cited articles
Anderson, T. R., Ryabchenko, V. A., Fasham, M. J. R., and Gorchakov, V. A:
Denitrification in the Arabian Sea: A 3D ecosystem modelling study, Deep-Sea
Res. Pt. I, 54, 2082–2119, https://doi.org/10.1016/j.dsr.2007.09.005, 2007.
Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A.
V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Seidov, D., and
Smolyar, I. V.: World Ocean Atlas 2018, NOAA NCEI [data set],
https://accession.nodc.noaa.gov/NCEI-WOA18 (last access: 30 November 2021), 2018.
Cabos, W., Sein, D. V., Pinto, J. G., Fink, A. H., Koldunov, N. V., Alvarez,
F., Izquierdo, A., Keenlyside, N., and Jacob, D.: The South Atlantic
Anticyclone as a key player for the representation of the tropical Atlantic
climate in coupled climate models, Clim. Dynam., 48, 4051–4069, https://doi.org/10.1007/s00382-016-3319-9, 2017.
Cabos, W., Sein, D. V., Durán-Quesada, A., Liguori, G., Koldunov, N. V.,
Martínez-López, B., Alvarez, F., Sieck, K., Limareva, N., and Pinto,
J. G.: Dynamical downscaling of historical climate over CORDEX Central
America domain with a regionally coupled atmosphere–ocean model, Clim.
Dynam., 52, 4305–4328, https://doi.org/10.1007/s00382-018-4381-2, 2019.
Cabos, W., de la Vara, A., Álvarez-García, F. J., Sánchez, E., Sieck, K., Pérez-Sanz, J.-I., Limareva, N., and Sein, D. V.: Impact of
ocean-atmosphere coupling on regional climate: the Iberian Peninsula case,
Clim. Dynam., 54, 4441–4467, https://doi.org/10.1007/s00382-020-05238-x, 2020.
Choudhury, A. K. and Pal, R.: Phytoplankton and nutrient dynamics of
shallow coastal stations at Bay of Bengal, Eastern Indian coast, Aquat.
Ecol., 44, 55–71, https://doi.org/10.1007/s10452-009-9252-9, 2010.
Copernicus Climate Change Service: ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, CDS,
https://cds.climate.copernicus.eu/cdsapp#!/home, last access:
1 July 2021.
D'Asaro, E., Altabet, M., Kumar, N. S., and Ravichandran, M.: Structure of
the Bay of Bengal oxygen deficient zone, Deep-Sea Res. Pt. II, 179, 104650,
https://doi.org/10.1016/j.dsr2.2019.104650, 2020.
De, T. K., De, M., Das, S., Chowdhury, C., Ray, R., and Jana, T. K.:
Phytoplankton abundance in relation to cultural eutrophication at the
land-ocean boundary of Sunderbans, NE Coast of Bay of Bengal, India, J.
Environ. Stud. Sci., 1, 169, https://doi.org/10.1007/s13412-021-00695-0,
2011.
De Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Iudicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys. Res., 109, C12003,
https://doi.org/10.1029/2004JC002378, 2004.
Fu, W., Randerson, J. T., and Moore, J. K.: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models, Biogeosciences, 13, 5151–5170, https://doi.org/10.5194/bg-13-5151-2016, 2016.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.
K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013,
Volume 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate), edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS, 25 pp., 2014.
Giorgi, F.: Regional climate modeling: status and perspectives, J. Phys. IV
France, 139, 101–118, https://doi.org/10.1051/jp4:2006139008, 2006.
Gröger, M., Maier-Reimer, E., Mikolajewicz, U., Moll, A., and Sein, D.: NW European shelf under climate warming: implications for open ocean – shelf exchange, primary production, and carbon absorption, Biogeosciences, 10, 3767–3792, https://doi.org/10.5194/bg-10-3767-2013, 2013.
Gröger, M., Dieterich, C., Meier, M., and Schimanke, S.: Thermal air-sea
coupling in hindcast simulations for the North Sea and Baltic Sea on the NW
European shelf, Tellus A., 67, 26911, https://doi.org/10.3402/tellusa.v67.26911, 2015.
Hagemann, S. and Dumenil, L.: A parameterization of the lateral waterflow
for the global scale, Clim. Dynam., 14, 17–31, 1998.
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I. X.: Global ocean biogeochemistry model HAMOCC:
Model architecture and performance as component of the MPI-Earth system
model in different CMIP5 experimental realizations, J. Adv. Model. Earth
Syst., 5, 287–315, https://doi.org/10.1029/2012MS000178, 2013.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, IPCC, Geneva, Switzerland, 151 pp., 2014.
