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Abstract. We investigate the effect of variable marine biogeochemical light absorption on Indian Ocean sea
surface temperature (SST) and how this affects the South Asian climate. In twin experiments with a regional
Earth system model, we found that the average SST is lower over most of the domain when variable marine bio-
geochemical light absorption is taken into account, compared to the reference experiment with a constant light
attenuation coefficient equal to 0.06 m−1. The most significant deviations (more than 1 ◦C) in SST are observed
in the monsoon season. A considerable cooling of subsurface layers occurs, and the thermocline shifts upward in
the experiment with the activated biogeochemical impact. Also, the phytoplankton primary production becomes
higher, especially during periods of winter and summer phytoplankton blooms. The effect of altered SST vari-
ability on climate was investigated by coupling the ocean models to a regional atmosphere model. We find the
largest effects on the amount of precipitation, particularly during the monsoon season. In the Arabian Sea, the
reduction of the transport of humidity across the Equator leads to a reduction of the large-scale precipitation in
the eastern part of the basin, reinforcing the reduction of the convective precipitation. In the Bay of Bengal, it
increases the large-scale precipitation, countering convective precipitation decline. Thus, the key impacts of in-
cluding the full biogeochemical coupling with corresponding light attenuation, which in turn depends on variable
chlorophyll a concentration, include the enhanced phytoplankton primary production, a shallower thermocline,
and decreased SST and water temperature in subsurface layers, with cascading effects upon the model ocean
physics which further translates into altered atmosphere dynamics.
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1 Introduction

The vulnerability and the ability of society and natural sys-
tems to adapt to the impact of climate change vary signifi-
cantly according to geographic region and population. The
Indian subcontinent and adjacent area, where a fifth of hu-
manity lives, is one of the regions where the impacts are sub-
stantial both in the present time and future climate projec-
tions (Turco et al., 2015; Szabo et al., 2016). The strongest
impacts are related to changes in the intensity and fre-
quency of extreme events, such as floods, droughts, tropical
cyclones, storm surges, phytoplankton blooms, ocean heat
waves, avalanches, etc. which can inflict significant damage
on ecosystems, human populations, infrastructure and prop-
erty (IPCC AR5, 2014).

Atmospheric extreme events contribute to the emergence
of extreme situations in the ocean and vice versa. For
example, the strengthening of the southwestern monsoon
in the Arabian Sea (ASF) leads to abnormal coastal up-
welling. It increased mixing of the upper ocean layer, and
the subsequent supply of nutrients into the upper layer from
the deep ocean favors anomalous blooms of phytoplankton
(Ryabchenko et al., 1998). In turn, the changes in sea sur-
face temperature (SST) and surface fluxes of heat and mo-
mentum caused by monsoons can feedback to atmospheric
circulation. Another example of the relationship between at-
mospheric and oceanic processes is associated with river
runoff and nutrient loading, which is projected to be maximal
in southern and eastern Asia due to population growth and
increased industrialization (Seitzinger et al., 2002). It was
stated that the estuarine ecosystem experiences a complete
change in terms of phytoplankton during monsoons (De et
al., 2011) and that the eastern Indian coast is affected by lo-
calized eutrophication which directly influences the nutrient
level of coastal water and phytoplankton abundance (Choud-
hury and Pal, 2010). Recent assessments (Sattar et al., 2014)
of the impact of food production upon the river flux of nutri-
ents into the Bay of Bengal (BBF) coastal waters in the past
and the future show that the coastal eutrophication potential
is high in the Bay of Bengal, thus elevating the risk for oxy-
gen deficiencies (D’Asaro et al., 2020). The above examples
of interactions between atmospheric and oceanic processes
underscore the need to create a unified high-resolution mod-
eling system for the region to be able to study these interac-
tions in detail.

Earth system models (ESMs) are very effective tools for
the study of complex systems and associated mechanisms in
climate and environmental sciences in the past and future,
driven by assumptions on the evolution of climate change
(Taylor et al., 2012). However, they usually lack the resolu-
tions that are necessary for regional studies. Regional climate
models (RCMs) are used to translate the global climate in-
formation generated by ESMs down to regional scales at a
higher resolution. RCMs take the initial conditions and time-
dependent boundary conditions from the global models and

provide dynamically downscaled climate information within
the region of interest (Giorgi, 2006).

We have implemented a new version of the high-resolution
regional Earth system model (RESM) ROM (Sein et al.,
2015) for South Asia and the northern Indian Ocean (IO).
The model includes ocean, atmosphere, hydrological cycle
and marine biogeochemistry components. Such a modeling
system is required for the study of extreme events in the
atmosphere and the ocean in the India region, for seasonal
and decadal predictions, climate change projections, and ad-
vanced monsoon modeling.

In this study, we will use the model to assess the impact
of a fully coupled interactive marine biogeochemical model
upon the simulation of the present climate over the Indian
subcontinent and the adjacent ocean using the South Asia
CORDEX domain (CORDEX – Coordinated Regional Cli-
mate Downscaling Experiment, https://cordex.org/domains/
region-6-south-asia-2, last access: 1 July 2021). Monsoon
dynamics are sensitive to changes in SSTs and so a model
representing the Indian Ocean should involve all relevant
processes to control the heat budget of the near-surface
ocean. We focus here on the impact of variable chlorophyll
concentration on SSTs and how this feeds back on climate.
A number of studies focused on the investigation of the
marine biogeochemistry impact upon physical properties of
the ocean showed that the general scheme is as follows:
the presence of phytoplankton leads to the warming of the
ocean upper layer and the cooling of subsurface layers (e.g.,
Nakamoto et al., 2000; Lengaigne et al., 2007; Park et al.,
2014a, b). Nevertheless, in some circumstances, the presence
of phytoplankton, as reported by Nakamoto et al. (2001),
Manizza et al. (2005) and Park et al. (2014b), may lead to
the cooling of the surface layer as well due to enhanced up-
welling of cold subsurface water in the eastern equatorial
Pacific. Still, the warming of the eastern equatorial Pacific
due to the influence of biological productivity was reported
by Lengaigne et al. (2007), who compared the fully coupled
ocean–atmosphere–biogeochemistry model experiment with
the fixed-chlorophyll model experiment. They also discussed
the inconsistency between the results of forced ocean models
and the fully coupled models, suggesting that the impact of
marine biogeochemistry upon SST and corresponding cool-
ing or warming is related to the way radiation is treated in
the control experiments. The climate variability in the In-
dian Ocean was studied by Park and Kug (2014), who also
showed that the presence of chlorophyll increases the mean
SST due to biological heating. Therefore, a significant num-
ber of published studies on biogeochemical influence upon
ocean physics have shown that taking into account phyto-
plankton’s presence while computing the penetration of the
short-wave solar radiation into the water leads to the warm-
ing of the surface layer and cooling of subsurface layers of
the ocean. One of the main approaches in those studies was
setting the phytoplankton concentration equal to zero (a ref-
erence experiment, so-called “dead ocean”), to a constant
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value (studying the influence of phytoplankton upon ocean
physics, but not vice versa), or using a fully interactive sim-
ulated phytoplankton concentration affecting the shortwave
radiation (SWR) absorption when all possible feedbacks be-
tween physical and biogeochemical models are taken into ac-
count (e.g., Manizza et al., 2005; Lengaigne et al., 2007). Our
current research differs in that we do not investigate the in-
fluence of phytoplankton upon ocean physics in general but
investigate how the spatial and temporal variability of ma-
rine biogeochemistry affects the regional climate. Given the
changing climate reality, such a question seems reasonable
and worth discussion. Should the variability of marine bio-
geochemistry be taken into account when performing ESM
climatic predictions? Which part of the climatic system will
be affected, and which will not?

