Articles | Volume 13, issue 1
https://doi.org/10.5194/esd-13-357-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-357-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sedimentary microplankton distributions are shaped by oceanographically connected areas
Peter D. Nooteboom
CORRESPONDING AUTHOR
Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, the Netherlands
Centre for Complex Systems Studies, Utrecht University, Utrecht, the Netherlands
Peter K. Bijl
Laboratory of Palaeobotany and Palynology, Marine Palynology and Paleoceanography, Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Christian Kehl
Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, the Netherlands
Erik van Sebille
Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, the Netherlands
Centre for Complex Systems Studies, Utrecht University, Utrecht, the Netherlands
Martin Ziegler
Laboratory of Palaeobotany and Palynology, Marine Palynology and Paleoceanography, Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Anna S. von der Heydt
Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, the Netherlands
Centre for Complex Systems Studies, Utrecht University, Utrecht, the Netherlands
Henk A. Dijkstra
Institute for Marine and Atmospheric research Utrecht (IMAU), Department of Physics, Utrecht University, Utrecht, the Netherlands
Centre for Complex Systems Studies, Utrecht University, Utrecht, the Netherlands
Related authors
Peter D. Nooteboom, Qing Yi Feng, Cristóbal López, Emilio Hernández-García, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 969–983, https://doi.org/10.5194/esd-9-969-2018, https://doi.org/10.5194/esd-9-969-2018, 2018
Short summary
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
René M. van Westen, Elian Vanderborght, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-14, https://doi.org/10.5194/egusphere-2025-14, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a tipping element in the fully-coupled Community Earth System Model (CESM). Under varying freshwater flux forcing parameters or climate change, the AMOC may collapse from a relatively strong state to a substantially weaker state. It is important to understand the dynamics of the AMOC collapse in the CESM. We show that the stability of the AMOC in the CESM is controlled by only a few feedback processes.
Aurora Faure Ragani and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-45, https://doi.org/10.5194/egusphere-2025-45, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is sensitive to changing surface forcing conditions. Under future greenhouse gas emission reductions, it was shown in a conceptual model that it may be possible to avoid a collapse of the AMOC. Using a detailed global ocean model, we clarify the physics of the collapse and recovery behaviour of the AMOC. The potential to avoid an AMOC collapse is tightly linked to a delicate balance of salt fluxes in the northern North Atlantic.
Amber A. Boot and Henk A. Dijkstra
Earth Syst. Dynam., 16, 115–150, https://doi.org/10.5194/esd-16-115-2025, https://doi.org/10.5194/esd-16-115-2025, 2025
Short summary
Short summary
The ocean is forced at the surface by a heat flux and a freshwater flux. This noise can influence long-term ocean variability and large-scale circulation. Here we study noise characteristics in reanalysis data for these fluxes. We try to capture the noise characteristics by using several noise models and compare these to state-of-the-art climate models. A pointwise noise model performs better than the climate models and can be used as forcing in ocean-only models.
Dennis H. A. Vermeulen, Michiel L. J. Baatsen, and Anna S. von der Heydt
Clim. Past, 21, 95–114, https://doi.org/10.5194/cp-21-95-2025, https://doi.org/10.5194/cp-21-95-2025, 2025
Short summary
Short summary
Late Eocene summers, 34 million years ago, were hot on Antarctica, with temperatures up to 30 °C. We also know that during this period the first Antarctic ice sheet formed. Since climate models do not show the transition from this warm climate to ice sheet formation accurately, we imposed regional ice sheets onto the continent in a realistic climate and show that these ice sheets do not melt away. This suggests that the initiation of ice sheet growth might have happened during warmer periods.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847, https://doi.org/10.5194/egusphere-2024-3847, 2024
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Short summary
Particle-tracking simulations compute how ocean currents transport material. However, initialising these simulations is often ad-hoc. Here, we explore how two different strategies (releasing particles over space or over time) compare. Specifically, we compare the variability in particle trajectories to the variability of particles computed in a 50-member ensemble simulation. We find that releasing the particles over 20 weeks gives variability that is most like that in the ensemble.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Amber A. Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1567–1590, https://doi.org/10.5194/esd-15-1567-2024, https://doi.org/10.5194/esd-15-1567-2024, 2024
Short summary
Short summary
We investigate the multiple equilibria window (MEW) of the Atlantic Meridional Overturning Circulation (AMOC) within a box model. We find that increasing the total carbon content of the system widens the MEW of the AMOC. The important mechanisms at play are the balance between the source and sink of carbon and the sensitivity of the AMOC to freshwater forcing over the Atlantic Ocean. Our results suggest that changes in the marine carbon cycle can influence AMOC stability in future climates.