Jacob, D.: A note to the simulation of the annual and interannual
variability of the water budget over the Baltic Sea drainage basin,
Meteorol. Atmos. Phys., 77, 61–73, 2001.
Jacob, D., Hurk, B., Andrae, U., Elgered, G., Fortelius, C., Graham, L., Jackson,
S., Karstens, U., Köpken, C., Lindau, R., Podzun, R., Rockel, B., Rubel, F., Sass, B., Smith, R., and Yang, X.: A comprehensive model intercomparison study investigating
the water budget during the BALTEX-PIDCAP period, Meteorol. Atmos. Phys.,
77, 19–43, 2001.
Jerlov, N. G.: Marine Optics, Elsevier Oceanography Series, Elsevier, Amsterdam, The Netherlands, 230 pp., ISBN 9780080870502, 1976.
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in MPIOM, the ocean component of the MPI-Earth system
model, J. Adv. Model. Earth Syst., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013.
Kumar, P., Wiltshire, A., Mathison, C., Asharaf, S., Ahrens, B.,
Lucas-Picher, P., Christensen,
J. H., Gobiet, A., Saeed, F., Hagemann, S., and Jacob, D.: Downscaled climate change projections with
uncertainty assessment over India using a high resolution multi-model
approach (Supplement), Sci. Total Environ., 468–469, S18–S30,
https://doi.org/10.1016/j.scitotenv.2013.01.051, 2013.
Kumar, P., Sein, D., Cabos, W., and Jacob, D.: Improvement of simulated
monsoon precipitation over South-Asia with a regionally coupled model ROM, in: 3rd International Lund Regional-Scale Climate Modelling Workshop 21st
Century Challenges in Regional Climate Modelling: Workshop proceedings, edited by: Bärring, L., Reckermann, M., Rockel, B., and Rummukainen, M.,
Lund, Sweden, 16–19 June 2014, International Baltic Earth Secretariat
Publications, Geesthacht, Germany, 434 pp., 2014.
Lengaigne, M., Menkes, C., Aumont, O., Gorgues, T., Bopp, L., André, J.-M., and Madec, G.: Influence of the oceanic
biology on the tropical Pacific climate in a coupled general circulation
model, Clim. Dynam. 28, 503–516, https://doi.org/10.1007/s00382-006-0200-2, 2007.
Levitus, S. B., Tim, P., Garcia, H. E., Locarnini, R. A., Zweng, M. M.,
Mishonov, A. V., Reagan, J. R., Antonov, J. I., Baranova, O. K., Biddle, M.,
Hamilton, M., Johnson, D. R., Paver, C .R., and Seidov, D.: World Ocean
Atlas 2013 (NCEI Accession 0114815), NOAA NCEI [data set], https://doi.org/10.7289/v5f769gt, 2014.
Liu, L., Feng, L., Yu, W., Wang, H., Liu, Y., and Sun, S.: The distribution and variability of
simulated chlorophyll concentration over the tropical Indian Ocean from five
CMIP5 models, J. Ocean Univ. China, 12, 253–259,
https://doi.org/10.1007/s11802-013-2168-y, 2013.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1:
Temperature, edited by: Levitus, S., and Mishonov, A., NOAA Atlas NESDIS, 40 pp., 2013.
Lucas-Picher, P., Christensen, J. H., Saeed, F., Kumar, P., Asharaf, S.,
Ahrens, B., Wiltshire, A. J., Jacob, D., and Hagemann, S.: Can regional climate models represent the Indian monsoon?, J.
Hydrometeorol., 12, 849–868, https://doi.org/10.1175/2011JHM1327.1, 2011.
Manizza, M., Le Quéré, C., Watson, A. J., and Buitenhuis, E. T.:
Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice
in a global model, Geophys. Res. Lett., 32, L05603, https://doi.org/10.1029/2004GL020778, 2005.
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., and Roeske, F.: The
Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear
coordinates, Ocean Model., 5, 91–126, 2002.
Myriokefalitakis, S., Gröger, M., Hieronymus, J., and Döscher, R.: An explicit estimate of the atmospheric nutrient impact on global oceanic productivity, Ocean Sci., 16, 1183–1205, https://doi.org/10.5194/os-16-1183-2020, 2020.
Nakamoto, S., Prasanna Kumar, S., Oberhuber, J. M., Muneyama, K., and
Frouin, R.: Chlorophyll modulation of sea surface temperature in the Arabian
Sea in a mixed-layer isopycnal general circulation model, Geophys. Res.