To answer these questions, we compare two simulations
carried out with our RESM. These two simulations differ
only in the influence of the ocean biochemistry module on
the shortwave solar radiation penetration into the ocean. In
the first simulation, we use a constant in time and space light
attenuation coefficient corresponding to a Jerlov IB water
type (Jerlov, 1976; Paulson and Simpson, 1977). Although
such a value of the attenuation coefficient may implicitly
include the impact of phytoplankton, it absolutely neglects
its spatial and temporal variability. In the second simulation,
we introduce the full spatial and temporal variability of ma-
rine biogeochemical feedback by calculating the attenuation
coefficient using the phytoplankton concentration simulated
by the ocean biogeochemistry module following Gröger et
al. (2013).

It is worth mentioning that many previous studies inves-
tigating the role of phytoplankton feedback on climate were
based mainly on global models, i.e., either global marine bio-
geochemistry models or global coupled atmosphere–ocean
biogeochemistry models. These models do not account well
for small-scale dynamics and thus often yield a spatially
smoothed picture of phytoplankton dynamics. In this study,
both the atmospheric as well as the oceanic components are
in a resolution that fully provides the added value of region-
alization compared to global models. This has been demon-
strated previously for the North Atlantic as well as the NW
European shelf seas (Sein et al., 2015, 2020).

Finally, it is well known that ongoing climate change will
reduce the mixed-layer depth in many ocean regions together
with a decline of ocean productivity (Steinacher et al., 2010;
Fu et al., 2016). Furthermore, changes in atmospheric nutri-
ent depositions turn out to be a driver of biological produc-
tivity in many oligotrophic regions (Myriokefalitakis et al.,
2020). The changes in production are likely to alter the wa-
ter chlorophyll concentration of the upper ocean and thus on
SST. The impacts can not be simulated with models using
Jerlov-type light attenuation, and so the role of phytoplank-
ton in climate change projections is more or less unexplored.

The objectives of this paper can be summed as follows:

1. to evaluate the ability of our model to reproduce the
present climate in the South Asia CORDEX region both
in the ocean and the atmosphere;

2. to evaluate the quality of corresponding simulated phys-
ical and biogeochemical characteristics in the northern
part of the Indian Ocean;

3. to assess the impact of the full spatial and temporal vari-
ability of marine biogeochemistry’s feedback upon the
simulated regional climate, both in the atmosphere and
the ocean.

The layout of the present paper is as follows. In Sect. 2 a de-
scription of the coupled modeling system is presented. Sec-
tion 3 is focused on the verification of the developed RESM.
Section 4 contains some discussion. Conclusions are pre-
sented in Sect. 5.

2 Methods

The oceanic component of ROM is the global Max Planck In-
stitute Ocean Model (MPIOM: Marsland et al., 2002; Jung-
claus et al., 2013), which is coupled to the REgional atmo-
spheric MOdel (REMO: Jacob, 2001a, b) via the OASIS cou-
pler. ROM also includes as modules the Hamburg Ocean Car-
bon Cycle model (HAMOCC: Ilyina et al., 2013), and the
Hydrological Discharge model (HD: Hagemann and Dume-
nil, 1998). MPIOM provides the possibility to refine the grid
resolution in the region of interest and to avoid the lateral
boundary conditions in the ocean while performing calcula-
tions. Another feature of the ROM system is that the cou-
pling between the ocean and the atmosphere is implemented
only at the chosen subdomain. At the same time, outside this
region, MPIOM calculates heat, freshwater and momentum
fluxes from atmospheric fields taken from the same global
model used for REMO boundary conditions. A detailed de-
scription of ROM can be found in Sein et al. (2015).

In this work, we use for REMO the slightly enlarged South
Asia CORDEX domain (http://www.cordex.org, last access:
1 July 2021), while for MPIOM the global mesh has a vari-
able horizontal resolution which reaches up to 15 km inside
the coupled region and ranges from 23.3 to 24.5 km in the
part of the Indian Ocean included in this domain (Fig. 1).
MPIOM has 40 vertical z-coordinate levels with the follow-
ing thicknesses (in meters):16, 10, 10, 10, 10, 10, 13, 15, 20,
25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 130,
140, 150, 170, 180, 190, 200, 220, 250, 270, 300, 350, 400,
450, 500, 500, 600. The model is driven by atmospheric data
from a CMIP5 20th century simulation with the MPI-ESM
LR setup.

For this study, we perform two present-time simulations
using ROM. The two simulations (labeled as INDJ and INDB
hereafter) are almost identical and differ only in the param-
eterization of the attenuation of SWR penetrating into the
ocean. In the INDJ experiment, we use a constant in time and
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Figure 1. ROM configuration. The red frame shows the coupled
ocean–atmosphere CORDEX domain. The black lines indicate the
grid of the MPIOM/HAMOCC models (only every 12th line is
shown). Color scale represents orography.

space light attenuation coefficient equal to 0.06 m−1 which
corresponds to Jerlov IB water type (Jerlov, 1976; Paulson
and Simpson, 1977). Although this parameterization implic-
itly includes the impact of phytoplankton, it neglects its spa-
tial and temporal variability and has several shortcomings.
Firstly, the impact of the dynamics of phytoplankton blooms
on the light climate is completely neglected, which is highly
problematic in regions which are subject to a strong seasonal
cycle and in regions with strongly varying nutrient supply.
Secondly, coastal characteristics, especially in front of large
rivers with a high nutrient load and limited exchange with
the open ocean, are not resolved, which is, however, crucial
in high-resolution downscaling simulations. This experiment
was performed for the period 1920–2005, the first 30 years
being an adjustment period. Initial conditions for the bio-
geochemical module were taken from MPIOM/HAMOCC
long-term simulations (Gröger et al., 2013). For the ocean
and atmosphere, the initial conditions were taken from pre-
vious spin-up simulations: 50 years MPIOM stand-alone run
plus 2× 40 years coupled MPIOM/REMO simulations with
ERA-Interim forcing.

In the second simulation (INDB), which starts from the
beginning of the year 1950 of the INDJ experiment, we in-
troduce the full spatial and temporal variability of marine
biogeochemical feedback by calculating the attenuation co-
efficient using the phytoplankton concentration simulated by
the ocean biogeochemistry module as proposed by Gröger
et al. (2013). Hence, the presence of a strong local phyto-
plankton bloom in the surface layer will increase the heat

absorption in the upper layers and decrease it in deeper lay-
ers compared to a no-bloom period, with cascading feedback
on the thermohaline structure of the water column and heat
flux between the ocean and the atmosphere. Due to these
reasons, the effect of seasonally and locally varying phyto-
plankton concentration can be expected to be important in
regional climate studies. Including the full variability of the
marine biogeochemical feedback, as is done here, is not a
common practice in climate simulations, as it requires online
coupling to a biogeochemistry model which leads to a 3-fold
consumption of CPU hours compared to an uncoupled model
running with Jerlov water types.

We compare the calculation results for both experiments
(INDJ and INDB) with the best observational data sets
to date for the region under consideration: they include
oceanographic data compiled in the World Ocean Atlas 2013
(WOA13, Levitus et al., 2014) and the satellite data from
the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and
Moderate-resolution Imaging Spectroradiometer (MODIS)
Terra. The WOA13 is a set of climatological-mean, grid-
ded fields of oceanographic variables based on in situ mea-
surements from a wide variety of sources. Global, decadal
averages of temperature, salinity, oxygen and nutrients are
provided for monthly, seasonal and annual averaging peri-
ods on 102 standard depth levels from 0 to 5500 m, and
at 0.25◦ (temperature, salinity) and 1◦ (all variables) hor-
izontal resolutions. We do not use the latest edition of
WOA18 (Boyer et al., 2018) for the following reasons:
(1) WOA13 is widely used in the scientific literature and
thus can be easily compared to other studies that use the
same reference, and (2) as stated in the WOA18 descrip-
tion (https://www.ncei.noaa.gov/data/oceans/woa/WOA18/
DOC/woa18documentation.pdf, last access: 1 July 2021)
WOA18 temperature and salinity data are still published as
preliminary in order to take advantage of community-wide
quality assurance and comments.