Francesco Guardamagna, Claudia Wieners, and Henk Dijkstra
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-24, https://doi.org/10.5194/npg-2024-24, 2024
Preprint under review for NPG
Short summary
Short summary
Artificial intelligence (AI) has recently shown promising results in ENSO (El Niño Southern Oscillation) forecasting, outperforming traditional models. Yet, AI models deliver accurate predictions without showing the underlying mechanisms. Our study examines a specific AI model, the Reservoir Computer (RC). Our results show that the RC is less sensitive to initial perturbations than the traditional Zebiak and Cane (ZC) model. This reduced sensitivity can explain the RC's superior skills.
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3112, https://doi.org/10.5194/egusphere-2024-3112, 2024
Short summary
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Anna Leerink, Mark Bos, Daan Reijnders, and Erik van Sebille
Geosci. Commun., 7, 201–214, https://doi.org/10.5194/gc-7-201-2024, https://doi.org/10.5194/gc-7-201-2024, 2024
Short summary
Short summary
Climate scientists who communicate to a broad audience may be reluctant to write in a more personal style, as they assume that it hurts their credibility. To test this assumption, we asked 100 Dutch people to rate the credibility of a climate scientist. We varied how the author of the article addressed the reader and found that the degree of personalization did not have a measurable impact on the credibility of the author. Thus, we conclude that personalization may not hurt credibility.
Bouke Biemond, Wouter Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-2322, https://doi.org/10.5194/egusphere-2024-2322, 2024
Short summary
Short summary
We study salinity in estuaries which consist of a network of channels. To this end, we develop a model which computes the flow and salinity in such systems. We use the model to quantify by which mechanisms salt is transported in estuarine networks, the response to changes in river discharge, and the impact of depth changes. Results e.g. show that when changing the depth of a channel, effects on salt intrusion in other channels in the network can be larger than the effect on the channel itself.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024, https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary
Short summary
We might be able to constrain uncertainty in future climate projections by investigating variations in the climate of the past. In this study, we investigate the interactions of climate variability between the tropical Pacific (El Niño) and the North Pacific in a warm past climate – the mid-Pliocene, a period roughly 3 million years ago. Using model simulations, we find that, although the variability in El Niño was reduced, the variability in the North Pacific atmosphere was not.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Sacha Sinet, Peter Ashwin, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 859–873, https://doi.org/10.5194/esd-15-859-2024, https://doi.org/10.5194/esd-15-859-2024, 2024
Short summary
Short summary
Some components of the Earth system may irreversibly collapse under global warming. Among them, the Atlantic Meridional Overturning Circulation (AMOC), the Greenland Ice Sheet, and West Antarctica Ice Sheet are of utmost importance for maintaining the present-day climate. In a simplified model, we show that both the rate of ice melting and the natural variability linked to freshwater fluxes over the Atlantic Ocean drastically affect how an ice sheet collapse impacts the AMOC stability.
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
EGUsphere, https://doi.org/10.5194/egusphere-2024-1648, https://doi.org/10.5194/egusphere-2024-1648, 2024
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Nieske Vergunst, Tugce Varol, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1649, https://doi.org/10.5194/egusphere-2024-1649, 2024
Short summary
Short summary
We developed and evaluated a board game about sea level rise to engage young adults. We found that the game positively influenced participants' perceptions of their impact on sea level rise, regardless of their prior familiarity with science. This study suggests that interactive and relatable activities can effectively engage broader audiences on climate issues, highlighting the potential for similar approaches in public science communication.