Lett., 27, 747–750, https://doi.org/10.1029/1999GL002371, 2000.
Nakamoto, S., Prasanna Kumar, S., Oberhuber, J. M., Ishizaka, J., Muneyama,
K., and Frouin, R.: Response of the equatorial Pacific to chlorophyll pigment in
a mixed layer isopycnal ocean general circulation model, Geophys. Res.
Lett., 28, 2021–2024, https://doi.org/10.1029/2000GL012494, 2001.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology
Processing Group: Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
Chlorophyll Data, 2018 Reprocessing, NASA OB.DAAC [data set], https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2018, 2021a.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology
Processing Group: Moderate-resolution Imaging Spectroradiometer (MODIS)
Terra Chlorophyll Data; 2018 Reprocessing, NASA OB.DAAC [data set], https://doi.org/10.5067/TERRA/MODIS/L3B/CHL/2018, 2021b.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology
Processing Group: Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
Downwelling Diffuse Attenuation Coefficient Data; 2018 Reprocessing, NASA
OB.DAAC [data set], https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L3M/KD/2018, 2021c.
Pacanowski, R. C. and Philander, S. G. H.: Parameterization of vertical mixing
in numerical-models of tropical oceans, J. Phys. Oceanogr., 11, 1443–1451,
1981.
Paeth, H., Paxian, A., Sein, D. V., Jacob, D., Panitz, H. J., Warscher, M.,
Fink, A., Kunstmann, H., Breil, M., Engel, T., Krause, A., Tödter, J.,
and Ahrens, B.: Decadal and multi-year predictability of the West African
monsoon and the role of dynamical downscaling, Meteorol. Z., 26, 363–377,
https://doi.org/10.1127/metz/2017/0811, 2017.
Park, J. and Kug, J.: Marine biological feedback associated with Indian Ocean
Dipole in a coupled ocean/biogeochemical model, Clim. Dynam., 42, 329–343,
https://doi.org/10.1007/s00382-012-1640-5, 2014.
Park, J., Kug, J., Seo, H., and Bader, J.: Impact of bio-physical feedbacks on the
tropical climate in coupled and uncoupled GCMs, Clim. Dynam., 43, 1811–1827,
https://doi.org/10.1007/s00382-013-2009-0, 2014a.
Park, J.-Y., Kug, J.-S., and Park, Y.-G.: An exploratory modeling study on
bio-physical processes associated with ENSO, Prog. Oceanogr., 124, 28–41,
https://doi.org/10.1016/j.pocean.2014.03.013, 2014b.
Paulsen, H., Ilyina, T., Jungclaus, J. H., Six, K. D., and Stemmler, I.: Light absorption by marine cyanobacteria affects tropical climate mean state and variability, Earth Syst. Dynam., 9, 1283–1300, https://doi.org/10.5194/esd-9-1283-2018, 2018.
Paulson, C. A. and Simpson, J. J.: Irradiance Measurements in the Upper
Ocean, J. Phys. Oceanogr., 7, 952–956, 1977.
Paxian, A., Sein, D. V., Panitz, H. J., Warscher, M., Breil, M., Engel, T.,
Tödter, J., Krause, A., Cabos, W., Fink, A., Ahrens, B., Kunstmann, H.,
Jacob, D., and Paeth, H.: Bias reduction in decadal predictions of West
African monsoon rainfall using regional climate models, J. Geophys.
Res.-Atmos., 121, 1715–1735, https://doi.org/10.1002/2015JD024143, 2016.
Ramesh, K. V. and Krishnan, R.: Coupling of mixed layer processes and
thermocline variations in the Arabian Sea, J. Geophys. Res., 110, C05005,
https://doi.org/10.1029/2004JC002515, 2005.
Ryabchenko, V. A., Gorchakov, V. A., and Fasham, M. J. R.: Seasonal dynamics
and biological productivity in the Arabian Sea Euphotic Zone as simulated by
a three-dimensional ecosystem model, Global Biogeochem. Cy., 12, 501–530,
1998.
Samson, G., Masson, S., Durand, F., Terray, P., Berthet, S., and Jullien,
S.: Roles of land surface albedo and horizontal resolution on the Indian
summer monsoon biases in a coupled ocean–atmosphere tropical-channel model,
Clim. Dynam., 48, 1571–1594, https://doi.org/10.1007/s00382-016-3161-0, 2017.