From satellite data, we use SeaWiFS chlorophyll data
(NASA Goddard Space Flight Center, 2021a) and MODIS
Terra chlorophyll data (NASA Goddard Space Flight Cen-
ter, 2021b), as well as SeaWiFS downwelling diffuse atten-
uation coefficient data (NASA Goddard Space Flight Cen-
ter, 2021c). The SeaWiFS instrument was launched on the
OrbView-2 satellite in August 1997 and collected data from
September 1997 until the end of mission in December 2010.
MODIS is a key instrument aboard the Terra (EOS AM) and
Aqua (EOS PM) satellites and its set of data records cov-
ers the period from 24 February 2000 to present time. From
above satellite data we used their gridded fields of 9 km res-
olution having daily and monthly averaging periods.

Apart from the physical feedback of phytoplankton on
SST and successive ocean–atmosphere heat exchange, the
production of phytoplankton lowers the local concentration
of dissolved inorganic carbon and thus the pCO2 of the sur-
face water. As a result, the air–sea pCO2 gradient is al-
tered which in turn feeds back on the air–sea carbon ex-
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change. However, as in the overwhelming part of coupled
ocean–biogeochemistry–atmosphere models, the air–sea car-
bon fluxes are passively coupled. Consequently, an increased
air-to-sea carbon flux due to a strong phytoplankton bloom
is not communicated to the atmosphere. Consequently, un-
like water pCO2, atmospheric pCO2 does not change but is
prescribed during the whole simulation. In conclusion, the
only way phytoplankton influences the atmosphere is by its
impact on SST and subsequent heat fluxes.

3 Results

3.1 Ocean

For validation of the model results, we use the tempera-
ture, salinity, dissolved nitrates and dissolved phosphates
data from the WOA13, and chlorophyll concentration from
the satellite data (SeaWiFS and MODIS Terra).

According to long-term observations of the Indian Meteo-
rological Department, we distinguish the following seasonal
periods used for the verification procedure based on the mon-
soon activity in South Asia and in the northern part of the
Indian Ocean:

– DJF: December–February (winter season, northeasterly
(NE) winds);

– MAM: March–May (pre-monsoon season);

– JJAS: June–September (monsoon season, southwesterly
(SW) winds);

– ON: October–November (post-monsoon season);

In the following, we compare the model results and obser-
vations for winter (DJF) and monsoon (JJAS) seasons time-
averaged over 1975–2004, since the phytoplankton impact is
expected to be maximal during the bloom periods.

3.1.1 Sea surface

Sea surface temperature and salinity (SST and SSS). Fig-
ure 2 shows the spatial distribution of the difference be-
tween the INDJ and WOA13 SST (Locarnini et al., 2013)
and SSS (Zweng et al., 2013) for winter (DJF) and mon-
soon (JJAS) seasons averaged over the 1975–2004 period.
The model generally underestimates the SST, the exception
being the region located off the coast of the Somali peninsula.
The most considerable deviations in SSS from the WOA13
are observed in the Bay of Bengal, with overestimations by
the model in the 0.5 ‰–2 ‰ range. The largest discrepancy
in SSS occurs in winter (DJF), while in pre-monsoon (not
shown) and monsoon seasons, the maximum difference is
about 0.5 ‰ and 1.5 ‰, respectively. Off the western Indian
coast, INDJ shows a somewhat lower SSS than that in the
WOA13, with the largest discrepancies occurring in the post-
monsoon season and being up to 1 ‰ (not shown).

Sea surface concentration of dissolved nitrate. HAMOCC
somewhat overestimates the surface concentration of nitrates
(NO3), especially during winter (Fig. 2). The strongest devi-
ations are located along the coasts. They are related to uncer-
tainties in nutrient supply originating from rivers and point
sources as we apply a rough climatological estimate for ex-
ternal nutrient supply (Gröger et al., 2013). Further from the
coasts, the model biases reduce, showing the model’s ca-
pability to correctly simulate the biogeochemical cycling of
the open Indian ocean, which is the primary purpose of this
study. Overly high SSTs and overly low nitrate concentra-
tions near the NE Africa and South Arabia coast during the
monsoon season may indicate that the model produces an
overly weak upwelling in response to the predominant SW
wind regime. The agreement between WOA13 (Garcia et al.,
2014) and the model varies with depth: at 50 m the main
features of the spatial distribution of nitrates are reproduced
correctly. The only serious exception is the overestimation
of the concentration of nitrates in the post-monsoon season
off the southwest coast of India. At a depth of about 100 m
the discrepancies become more pronounced, while at 500 m
the WOA13 and modeled nitrates are very similar, as the in-
fluence of the seasonal ecosystem dynamics upon the distri-
bution of nitrates at such depths becomes small. The max-
imum deviations in surface nitrate field between the model
and WOA13 data occur during the bloom periods (winter
and monsoon seasons), while this deviation is minimal in the
pre-monsoon season. In general, the modeled annual surface
concentration of dissolved nitrate is slightly higher than in
WOA13.
Sea surface chlorophyll a concentration. For the validation
of the ocean surface chlorophyll a concentration, the sur-
face phytoplankton concentration (in carbon units) calcu-
lated by HAMOCC was converted into chlorophyll a con-
centration (in mg m−3) using a constant C : Chl ratio equal to
60 gC gChl−1 (Ilyina et al., 2013). Figure 3 demonstrates the
spatial distribution of modeled (INDJ) and observed (SeaW-
iFS) surface chlorophyll a concentration for winter and mon-
soon seasons.

It is clear that ROM overestimates the chlorophyll a con-
centration in comparison with SeaWiFS satellite data (NASA
Goddard Space Flight Center, 2021a). The model produces
lower chlorophyll a concentrations in the Arabian Sea un-
der the predominant NE wind regime during the winter mon-
soon. By contrast, SW winds during the summer monsoon
induce the upwelling of nutrients from deeper layers and
stimulate primary production. In winter the model simu-
lates enhanced chlorophyll a concentrations along the east-
ern boundary of the Bay of Bengal while showing their de-
crease during monsoon season. These modeled chlorophyll a

changes are in accordance with seasonal changes of the wind
regime. However, the satellite data show high concentrations
during monsoon season in that coastal area that our model
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Figure 2. Spatial distribution of the difference between experiment INDJ and WOA13 for SST (a, d), SSS (b, e) and NO3 in the surface layer
(c, f). SST, SSS and NO3 are time-averaged for the winter season (DJF; a–c) and monsoon season (JJAS; d–f) for the period 1975–2004.

Figure 3. Distribution of surface chlorophyll a concentration obtained by the SeaWiFS satellite data (NASA Goddard Space Flight Center,
2021a; a, d), model using a fixed C : Chl ratio (b, e), and using a varying C : Chl ratio as in Anderson et al. (2007) (c, f), for winter (a–c) and
monsoon (d–f) climatic seasons.

did not represent. The most plausible explanation for this
is a persistently high supply of riverine nutrients around the
year which occurs in reality and which is not specified in our
model. Another difference between the model and satellite
data is the presence of increased chlorophyll a concentration
zone stretching along the Equator in the model results, espe-
cially during the winter season, which is not present in satel-
lite data. A good agreement, both qualitative and quantita-
tive, between the model’s winds and ERA5’s winds (Fig. 17;
see below) suggests that the enhanced model’s equatorial sur-
face phytoplankton concentration cannot simply be related
to incorrect wind simulation. The problem may be related
to the relatively coarse vertical resolution of MPIOM in the
upper layer (16 m) together with a simple turbulence clo-
sure scheme in MPIOM based on Pacanowski and Philan-
der (1981). The overestimation or underestimation of ocean

productivity along the equatorial divergence zone is a com-
mon problem of many ocean general circulation models (e.g.,
Steinacher et al., 2010). Liu et al. (2013) also reported and
discussed significant discrepancies between observed and
modeled chlorophyll a surface concentrations in the equa-
torial Indian Ocean in an ensemble of five CMIP5 coupled
models. Their analysis showed that all the considered mod-
els shared the same structures and deviations in that region.
Unfortunately, our RESM also has the same drawback in this
really challenging problem.