Julia E. Weiffenbach, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Alan M. Haywood, Stephen J. Hunter, Xiangyu Li, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, Ning Tan, Julia C. Tindall, and Zhongshi Zhang
Clim. Past, 20, 1067–1086, https://doi.org/10.5194/cp-20-1067-2024, https://doi.org/10.5194/cp-20-1067-2024, 2024
Short summary
Short summary
Elevated atmospheric CO2 concentrations and a smaller Antarctic Ice Sheet during the mid-Pliocene (~ 3 million years ago) cause the Southern Ocean surface to become fresher and warmer, which affects the global ocean circulation. The CO2 concentration and the smaller Antarctic Ice Sheet both have a similar and approximately equal impact on the Southern Ocean. The conditions of the Southern Ocean in the mid-Pliocene could therefore be analogous to those in a future climate with smaller ice sheets.
Frances Wijnen, Madelijn Strick, Mark Bos, and Erik van Sebille
Geosci. Commun., 7, 91–100, https://doi.org/10.5194/gc-7-91-2024, https://doi.org/10.5194/gc-7-91-2024, 2024
Short summary
Short summary
Climate scientists are urged to communicate climate science; there is very little evidence about what types of communication work well for which audiences. We have performed a systematic literature review to analyze what is known about the efficacy of climate communication by scientists. While we have found more than 60 articles in the last 10 years about climate communication activities by scientists, only 7 of these included some form of evaluation of the impact of the activity.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002, https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter the transport patterns, and that commonly adopted approximations are not always adequate. This implies that ideally coupled ocean-wave models should be used for surface particle transport simulations.
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 20, 549–567, https://doi.org/10.5194/os-20-549-2024, https://doi.org/10.5194/os-20-549-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component in the global climate system. Observations of the present-day AMOC indicate that it may weaken or collapse under global warming, with profound disruptive effects on future climate. However, AMOC weakening is not correctly represented because an important feedback is underestimated due to biases in the Atlantic's freshwater budget. Here we address these biases in several state-of-the-art climate model simulations.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Aarnout J. van Delden, and Henk A. Dijkstra
Weather Clim. Dynam., 5, 395–417, https://doi.org/10.5194/wcd-5-395-2024, https://doi.org/10.5194/wcd-5-395-2024, 2024
Short summary
Short summary
The mid-Pliocene, a geological period around 3 million years ago, is sometimes considered the best analogue for near-future climate. It saw similar CO2 concentrations to the present-day but also a slightly different geography. In this study, we use climate model simulations and find that the Northern Hemisphere winter responds very differently to increased CO2 or to the mid-Pliocene geography. Our results weaken the potential of the mid-Pliocene as a future climate analogue.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024, https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023, https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Short summary
We describe and compare two common methods, Eulerian and Lagrangian models, used to simulate the vertical transport of material in the ocean. They both solve the same transport problems but use different approaches for representing the underlying equations on the computer. The main focus of our study is on the numerical accuracy of the two approaches. Our results should be useful for other researchers creating or using these types of transport models.
Valérian Jacques-Dumas, René M. van Westen, Freddy Bouchet, and Henk A. Dijkstra
Nonlin. Processes Geophys., 30, 195–216, https://doi.org/10.5194/npg-30-195-2023, https://doi.org/10.5194/npg-30-195-2023, 2023
Short summary
Short summary
Computing the probability of occurrence of rare events is relevant because of their high impact but also difficult due to the lack of data. Rare event algorithms are designed for that task, but their efficiency relies on a score function that is hard to compute. We compare four methods that compute this function from data and measure their performance to assess which one would be best suited to be applied to a climate model. We find neural networks to be most robust and flexible for this task.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Stefanie L. Ypma, Quinten Bohte, Alexander Forryan, Alberto C. Naveira Garabato, Andy Donnelly, and Erik van Sebille
Ocean Sci., 18, 1477–1490, https://doi.org/10.5194/os-18-1477-2022, https://doi.org/10.5194/os-18-1477-2022, 2022
Short summary
Short summary
In this research we aim to improve cleanup efforts on the Galapagos Islands of marine plastic debris when resources are limited and the distribution of the plastic on shorelines is unknown. Using a network that describes the flow of macroplastic between the islands we have identified the most efficient cleanup locations, quantified the impact of targeting these locations and showed that shorelines where the plastic is unlikely to leave are likely efficient cleanup locations.