Sattar, M. A., Kroeze, C., and Strokal, M.: The increasing impact of food
production on nutrient export by rivers to the Bay of Bengal 1970–2050,
Mar. Pollut. Bull., 80, 168–178, 2014.
Sein, D. V., Mikolajewicz, U., Gröger, M., Fast, I., Cabos, W., Pinto,
J. G., Hagemann, S., Semmler, T., Izquierdo, A., and Jacob, D.: Regionally
coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1.
Description and validation, J. Adv. Model. Earth Syst., 7, 268–304,
https://doi.org/10.1002/2014MS000357, 2015.
Sein, D. V., Gröger, M., Cabos, W., Alvarez-Garcia, F. J., Hagemann, S.,
Pinto, J. G., Izquierdo, A., de la Vara, A., Koldunov, N. V., Dvornikov, A.
Y., Limareva, N., Alekseeva, E., Martinez-Lopez, B., and Jacob, D.:
Regionally coupled atmosphere-ocean-marine biogeochemistry model ROM: 2.
Studying the climate change signal in the North Atlantic and Europe., J.
Adv. Model. Earth Syst., 12, e2019MS001646, https://doi.org/10.1029/2019MS001646, 2020.
Seitzinger, S. P., Kroeze, C., Bouwman, A. F., Caraco, N., Dentener, F., and
Styles, R. V.: Global patterns of dissolved inorganic and particulate
nitrogen inputs to coastal systems: Recent conditions and future
projections, Estuaries, 25, 640–655, 2002.
Smith, W. O. and Sakshaug, E.: Polar Phytoplankton, in: Polar Oceanography,
part B: Chemistry, Biology, and Geology, edited by: Walker Smith Jr., O., Academic Press, 477–525, https://doi.org/10.1016/C2009-0-21623-0, 1990.
Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., Doney, S. C., Gehlen, M., Lindsay, K., Moore, J. K., Schneider, B., and Segschneider, J.: Projected 21st century decrease in marine productivity: a multi-model analysis, Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, 2010.
Szabo, S., Nicholls, R. J., Neumann, B., Renaud, F. G., Matthews, Z.,
Sebesvari, Z., AghaKouchak, A., Bales, R., Ruktanonchai, C. W., Kloos, J.,
Foufoula-Georgiou, E., Wester, F., New, M., Rhyner, J., and Hutton, C.:
Making SDGs Work for Climate Change Hotspots, Environment: Science and
Policy for Sustainable Development, 58, 24–33, https://doi.org/10.1080/00139157.2016.1209016, 2016.
Tangang, F., Chung, J. X., Juneng, L., Supari, S., Salimun, E., Ngai, S. T.,
Jamaluddin, A. F., Mohd, M. S. F., Cruz, F., Narisma, G., Santisirisomboon,
J., Ngo-Duc, T., Van Tan, P., Singhruck, P., Gunawan, D., Aldrian, E.,
Sopaheluwakan, A., Grigory, N., Remedio, A. R. C., Sein, D. V., Hein-Griggs,
D., McGregor, J. L., Yang, H., Sasaki, H., and Kumar, P.: Projected future
changes in rainfall in Southeast Asia based on CORDEX–SEA multi-model
simulations, Clim. Dynam., 55, 1247–1267, https://doi.org/10.1007/s00382-020-05322-2, 2020
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, Bull. Am. Meteorol. Soc., 93, 485–498, 2012.
Turco, M., Palazzi, E., von Hardenberg, J., and Provenzale, A.: Observed
climate change hotspots, Geophys. Res. Lett., 42, 3521–3528, 2015.
Wu, R., Kirtman, B. P., and Pegion, K.: Surface latent heat flux and its
relationship with sea surface temperature in the National Centers for
Environmental Prediction Climate Forecast System simulations and
retrospective forecasts, Geophys. Res. Lett., 34, L17712,
https://doi.org/10.1029/2007GL030751, 2007.
Zhu, S., Remedio, A. R. C., Sein, D. V., Sielmann, F., Ge, F., Xu, J., Peng,
T., Jacob, D., Fraedrich, K., and Zhi, X.: Added value of the regionally
coupled model ROM in the East Asian summer monsoon modeling, Theor. Appl. Climatol., 140, 375–387, https://doi.org/10.1007/s00704-020-03093-8, 2020.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov,
A.V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov,
D., and Biddle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity, edited by: Levitus, S., and Mishonov, A., NOAA Atlas NESDIS, 39 pp., 2013.
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
The effect of the marine biogeochemical variability upon the South Asian regional climate has...
Altmetrics
Final-revised paper
Preprint