The overestimation of chlorophyll a concentration in the
domain may also be explained by a relatively simple descrip-
tion of phytoplankton dynamics in the HAMOCC model.
HAMOCC includes only one type of phytoplankton and, as
a component of a global climatic model, it was configured to
produce realistic global-mean primary production (Ilyina et
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al., 2013) but may significantly over- or underestimate some
regional features of marine biological productivity. We sup-
pose that this is the main cause of differences between satel-
lite and model results. This also holds for overestimated re-
gional concentration of dissolved nitrate, which is another
issue of HAMOCC and other global models (Ilyina et al.,
2013).

Another cause of modeled chlorophyll a overestimation
may be the fixed phytoplankton C : Chl ratio used in the
HAMOCC model. As was mentioned above, HAMOCC uses
a constant C : Chl ratio equal to 60 gC gChl−1, and this ratio
is used herein to convert the modeled surface phytoplank-
ton concentration (expressed in carbon units) into surface
chlorophyll a concentration (expressed in mg Chl m−3) in or-
der to validate the model’s results against SeaWiFS satellite
data. Nevertheless, as was shown in numerous studies, the
phytoplankton C : Chl ratio is very variable, depending on
specific phytoplankton species, irradiance level and bloom
phase. The values of the C : Chl ratio may be 20–50 at low
irradiances and up to 100–200 at high irradiances, as reported
by Smith and Sakshaug (1990).

Besides a fixed C : Chl ratio, a functional dependency of
C : Chl can be used in some models. For example, in Ander-
son et al. (2007) such function was used in a biogeochemical
model of the Arabian Sea, which includes water temperature
and nutrient concentrations as arguments. Figure 3 shows the
surface chlorophyll a concentration (converted from mod-
eled phytoplankton concentration) calculated with a fixed
and variable (Anderson et al., 2007) C : Chl ratio in order
to compare it with satellite data and check if a variable phy-
toplankton C : Chl ratio may give a better agreement with
SeaWiFS observations.

As seen from Fig. 3, using the above-mentioned parame-
terization for phytoplankton variable C : Chl ratio gives bet-
ter agreement between model and SeaWiFS surface chloro-
phyll a concentration. It should be noted that the constant
C : Chl ratio is used in HAMOCC in the photoadaptation pro-
cess, so, strictly speaking, it is not consistent to use another
C : Chl ratio for converting the modeled phytoplankton con-
centration into chlorophyll a concentration, but it is still use-
ful to demonstrate the impact of phytoplankton C : Chl ratio
variability upon the model’s verification.

A comparison of the HAMOCC surface chlorophyll a con-
centration with satellite data was also carried out for some
locations in the Arabian Sea, Somali upwelling area and
Bay of Bengal (Fig. 4). The general overestimation of simu-
lated chlorophyll a surface concentrations mentioned above
is also evident at these locations. However, during several
short periods the MODIS’s daily-mean climatic concentra-
tions (NASA Goddard Space Flight Center, 2021b) appear to
be higher than in the model. The period of analysis presented
in Fig. 4 is related to the availability of MODIS Terra (2000–
2021) and SeaWiFS (1997–2010) data. Because our simula-
tions span up to 2005, the resulting common period for the
model results and satellite data is 1997–2005, which is used

in Fig. 4 to calculate mean values of surface chlorophyll a

concentration for this period.

3.1.2 Vertical distributions

We have also analyzed the spatially averaged vertical profiles
of water temperature, salinity, dissolved nitrate and phospho-
rus concentration for the northern part of the Indian Ocean
(IO) and for the Arabian Sea (ASF) and the Bay of Bengal
(BBF) regions (Fig. 5).

As seen from Fig. 6, the simulated vertical distribution of
temperature and salinity is in relatively good agreement with
WOA13 data. Model results are generally within the standard
deviation range of the corresponding WOA13 data in ASF
and in IO. However, in BBF the modeled temperature and
salinity are out of the standard deviation range. Still, it should
be noted that the standard deviation of WOA13 temperature
in the whole water column and salinity below 100 m is very
small in these areas due to the scarcity of observations. The
same is true for the vertical distribution of nutrients (Fig. 7).

3.1.3 Mixed-layer depth

A possible way to analyze the impact of biology on the wa-
ter column is how it affects mixing. Hence, we calculated the
mixed-layer depth (MLD) according to the 0.2 ◦K criterion
and compared it directly to the observation-based mixed-
layer depth climatology provided by de Boyer Montégut
al. (2004) (Fig. 8). During the SW monsoon season (JJAS)
ROM simulates a deeper MLD in a narrow band along the
coast of Somalia compared with observational data (Fig. 8a,
upper panel). Due to a higher horizontal resolution of the
ocean module MPIOM (up to 15 km), ROM can generally
better reproduce small-scale structures compared to the data
of de Boyer Montégut al. (2004), which has horizontal res-
olution of only 2◦ and where small-scale structures may be
less pronounced. A big mismatch is seen in the eastern Bay
of Bengal where INDJ simulates a very deep (>70 m) MLD
which is not seen in the observations. This points to a sys-
tematic overestimation of the MLD in this area. However,
the difference between INDB and INDJ (Fig. 8b, left) shows
that this bias is substantially reduced when ROM takes into
account the explicit heat absorption by modeled phytoplank-
ton.

During monsoon season (Fig. 8a, JJAS) the MLD deepens
in the southern part of the domain in both ROM and observa-
tions. However, in the observations, the zone of deep mixing
expands more northward compared to ROM.

During the winter season (DJF), the observational data set
shows much lower spatial variation of the MLD than in the
INDJ experiment (Fig. 8a, lower panel). Partly, this is ex-
pected due to the coarse resolution of the observational data
set. However, it is obvious that in both the Arabian Sea as
well as in the Bay of Bengal, ROM seems to overestimate
the MLD, whereas in the southern part of the domain, where
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Figure 4. Comparison of the simulated (INDJ and INDB) and observed (SeaWiFS, MODIS Terra) surface chlorophyll a concentration in
the Arabian Sea (a), Somali upwelling area (b) and the Bay of Bengal (c). DC and MC – daily-mean and monthly-mean climatic averaging
of satellite data for the period 1997–2005, respectively. The blue and red curves (Chl a INDJ and Chl a INDB) are daily-mean climatic
averaging of modeled surface chlorophyll a concentration for the period 1997–2005.

the MLD is generally shallower, the differences are less pro-
nounced. In the northern Indian Ocean, as seen in Fig. 8b,
the MLD is much shallower in the simulation with explicit
consideration of heat absorption by simulated phytoplankton
(INDB) compared to the experiment with the constant atten-
uation coefficient (INDJ). Therefore the differences with the
observational data are substantially reduced in INDB com-
pared to INDJ.