Amber Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 1041–1058, https://doi.org/10.5194/esd-13-1041-2022, https://doi.org/10.5194/esd-13-1041-2022, 2022
Short summary
Short summary
Atmospheric pCO2 of the past shows large variability on different timescales. We focus on the effect of the strength of Atlantic Meridional Overturning Circulation (AMOC) on this variability and on the AMOC–pCO2 relationship. We find that climatic boundary conditions and the representation of biology in our model are most important for this relationship. Under certain conditions, we find internal oscillations, which can be relevant for atmospheric pCO2 variability during glacial cycles.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Michiel L. J. Baatsen, Anna S. von der Heydt, Michael A. Kliphuis, Arthur M. Oldeman, and Julia E. Weiffenbach
Clim. Past, 18, 657–679, https://doi.org/10.5194/cp-18-657-2022, https://doi.org/10.5194/cp-18-657-2022, 2022
Short summary
Short summary
The Pliocene was a period during which atmospheric CO2 was similar to today (i.e. ~ 400 ppm). We present the results of model simulations carried out within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) using the CESM 1.0.5. We find a climate that is much warmer than today, with augmented polar warming, increased precipitation, and strongly reduced sea ice cover. In addition, several leading modes of variability in temperature show an altered behaviour.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Victor Onink, Erik van Sebille, and Charlotte Laufkötter
Geosci. Model Dev., 15, 1995–2012, https://doi.org/10.5194/gmd-15-1995-2022, https://doi.org/10.5194/gmd-15-1995-2022, 2022
Short summary
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Mikael L. A. Kaandorp, Stefanie L. Ypma, Marijke Boonstra, Henk A. Dijkstra, and Erik van Sebille
Ocean Sci., 18, 269–293, https://doi.org/10.5194/os-18-269-2022, https://doi.org/10.5194/os-18-269-2022, 2022
Short summary
Short summary
A large amount of marine litter, such as plastics, is located on or around beaches. Both the total amount of this litter and its transport are poorly understood. We investigate this by training a machine learning model with data of cleanup efforts on Dutch beaches between 2014 and 2019, obtained by about 14 000 volunteers. We find that Dutch beaches contain up to 30 000 kg of litter, largely depending on tides, oceanic transport, and how exposed the beaches are.
Peter K. Bijl
Earth Syst. Sci. Data, 14, 579–617, https://doi.org/10.5194/essd-14-579-2022, https://doi.org/10.5194/essd-14-579-2022, 2022
Short summary
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
André Jüling, Anna von der Heydt, and Henk A. Dijkstra
Ocean Sci., 17, 1251–1271, https://doi.org/10.5194/os-17-1251-2021, https://doi.org/10.5194/os-17-1251-2021, 2021
Short summary
Short summary
On top of forced changes such as human-caused global warming, unforced climate variability exists. Most multidecadal variability (MV) involves the oceans, but current climate models use non-turbulent, coarse-resolution oceans. We investigate the effect of resolving important turbulent ocean features on MV. We find that ocean heat content, ocean–atmosphere heat flux, and global mean surface temperature MV is more pronounced in the higher-resolution model relative to higher-frequency variability.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam., 12, 819–835, https://doi.org/10.5194/esd-12-819-2021, https://doi.org/10.5194/esd-12-819-2021, 2021
Short summary
Short summary
Tipping of one climate subsystem could trigger a cascade of subsequent tipping points and even global-scale climate tipping. Sequential shifts of atmosphere, sea ice and ocean have been recorded in proxy archives of past climate change. Based on this we propose a conceptual model for abrupt climate changes of the last glacial. Here, rate-induced tipping enables tipping cascades in systems with relatively weak coupling. An early warning signal is proposed that may detect such a tipping.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
C. Kehl, R. P. B. Fischer, and E. van Sebille
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021, 217–224, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, 2021
André Jüling, Xun Zhang, Daniele Castellana, Anna S. von der Heydt, and Henk A. Dijkstra
Ocean Sci., 17, 729–754, https://doi.org/10.5194/os-17-729-2021, https://doi.org/10.5194/os-17-729-2021, 2021
Short summary
Short summary
We investigate how the freshwater budget of the Atlantic changes under climate change, which has implications for the stability of the Atlantic Meridional Overturning Circulation. We compare the effect of ocean model resolution in a climate model and find many similarities between the simulations, enhancing trust in the current generation of climate models. However, ocean biases are reduced in the strongly eddying simulation, and significant local freshwater budget differences exist.