3.1.4 Impact of the fully coupled marine biogeochemical
variability

Impact on the water temperature and salinity. Here we in-
vestigate the impact of variable chlorophyll a concentra-
tion when using the corresponding light attenuation param-
eterization (see Gröger et al. (2013) for details) upon the
main oceanic variables by comparing the experiments INDB
and INDJ. The vertical distribution of temperature, salinity,
dissolved nitrate and phosphate for different regions of the
model domain was already presented in Figs. 6–7 for both
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Figure 5. Regions over which spatial average is computed for
the vertical profiles of fields (temperature, salinity and nutrients).
Acronyms as used for further analysis: IO – Indian Ocean, ASF –
Arabian Sea full, AS – Arabian Sea box, BBF – Bay of Bengal full,
BB – Bay of Bengal box.

experiments. Figure 9 shows the spatial distribution of the
difference of the climatological (1975–2004) values of the
SST and corresponding standard deviation of the two model
runs (INDB–INDJ). In winter (DJF), the use of the light at-
tenuation parameterization based on simulated chlorophyll
concentration in INDB leads to a lower SST, which becomes
up to 1 ◦C colder in the northern part of the Arabian Sea. The
exceptions are the areas near the southwestern coast of India,
the northwestern coast of Indonesia and the eastern part of
the Andaman Sea, where an insignificant SST increase which
does not exceed 0.1 ◦C can be found. In monsoon season
(JJAS) the difference in SST between the two runs is even
more pronounced, especially in the northern part of the Ara-
bian Sea and along the eastern coast of India. SST in INDB
is also characterized by stronger variability, with a standard
deviation of SST approximately 0.3 ◦C higher than in INDJ.

When averaging over the annual period (not shown), SST
in INDB is also slightly lower and its standard deviation is
higher than in INDJ.

Figure 10 shows the spatial distribution of the differences
(INDB–INDJ) in DJF and JJAS mean SSS and standard devi-
ation for the same period (1975–2004). Our results show that
in all seasonal climatic averages the SSS difference between
INDB and INDJ experiments is not strongly pronounced
and does not generally exceed 0.2 ‰. The most significant
changes in SSS occur in the Bay of Bengal. Figure 10 also
shows that the standard deviation in the two simulations is
quite similar, except for the northern part of the Bay of Ben-
gal where the INDB run showed larger seasonal deviations
relative to the INDJ experiment.

Impact on the primary production and dissolved nitrate.
This is shown in Fig. 11 where the differences in depth-
integrated modeled phytoplankton primary production (PP)

and surface concentration of dissolved nitrate (NO3) are pre-
sented. It can be seen that the PP is higher in the INDB ex-
periment during the main phytoplankton bloom periods (DJF
and JJAS). The surface concentration of dissolved nitrates is
generally lower in the INDB than in the INDJ experiment.
It is especially apparent on the Arabian Sea and agrees well
with the increased PP since nutrients are consumed more in-
tensively in the surface layer.

Impact on water temperature in the ocean upper layers.
To compare the simulated water temperature in the ocean
upper layers (up to 100 m depth), we select two complemen-
tary regions, where the largest SST difference between INDB
and INDJ are found (designated in Fig. 5 as AS: 60–65◦ E,
20–25◦ N and BB: 85–90◦ E, 15–20◦ N). Figure 12 shows
the DJF and JJAS vertical profiles of water temperature (T ),
SWR and phytoplankton concentration (Phyt) for the two ex-
periments averaged over the regions AS, BB and IO. We note
a significant cooling of subsurface layers in INDB compared
to INDJ.

Thermocline dynamics. Thermocline dynamics is among
the most important factors mediating the temporal and spa-
tial shape of phytoplankton blooms and their feedback on
climate. On the one hand, it acts as a barrier for the verti-
cal exchange between nutrient-depleted surface waters and
nutrient-enriched waters from deeper layers and can limit bi-
ological productivity. On the other hand, a strong thermo-
cline can effectively reduce the local mixed-layer depth and
allow phytoplankton to persist longer within the euphotic
layer, thereby increasing the growth rate of marine algae.
Moreover, the thermocline has a temperature-mediating ef-
fect, with a shallower thermocline allowing the surface layer
to faster adapt to atmospheric temperatures (e.g., Gröger et
al., 2015). The inclusion of phytoplankton in the radiative
heat transfer equation alters the vertical distribution of heat
absorption and thus influences the thermocline dynamics. In
the following, we compare the thermocline dynamics be-
tween the two model runs INDJ and INDB (Fig. 13). A com-
parison of both runs with WOA13 data is also discussed here.

Data generally tend to be sparse in open-ocean regions
with less dense measuring campaigns like the Indian Ocean.
Then, caution should be applied when interpreting thermo-
cline dynamics derived from sparse gridded data sets like
WOA. Therefore, we do not provide a quantitative validation
here but rather discuss the processes underlying the spatial
pattern.

Both simulations and WOA data show distinct gradients
in thermocline depth (defined here as maximal temperature
gradient in the water column). During the monsoon season
(Fig. 13a) the thermocline shoals to values smaller than 25 m
along the northern coast of the Arabian Sea and along the
Indian coast where moisture-carrying SW monsoon winds
cause a positive P –E flux and maintain a vigorous runoff
(Ramesh and Krishnan, 2005). Off the Somali coast and fur-
ther offshore, the strong SW monsoonal winds lead to a deep-
ening of the thermocline in wide areas of the open ocean. In
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Figure 6. Vertical profiles of water temperature and salinity time-averaged seasonally (DJF, JJAS) for the period 1975–2004. INDJ and
INDB designate the model runs. WOA13 designates the climatic data from the World Ocean Atlas 2013 (Locarnini et al., 2013; Zweng et
al., 2013). SD designates the standard deviation of the WOA13 data.

Figure 7. Vertical profiles of dissolved nitrate and phosphate time-averaged seasonally (DJF, JJAS) for the period 1975–2004. INDJ and
INDB designate the model runs. WOA13 designates the climatic data from the World Ocean Atlas 2013 (Garcia et al., 2014). SD designates
the standard deviation of the WOA13 data.
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Figure 8. (a) Upper panel: monsoon season (JJAS) mixed-layer
depth as calculated in the INDJ experiment (left) and from observa-
tional data (de Boyer Montégut al., 2004; right). Lower panel: same
as upper panel but for the winter season (DJF). (b) Mixed-layer
depth difference between two model simulations (INDB–INDJ)
for monsoon (left) and winter (right) seasons. All fields are time-
averaged seasonally (DJF, JJAS) for the period 1975–2004.

both simulations the extension of this area is larger than in
WOA data sets. In the Bay of Bengal, the model simulates
a clear east–west gradient with a deeper thermocline in the
east compared to the west. Such a pattern is also observed in
WOA to some extent. To the south of the Equator the ther-
mocline shoals in an extended zonal band with depths well
below 50 m. This is likewise seen in WOA, though this is less
pronounced there. During the winter monsoon, the very shal-
low thermocline in the coastal Arabian Sea strongly deepens
in response to changed monsoon (Fig. 13a). This seasonal
change is more pronounced in the model simulations but is
still significant in the WOA data sets. This indicates that the
seasonal variability is well represented in the model near the
coasts.

The simulated thermocline depth is almost everywhere
shallower when including the fully coupled biogeochemi-
cal variability in the parameterization of SWR attenuation
in the water (Fig. 13b) in both monsoon and winter seasons.
The explicit use of phytoplankton in the radiated heat trans-
fer (INDB experiment) leads to more heat absorption in the
upper layers and less heat absorption in lower layers. As a
result, the thermocline shifts upward compared to the Jerlov
type absorption (INDJ experiment), which follows a simple
exponential curve with a constant exponent.

3.2 Atmosphere

Here we study the regional distribution of some key atmo-
spheric fields over the South Asia CORDEX region and val-
idate them for winter (DJF) and monsoon (JJAS) seasons
over the 1975–2004 period. In Sect. 3.2.1 we focus on the
regional distribution of 2 m air temperature (T2M) biases rel-
ative to the ERA5 reanalysis (Copernicus Climate Change
Service, 2020). Also, temperature differences between the
INDB and INDJ experiments are analyzed. This allows us to
gain insight into temperature changes that occur in response
to taking into account the variability of ocean biogeochem-
istry when calculating the SWR attenuation in the water. In
Sect. 3.2.2 the same procedure is followed but taking into
consideration the precipitation instead.