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021, https://doi.org/10.5194/os-17-431-2021, 2021
Short summary
Short summary
Plastic pollution is a major environmental issue affecting the oceans. The number of floating and sedimented pieces has been quantified by several studies. But their abundance in the water column remains mostly unknown. To fill this gap we model the dynamics of a particular type of particle, rigid microplastics sinking rapidly in open sea in the Mediterranean. We find they represent a small but appreciable fraction of the total sea plastic and discuss characteristics of their sinking motion.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021, https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Short summary
This paper proposes two improvements to the use of Trajectory-Adaptive Multilevel Sampling, a rare-event algorithm which computes noise-induced transition probabilities. The first improvement uses locally linearised dynamics in order to reduce the arbitrariness associated with defining what constitutes a transition. The second improvement uses empirical transition paths accumulated at high noise in order to formulate the score function which determines the performance of the algorithm.
Amber Boot, René M. van Westen, and Henk A. Dijkstra
Ocean Sci., 17, 335–350, https://doi.org/10.5194/os-17-335-2021, https://doi.org/10.5194/os-17-335-2021, 2021
Short summary
Short summary
The Maud Rise polynya is a hole in the sea ice surrounding Antarctica that occurs during winter. It appeared in 2016 and 2017. Our study concludes that heat and salt accumulation around 1000 m depth are likely to be important for polynya formation. The heat is mixed upward to the surface where it is able to melt the sea ice and, thus, create a polynya. How often the polynya forms depends largely on the variation in the time of the heat and salt accumulation.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021, https://doi.org/10.5194/npg-28-43-2021, 2021
Short summary
Short summary
Fluid parcels transported in complicated flows often contain subsets of particles that stay close over finite time intervals. We propose a new method for detecting finite-time coherent sets based on the density-based clustering technique of ordering points to identify the clustering structure (OPTICS). Unlike previous methods, our method has an intrinsic notion of coherent sets at different spatial scales. OPTICS is readily implemented in the SciPy sklearn package, making it easy to use.
Carine G. van der Boog, J. Otto Koetsier, Henk A. Dijkstra, Julie D. Pietrzak, and Caroline A. Katsman
Earth Syst. Sci. Data, 13, 43–61, https://doi.org/10.5194/essd-13-43-2021, https://doi.org/10.5194/essd-13-43-2021, 2021
Short summary
Short summary
Thermohaline staircases are stepped structures in the ocean that contain enhanced diapycnal salt and heat transport. In this study, we present a global dataset of thermohaline staircases derived from 487 493 observations of Argo profiling floats and Ice-Tethered Profilers using a novel detection algorithm.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 16, 1443–1457, https://doi.org/10.5194/os-16-1443-2020, https://doi.org/10.5194/os-16-1443-2020, 2020
Short summary
Short summary
During the mid-1970s and quite recently in 2017, a large open-water area appeared in the Antarctic sea-ice pack, the so-called Maud Rise polynya. From several model studies, the reoccurrence time of this polynya seems arbitrary. In this study, we address the reoccurrence time of the polynya using a high-resolution climate model. We find a preferred multidecadal return time in polynya formation. The return time of the polynya is associated with a large-scale ocean mode in the Southern Ocean.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020, https://doi.org/10.5194/npg-27-501-2020, 2020
Short summary
Short summary
The surface transport of heat, nutrients and plastic in the North Atlantic Ocean is organized into large-scale flow structures. We propose a new and simple method to detect such features in ocean drifter data sets by identifying groups of trajectories with similar dynamical behaviour using network theory. We successfully detect well-known regions such as the Subpolar and Subtropical gyres, the Western Boundary Current region and the Caribbean Sea.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Mirjam van der Mheen, Erik van Sebille, and Charitha Pattiaratchi
Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020, https://doi.org/10.5194/os-16-1317-2020, 2020
Short summary
Short summary
A large percentage of global ocean plastic enters the Indian Ocean through rivers, but the fate of these plastics is generally unknown. In this paper, we use computer simulations to show that floating plastics
beachand end up on coastlines throughout the Indian Ocean. Coastlines where a lot of plastic enters the ocean are heavily affected by beaching plastic, but plastics can also beach far from the source on remote islands and countries that contribute little plastic pollution of their own.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Carolien Maria Hendrina van der Weijst, Josse Winkelhorst, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-105, https://doi.org/10.5194/cp-2020-105, 2020
Manuscript not accepted for further review
René M. van Westen and Henk A. Dijkstra
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-33, https://doi.org/10.5194/os-2020-33, 2020
Revised manuscript not accepted
Short summary
Short summary
In 2016 and 2017, an open-water area emerged within the Antarctic sea-ice pack, the so-called Maud Rise polynya. The opening of the sea ice has been linked to intense winter storms. In this study, we investigate another important contributor to polynya formation by analysing subsurface static instabilities. These static instabilities initiate subsurface convection near Maud Rise. We conclude that apart from winter storms, subsurface convection plays an important role in polynya formation.
Ann Kristin Klose, René M. van Westen, and Henk A. Dijkstra
Ocean Sci., 16, 435–449, https://doi.org/10.5194/os-16-435-2020, https://doi.org/10.5194/os-16-435-2020, 2020
Short summary
Short summary
We give an explanation of the decadal timescale path variations in the Kuroshio Current in the North Pacific based on highly detailed climate
model simulations.
Carine G. van der Boog, Julie D. Pietrzak, Henk A. Dijkstra, Nils Brüggemann, René M. van Westen, Rebecca K. James, Tjeerd J. Bouma, Riccardo E. M. Riva, D. Cornelis Slobbe, Roland Klees, Marcel Zijlema, and Caroline A. Katsman
Ocean Sci., 15, 1419–1437, https://doi.org/10.5194/os-15-1419-2019, https://doi.org/10.5194/os-15-1419-2019, 2019
Short summary
Short summary
We use a model of the Caribbean Sea to study how coastal upwelling along Venezuela impacts the evolution of energetic anticyclonic eddies. We show that the anticyclones grow by the advection of the cold upwelling filaments. These filaments increase the density gradient and vertical shear of the anticyclones. Furthermore, we show that stronger upwelling results in stronger eddies, while model simulations with weaker upwelling contain weaker eddies.
Erik van Sebille, Philippe Delandmeter, John Schofield, Britta Denise Hardesty, Jen Jones, and Andy Donnelly
Ocean Sci., 15, 1341–1349, https://doi.org/10.5194/os-15-1341-2019, https://doi.org/10.5194/os-15-1341-2019, 2019
Short summary
Short summary
The Galápagos Archipelago and Galápagos Marine Reserve are among the world's most iconic wildlife refuges. Yet, plastic litter is now found even in this remote archipelago. It is unclear where this plastic originates from. In this study, we show that remote coastal sources of plastic pollution are fairly localized and limited to South American and Central American coastlines. Identifying how plastic ends up in the Galápagos aids integrated management opportunities to reduce plastic pollution.
Henk A. Dijkstra
Nonlin. Processes Geophys., 26, 359–369, https://doi.org/10.5194/npg-26-359-2019, https://doi.org/10.5194/npg-26-359-2019, 2019
Short summary
Short summary
I provide a personal view on the role of bifurcation analysis of climate models in the development of a theory of variability in the climate system. By outlining the state of the art of the methodology and by discussing what has been done and what has been learned from a hierarchy of models, I will argue that there are low-order phenomena of climate variability, such as El Niño and the Atlantic Multidecadal Oscillation.