3.2.1 Air surface temperature

In both seasons, the mean surface temperature in ERA5 is
clearly influenced by topography (Fig. 14a, d). In JJAS the
cold bias over the Middle East and the warm bias over India
(Fig. 14e) impact the strength and the path of the Findlater
jet (Samson et al, 2017). The lowest values are reached on
highly elevated terrain – especially in winter. The lowest tem-
peratures are attained in world highest mountain ranges: the
Himalaya, Pamir, Hindu Kush and the Tibetan Plateau. The
highest monsoon season temperatures are reached along with
the Indo river depression and the Arabian Peninsula. In ex-
periment INDJ the winter daily mean temperatures are simu-
lated quite well, and biases are relatively small (Fig. 14b and
e); T2M is underestimated over most of the model domain,
except for its northern and northwestern areas where positive
biases can reach up to 5 ◦C. The negative biases are mostly
below 2 ◦C, except for Tibet and Himalaya, where simulated
T2M more than 4 ◦C colder than ERA5 can be found. The
largest errors are found in depressed and/or highly elevated
regions, and their values may be dependent on factors such as
the limited number of meteorological stations in topographic
highs and lows used for the assimilation in the region and the
different representation of the orography in both REMO and
ERA5. JJAS T2M biases are generally lower than in win-
ter, with a similar dependence on orography. They become
positive over most of the Indian subcontinent with maximum
values over the northern Indo river basin where mean temper-
atures are up to 4 ◦C above ERA5. Over the ocean, a positive
bias develops in the region where the monsoon winds are
stronger. In general, the most considerable T2M biases are
located in regions where larger temperatures are obtained,
pointing to a role of the simulated nocturnal boundary layer
and/or radiative fluxes. As shown in Samson et al. (2017),
radiative fluxes (as well as winds and precipitation) are influ-
enced by the representation of the land surface albedo, and
this influence is important in this region. Like for the SST,
ocean biogeochemical feedback variability leads to a colder
surface air temperature over most of the ocean. In DJF the
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Figure 9. Spatial distribution of the difference between model runs (INDB–INDJ) for SST (a, c) and SST standard deviation (SD, b, d). SST
and its standard deviation are time-averaged seasonally (DJF, JJAS) for the period 1975–2004.

cooling is stronger over the Arabian Sea and the equatorial
strip, reinforcing the weak negative biases already present in
INDJ. Over the land, taking into account the marine biogeo-
chemical variability in INDB slightly improves the cold bias
in northwestern and southern India. Still, it leads to a cool-
ing in the central part. The ocean cooling in INDB is also
present in JJAS, with stronger values near the western coast
of the Arabian Sea and the Bay of Bengal, downstream of the
monsoon winds.

3.2.2 Monsoon precipitation

The monsoon season in South Asia is shaped by different
processes which change the atmospheric circulation due to
the monsoon season strengthening of the ocean–land temper-
ature contrast. The spatial structure of the observed monsoon
precipitation is characterized by two regions of strong rain-
fall over land (Fig. 15a). The first is located windward, over
the western coast of India, Myanmar and the southern side of
the Himalayas. The second region which covers Bangladesh,
central India and the eastern coast of the Indian peninsula is
the area of maximum monsoon precipitation over the land.
The precipitation is weaker over the northwest of India and
Pakistan (Kumar et al., 2013). The intricate orography and
physical mechanisms involved make the simulation of the

monsoon precipitation a difficult task both for global and re-
gional models (Lucas-Picher et al., 2011). However, stand-
alone simulations with REMO have been shown to be able to
reproduce spatial monsoon precipitation patterns rather well,
although a better quantitative agreement is desirable (Kumar
et al., 2014). For instance, the precipitation over south and
central India is overestimated, while the precipitation over
the Indo-Ganges plain is strongly underestimated. A wet bias
is usually found over the Bay of Bengal and the southern In-
dian Ocean.

As shown in previous versions of the model (Kumar et al.,
2014; Paxian et al., 2016), ROM is able to improve the per-
formance of REMO, simulating more realistic precipitation.
The coupling reduces the magnitude of the biases, especially
in the regions where REMO has the most substantial biases,
near the eastern coasts of the Arabian Sea and the Bay of
Bengal (Fig. 15b). It should be noted that in both INDJ and
INDB experiments ROM is forced by MPI-ESM and the at-
mospheric biases of the driving ESM influence the results
(e.g., Cabos et al., 2020).

Besides the total precipitation, in Fig. 15d–e we show the
convective (thereafter APRC) and in Fig. 15g–h the large-
scale (thereafter APRL) component of the precipitation. We
can see that in INDJ the main contribution to the biases over
the ocean near the eastern coast of the Arabian Sea comes
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Figure 10. Spatial distribution of the difference between model runs (INDB–INDJ) for SSS (a, c) and SSS standard deviation (SD, b, d).
SSS and its standard deviation are time-averaged seasonally (DJF, JJAS) for the period 1975–2004.

Figure 11. Spatial distribution of the difference between the model runs (INDB–INDJ) for PP (a, c) and NO3 (b, d). PP and NO3 are
time-averaged seasonally (DJF, JJAS) for the period 1975–2004.
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Figure 12. Vertical profiles of shortwave radiation (SWR), water temperature (T ) and phytoplankton concentration (Phyt) in the INDJ and
INDB experiments.

from APRC, while over the coastal land the main contribu-
tor is APRL. The opposite is true for the eastern coast of the
Bay of Bengal, especially in Myanmar where the main con-
tributor over the ocean and the coastal regions is APRL, with
a lesser contribution from APRC. To the south of the Equa-
tor, between 10◦ S and the Equator, both components give a
contribution of similar magnitude, albeit the large-scale com-
ponent is stronger. Here, both components show a similar
displacement of the region of maximum precipitation to the
south. While the magnitude of the convective precipitation is
lower than in ERA5, the large-scale component is stronger
and more zonal than the ERA5 large-scale precipitation.

In the INDB experiment, taking into account the variabil-
ity of marine biogeochemistry when calculating SWR pene-
tration into the water leads to drying over most of the ocean,
especially over the Bay of Bengal, central and northeastern
the Arabian Sea, and the strip south of the Equator. An appar-
ent reduction in precipitation can also be found inland, along
the western Indian coast. As seen in Fig. 15f and i, the con-
tribution of convective and large-scale components to these
differences vary along the regions.

In the INDB experiment, APRC gives the main contribu-
tion (in terms of precipitation) over the Bay of Bengal, the
central part of the Arabian Sea and the coastal regions of
western India. APRL gives the main contribution to the dry-

ing in northern–central India, while in Myanmar it causes a
wetting, thus offsetting the impact on APRC. To the south of
the Equator, between 10◦ S and 0◦, the impact is similar to
both precipitation components.

4 Discussion

The effect of the spatial and temporal variability of a fully
coupled marine ecosystem upon SWR attenuation in water
(experiment INDB) leads to a cooling of the ocean waters
compared to a reference INDJ experiment where a constant
attenuation coefficient was set equal to 0.06 m−1 (Jerlov IB
water type). Generally, taking into account the phytoplank-
ton when calculating light extinction in the ocean leads to
a warming of the upper ocean layer and cooling of sub-
surface layers compared to a “no-bio” reference experiment
(e.g., Nakamoto et al., 2000; Lengaigne et al., 2007; Park et
al., 2014a, b; Park and Kug, 2014). But, as emphasized in
Lengaigne et al. (2007), the sign of the effect is determined
by the choice of the reference experiment. If a truly “no-
bio” approach is implemented in a reference experiment (a
“dead ocean” case), then the SST in the experiments where
either a constant chlorophyll a concentration or fully cou-
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Figure 13. (a) Comparison of simulated thermocline depth with
thermocline depth derived from WOA 2013 data sets for JJAS (left)
and DJF (right). (b) The difference in thermocline depth between
the two runs (INDB–INDJ) for JJAS (left) and DJF (right).

pled biogeochemical model is implemented becomes higher
compared to the reference experiment.