Philippe Delandmeter and Erik van Sebille
Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, https://doi.org/10.5194/gmd-12-3571-2019, 2019
Short summary
Short summary
Parcels is a framework to compute how ocean currents transport
stuffsuch as plankton and plastic around. In the latest version 2.0 of Parcels, we focus on more accurate interpolation schemes and implement methods to seamlessly combine data from different sources (such as winds and currents, possibly in different regions). We show that this framework is very efficient for tracking how microplastic is transported through the North Sea into the Arctic.
Juan-Manuel Sayol, Henk Dijkstra, and Caroline Katsman
Ocean Sci., 15, 1033–1053, https://doi.org/10.5194/os-15-1033-2019, https://doi.org/10.5194/os-15-1033-2019, 2019
Short summary
Short summary
This work uses high-resolution ocean model data to quantify the sinking of waters in the subpolar North Atlantic. The largest amount of sinking is found at the depth of maximum AMOC at 45° N below the mixed layer depth, and 90 % of the sinking occurs near the boundaries in the first 250 km off the shelf. The characteristics of the sinking (total amount, seasonal variability, and vertical structure) vary largely according to the region considered, revealing a complex picture for the sinking.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Koen G. Helwegen, Claudia E. Wieners, Jason E. Frank, and Henk A. Dijkstra
Earth Syst. Dynam., 10, 453–472, https://doi.org/10.5194/esd-10-453-2019, https://doi.org/10.5194/esd-10-453-2019, 2019
Short summary
Short summary
We use the climate-economy model DICE to perform a cost–benefit analysis of sulfate geoengineering, i.e. producing a thin artificial sulfate haze in the higher atmosphere to reflect some sunlight and cool the Earth.
We find that geoengineering can increase future welfare by reducing global warming, and should be taken seriously as a policy option, but it can only complement, not replace, carbon emission reduction. The best policy is to combine CO2 emission reduction with modest geoengineering.
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Mark M. Dekker, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1243–1260, https://doi.org/10.5194/esd-9-1243-2018, https://doi.org/10.5194/esd-9-1243-2018, 2018
Short summary
Short summary
We introduce a framework of cascading tipping, i.e. a sequence of abrupt transitions occurring because a transition in one system affects the background conditions of another system. Using bifurcation theory, various types of these events are considered and early warning indicators are suggested. An illustration of such an event is found in a conceptual model, coupling the North Atlantic Ocean with the equatorial Pacific. This demonstrates the possibility of events such as this in nature.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Matthias Aengenheyster, Qing Yi Feng, Frederick van der Ploeg, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1085–1095, https://doi.org/10.5194/esd-9-1085-2018, https://doi.org/10.5194/esd-9-1085-2018, 2018
Short summary
Short summary
We determine the point of no return (PNR) for climate change, which is the latest year to take action to reduce greenhouse gases to stay, with a certain probability, within thresholds set by the Paris Agreement. For a 67 % probability and a 2 K threshold, the PNR is the year 2035 when the share of renewable energy rises by 2 % per year. We show the impact on the PNR of the speed by which emissions are cut, the risk tolerance, climate uncertainties and the potential for negative emissions.
Femke J. M. M. Nijsse and Henk A. Dijkstra
Earth Syst. Dynam., 9, 999–1012, https://doi.org/10.5194/esd-9-999-2018, https://doi.org/10.5194/esd-9-999-2018, 2018
Short summary
Short summary
State-of-the-art climate models sometimes differ in their prediction of key aspects of climate change. The technique of
emergent constraintsuses observations of current climate to improve those predictions, using relationships between different climate models. Our paper first classifies the different uses of the technique, and continues with proposing a mathematical justification for their use. We also highlight when the application of emergent constraints might give biased predictions.
Peter D. Nooteboom, Qing Yi Feng, Cristóbal López, Emilio Hernández-García, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 969–983, https://doi.org/10.5194/esd-9-969-2018, https://doi.org/10.5194/esd-9-969-2018, 2018
Short summary
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Michael Lange and Erik van Sebille
Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, https://doi.org/10.5194/gmd-10-4175-2017, 2017
Short summary
Short summary
Here, we present version 0.9 of Parcels (Probably A Really Computationally Efficient Lagrangian Simulator). Parcels is an experimental prototype code aimed at exploring novel approaches for Lagrangian tracking of virtual ocean particles in the petascale age. The modularity, flexibility and scalability will allow the code to be used to track water, nutrients, microbes, plankton, plastic and even fish.