Our results show that in INDB the SST and subsurface
waters are cooler than in INDJ over most of the model do-
main. The attenuation coefficient used in INDJ (0.06 m−1) is
not equal to a freshwater attenuation coefficient (0.03 m−1)
(e.g., Ilyina et al., 2013). In fact, an attenuation coefficient
constant in space and time of 0.06 m−1 used in the INDJ ex-
periment corresponds to oceanic water masses with relatively
small amounts of phytoplankton. Still, it would be incorrect
to say that SWR absorption in such waters is fully controlled
only by fresh water. It means that in the INDJ experiment the
ocean absorbs the incoming SWR more actively than if we
use the attenuation coefficient equal to 0.03 m−1. This detail
is crucial to explaining why the water temperature is cooler in
the INDB experiment compared to INDJ. The reason for that
is the parameterization used for the SWR extinction in INDB.
As given in Gröger et al. (2013), the attenuation coefficient in
this parameterization depends on a constant part representing
water attenuation (0.03 m−1) and a variable part representing
the attenuation by phytoplankton (for details see Appendix
A in Gröger et al., 2013). Thus, if phytoplankton concentra-
tion is low then the final magnitude of the attenuation coeffi-

cient in INDB may be smaller than 0.06 m−1. Analysis of the
annual-mean and seasonal-mean phytoplankton distribution
in the northern part of the Indian Ocean in both experiments
and in satellite data (e.g., Fig. 3 herein or Fig. 2 in Liu et al.,
2013) has revealed that this is almost always the case – the
observed phytoplankton concentrations in the study area are
not enough to raise the attenuation coefficient in the INDB
experiment up to an exact value of 0.06 m−1 or higher in the
domains considered in our analysis (IO, ASF, BBF, etc). In-
deed, Fig. 16 demonstrates the spatial distribution of the cal-
culated attenuation coefficient at the ocean surface averaged
annually (ANN) and seasonally (DJF, MAM, JJAS, ON) in
the INDB experiment, as well as attenuation coefficient ob-
tained by SeaWiFS measurements (NASA Goddard Space
Flight Center, 2021c) and averaged in the same way.

The climatic annual-mean value of the attenuation co-
efficient in the INDB experiment (0.056 m−1) is closer to
that in SeaWiFS data (0.051 m−1) than the INDJ’s value
(0.06 m−1). Compared to the fixed attenuation coefficient
used in the INDJ experiment, in the INDB experiment the
attenuation coefficient has its temporal and spatial variability
which roughly replicate that of SeaWiFS, except for the win-
ter period (DJF), taking into account the known uncertainty
in the determination of this characteristic. The SeaWiFS’s
minimum coefficient value occurs in the pre-monsoon season
(MAM, 0.042 m−1) and maximum occurs in the monsoon
season (JJAS, 0.059 m−1). It corresponds to model results:
the minimum occurs in the pre-monsoon season (MAM,
0.053 m−1) and maximum is in monsoon season (JJAS,
0.059 m−1). Such seasonal variability allows us to examine
the influence of marine biogeochemical variability upon the
climatic characteristics in the current study.

Figure 12 clearly demonstrates that for the upper 100 m
layer the water temperature differences between INDB and
INDJ experiments in the surface layers are less than the dif-
ferences between them in the deeper layers. Consideration
of further changes in this difference with increasing depth
showed that the maximum difference occurs at depths of
about 100 m or less and in layers lying below the depth of
the maximum difference, it decreases to negligible values
at depths of 180–240 m. It means that the SWR absorption
and vertical water temperature distribution in the INDB ex-
periment follows the same mechanism as reported in other
above-mentioned studies – warming of the surface layer due
to additional SWR absorption by phytoplankton and cooling
of the subsurface waters, compared to experiment with con-
stant attenuation coefficient. But in our study, we compare
INDB results not with a reference experiment with an atten-
uation coefficient of 0.03 m−1 (without phytoplankton), but
with a more realistic experiment with an attenuation coeffi-
cient equal to 0.06 m−1 (INDJ). The reason for such a choice
is that we study not the marine biogeochemical input as it is,
but the impact of its variability upon regional climate. That is
why for the basic model run in this study we chose the SWR
attenuation scheme with constant attenuation coefficient.
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Figure 14. DJF (upper row) and JJAS (lower row). (a, d) 2 m temperature ERA5 climatology. (b, e) Bias for the experiment INDJ; (c, f)
INDB–INDJ difference.

Figure 15. JJAS precipitation for ERA5 (a, d, g), INDJ experiment (b, e, h), and the differences between INDB and INDJ (c, f, i) for total
precipitation (a–c), convective precipitation (d–f) and large-scale precipitation (g–i).
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Figure 16. Spatial distribution of the attenuation coefficient at the ocean surface averaged annually (ANN) and seasonally (DJF, MAM,
JJAS, ON). Left column – SeaWiFS data (NASA Goddard Space Flight Center, 2021c) averaged over 1997–2005; right column – INDB
results averaged over 1997–2005. For all figures, a mean value of the attenuation coefficient (inside the domain) is presented.
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Figure 17. JJAS wind (a, c and e, arrows are wind velocities, the color scale is the wind speed module) and latent heat (b, d and f, the color
scale is the latent heat flux) for ERA5 (a, b); INDJ experiment (c, d) and (INDB–INDJ) difference (e, f).

Under the changing climate conditions, the variability of
marine biogeochemistry and its corresponding influence on
the SWR absorption by the ocean may be an important factor
in climate simulations. Thus, the investigation of the differ-
ences between the INDJ and INDB experiments presented in
this paper is focused on this specific problem. In this respect,
making model simulations with fully absent phytoplankton
impact on the light absorption while studying regional cli-
mate would not make much sense because such a situation
is unrealistic. Using the light attenuation parameterization of
the INDB experiment but with fully absent phytoplankton
would mean neglecting biology completely. However, such
additional experiments would help to quantify the effect of
phytoplankton in our RESM configuration. Still, taking into
account previous studies focused on this matter, significant
demands of the presented fully coupled RESM and limited
computational resources, we are compelled to constrain our-
selves on the potential research directions in this paper.

Regarding the value of the attenuation coefficient in the
reference INDJ experiment equal to 0.06 m−1, such a choice
was dictated by the following main reasons. Firstly, in a lot
of previous studies with the ROM modeling system the ref-
erence attenuation coefficient equal to 0.06 m−1 was used
(e.g., Sein et al., 2020; Tangang et al., 2020; Zhu et al.,
2020; Cabos et al., 2017, 2019; Paeth et al., 2017; Paxian
et al., 2016; Paulsen et al., 2018). The choice of this atten-
uation coefficient was justified by correctly modeled global
primary production, better representation of the ITCZ and
heat budget, which were in a good agreement with obser-
vations. Since the ocean component of the ROM modeling
system is global, we have to use globally adjusted model’s
parameters in the present study as well. Secondly, the choice
of the attenuation coefficient in INDJ equal to 0.06 m−1 does
not assume an unrealistically green ocean. As we have al-
ready shown (Fig. 16), the SeaWiFS satellite measurements
give seasonal climatological values of the attenuation coef-
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Figure 18. JJAS horizontal transport of cloud water (arrows show
the vector of cloud water transport, the color scale is its module) in
INDJ (a) and INDB–INDJ difference (b).

ficient equal to 0.044–0.063 m−1 for the considered domain,
with the annual-mean climatic value of 0.052 m−1. Finally,
Rochford et al. (2001) reported the assessment of global at-
tenuation coefficient distribution in the World Ocean based
on satellite data. Following their results, the value 0.06 m−1

can be seen as a good estimate of background attenuation co-
efficient for our domain, except the very coastal waters and
Arabian Sea in August (for details, see Plate 1 and 2 in their
paper at the page no. 30926).

Thus, a correctly adjusted constant light attenuation coef-
ficient can ensure correct global-mean estimates of primary
production, heat budget, etc. Still, it may under- or overes-
timate SWR attenuation regionally. In this way of thinking,
the use of a completely different parameterization of light at-
tenuation, as is implemented in INDB in this study, is seen as
a good approach for a global model to take into account re-
gional features because it includes a spatially and temporally
varying phytoplankton-dependent attenuation coefficient.

In the INDB experiment, the thermocline shifts upward
compared to the INDJ run where a simple exponential curve
of light attenuation is implemented. This is due to a sharper
vertical gradient of water temperature in INDB (Fig. 12) in-
duced by the non-homogeneity of the vertical distribution of
phytoplankton. Hence, in the INDB experiment we see in-
creased light absorption in the upper ocean layers and de-
creased – in the subsurface layers, compared to INDJ where
a constant attenuation coefficient controls the SWR absorp-
tion.

The different light attenuation parameterization imple-
mented in INDB has cascading effects on model physics, like
altered SST, which further translates into altered atmosphere
dynamics. Due to the temporarily varying chlorophyll a con-
centrations in the ocean surface layer and subsequent vari-
able heat absorption, SSTs are by far more variable in the
INDB experiment than in INDJ (Fig. 9).

The higher phytoplankton primary production in INDB
(Fig. 11) is most likely the effect of the decreased mixed-
layer depth which allows phytoplankton to prevail longer in
the euphotic layer. This effect is more pronounced to the
north of 10◦ N where the thermocline is relatively deep (and
a reduction of the mixed-layer depth in INDB is most effec-
tive). In regions where the thermocline is generally shallower
(to the south of 10◦ N) this effect is of minor importance as
light is less limiting there.

During JJAS, the simulated wind in INDJ is slightly
weaker than in ERA5 in the Arabian Sea but stronger in
the Bay of Bengal (compare Fig. 17a and c). In the latter,
stronger winds lead to stronger latent heat fluxes, while the
opposite is true for the Arabian Sea where the weaker wind is
associated with a stronger latent heat (Fig. 17b and d). This
points to a different nature of the relationship between wind
speed and latent heat in both regions, leading to stronger
heat flux in both regions. The monsoon winds bring drier
air into the Arabian Sea because it flows over colder water
all the way from the equatorial region. Although the cold
bias here leads also to a decrease in surface humidity, as the
SST bias is lower, the surface humidity bias is lower. The
resulting increase in the sea–air humidity difference over-
comes the decrease in the wind, thus giving a stronger la-
tent heat flux. This is not true for the west coast where most
of the air comes from land (Wu et al., 2007). In the Bay of
Bengal, the increase in latent heat is mainly associated with
the simulated winds which are stronger than in ERA5. In
the INDB experiment, the marine biogeochemical variabil-
ity and corresponding variability of SWR absorption by the
ocean causes a further cooling over the basin (Fig. 9), and
this cooling causes a further drying over most of the domain,
especially over the land in regions that are downstream of
the monsoon winds. The drying is related to changes both in
convection activity and moisture transport. Figure 18a shows
the horizontal transport of cloud water for the INDJ exper-
iment. This figure shows the contribution of the large-scale
circulation to the monsoon rain. The Arabian Sea winds are
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charged with moisture in their path to the Indian subconti-
nent and Sri Lanka, contributing to the large-scale precip-
itation in the eastern part of the basin and the coastal re-
gions (Fig. 15h). The wind, which loses moisture over the
land, is again recharged over the Bay of Bengal, contributing
to the strong precipitation in the eastern part of the Bay of
Bengal, Myanmar and southeastern Asia. It is worth noting
the recirculation of cloud water in northeastern India due to
the presence of the Himalayan range, which influences the
amount of precipitation there. The marine biogeochemical
variability and corresponding change of SWR absorption af-
fects the precipitation over the Arabian Sea and the Bay of
Bengal in different ways. From one side, it reduces the trans-
port of humidity across the Equator towards the eastern part
of the basin, reducing the large-scale precipitation there and
in the adjacent coastal regions, reinforcing the effect of the
colder water on the convective precipitation. In the Bay of
Bengal, it reinforces the transport of humidity, increasing the
large-scale precipitation, contouring the decrease in convec-
tive precipitation due to the SST cooling (Fig. 18b).

5 Conclusions

A regional Earth system model based on the ROM model
(Sein et al., 2015) has been implemented for the CORDEX
South Asia region. We use the model to investigate the effect
of taking into account the full spatial and temporal variability
of the marine ecosystem while calculating light absorption
by water upon the regional climate. Two model simulations
are conducted using CMIP5 historical forcing for the period
1920–2005. They differ only by ocean SWR attenuation pa-
rameterizations.

The effect of the spatial and temporal variability of a
fully coupled marine ecosystem upon SWR attenuation in
water (experiment INDB) leads to a water temperature de-
cline in the ocean compared to a reference INDJ experiment
where a constant light attenuation coefficient was set equal
to 0.06 m−1 (Jerlov IB water type). Based on the analysis
of the annual-mean and seasonal-mean phytoplankton distri-
bution in the northern part of the Indian Ocean attenuation
in both experiments and in satellite data, we can conclude
that the reason for this is the low spatially averaged phyto-
plankton concentrations in the analyzed areas; i.e., concen-
trations are not enough to raise the attenuation coefficient
in INDB (which depends on chlorophyll a concentration)
up to 0.06 m−1 as used in a reference experiment (INDJ).
However, the strength (and direction) of temperature alter-
ation strongly relates to the Jerlov type chosen for the ref-
erence simulation, in agreement with earlier findings (e.g.,
Lengaigne et al., 2007).

Both simulations adequately reproduced the precipitation
climatology for all seasons. In particular, the spatial pattern
of the monsoon precipitation is well simulated, albeit with
some systematic wet biases which are more assertive over

the eastern parts of the Arabian Sea and the Bay of Bengal
and the adjacent coastal regions. We found that the marine
biogeochemical variability in INDB and the corresponding
change of SWR absorption also affects the amount of precip-
itation in the model, leading to drying over most of the basin
in the monsoon season. The associated SST cooling leads in
general to a reduction of the precipitation but affects in dif-
ferent ways the two components of the precipitation. In the
Arabian Sea the reduction of the transport of humidity across
the Equator leads to a reduction of the large-scale precipita-
tion in the eastern part of the basin, reinforcing reduction of
the convective precipitation. In the Bay of Bengal it increases
the large-scale precipitation, contouring the decrease in con-
vective precipitation due to the SST cooling.

Thus, in comparison with simulation using a constant light
attenuation coefficient (0.06 m−1, Jerlov IB water type), the
major impacts of including the full biogeochemical coupling
with corresponding light attenuation in water, which in turn
depends on variable chlorophyll a concentration, include
the enhanced phytoplankton primary production, a shallower
thermocline, decreased SST and water temperature in sub-
surface layers, with cascading effects upon the model ocean
physics which further translates into altered atmosphere dy-
namics.

In summary, the presented model demonstrates the locally
substantial impact of phytoplankton-related chlorophyll on
the atmospheric climate of the Indian Ocean. However, this
study does not take into account the direct impact of biology
(i.e., productivity) on atmospheric pCO2 and the subsequent
impact on the atmospheric radiation budget. Because of this,
the impact of marine biology on climate may be underesti-
mated.
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