Inti Pelupessy, Ben van Werkhoven, Arjen van Elteren, Jan Viebahn, Adam Candy, Simon Portegies Zwart, and Henk Dijkstra
Geosci. Model Dev., 10, 3167–3187, https://doi.org/10.5194/gmd-10-3167-2017, https://doi.org/10.5194/gmd-10-3167-2017, 2017
Short summary
Short summary
Researchers from the Netherlands present OMUSE, a software package
developed from core technology originating in the astrophysical
community. Using OMUSE, oceanographic and climate researchers can
develop numerical models of the ocean and the interactions between
different parts of the ocean and the atmosphere. This provides a novel
way to investigate, for example, the local effects of climate change on
the ocean. OMUSE is freely available as open-source software.
Brenda C. van Zalinge, Qing Yi Feng, Matthias Aengenheyster, and Henk A. Dijkstra
Earth Syst. Dynam., 8, 707–717, https://doi.org/10.5194/esd-8-707-2017, https://doi.org/10.5194/esd-8-707-2017, 2017
Short summary
Short summary
The increase in atmospheric greenhouse gases (GHGs) is one of the main causes for the increase in global mean surface temperature. There is no good quantitative measure to determine when it is
too lateto start reducing GHGs in order to avoid dangerous anthropogenic interference. We develop a method for determining a so-called point of no return (PNR) for several GHG emission scenarios. The innovative element in this approach is the applicability to high-dimensional climate models.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, H. E. Bal, F. Seinstra, B. van Werkhoven, J. Maassen, and M. van Meersbergen
Ocean Sci., 13, 47–60, https://doi.org/10.5194/os-13-47-2017, https://doi.org/10.5194/os-13-47-2017, 2017
Short summary
Short summary
An important contribution to future changes in regional sea level extremes is due to the changes in intrinsic ocean variability, in particular ocean eddies. Here, we study a scenario of future dynamic sea level (DSL) extremes using a strongly eddying version of the Parallel Ocean Program. Changes in 10-year return time DSL extremes are very inhomogeneous over the globe and are related to changes in ocean currents and corresponding regional shifts in ocean eddy pathways.
Christopher J. Fogwill, Erik van Sebille, Eva A. Cougnon, Chris S. M. Turney, Steve R. Rintoul, Benjamin K. Galton-Fenzi, Graeme F. Clark, E. M. Marzinelli, Eleanor B. Rainsley, and Lionel Carter
The Cryosphere, 10, 2603–2609, https://doi.org/10.5194/tc-10-2603-2016, https://doi.org/10.5194/tc-10-2603-2016, 2016
Short summary
Short summary
Here we report new data from in situ oceanographic surveys and high-resolution ocean modelling experiments in the Commonwealth Bay region of East Antarctica, where in 2010 there was a major reconfiguration of the regional icescape due to the collision of the 97 km long iceberg B09B with the Mertz Glacier tongue. Here we compare post-calving observations with high-resolution ocean modelling which suggest that this reconfiguration has led to the development of a new polynya off Commonwealth Bay.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Zun Yin, Stefan C. Dekker, Bart J. J. M. van den Hurk, and Henk A. Dijkstra
Biogeosciences, 13, 3343–3357, https://doi.org/10.5194/bg-13-3343-2016, https://doi.org/10.5194/bg-13-3343-2016, 2016
Short summary
Short summary
Bimodality is found in aboveground biomass and mean annual shortwave radiation in West Africa, which is a strong evidence of alternative stable states. The condition with low biomass and low radiation is demonstrated under which ecosystem state can shift between savanna and forest states. Moreover, climatic indicators have different prediction confidences to different land cover types. A new method is proposed to predict potential land cover change with a combination of climatic indicators.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
Paulina Cetina-Heredia, Erik van Sebille, Richard Matear, and Moninya Roughan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-53, https://doi.org/10.5194/bg-2016-53, 2016
Revised manuscript not accepted
Short summary
Short summary
Characterizing phytoplankton growth influences fisheries and climate. We use a lagrangian approach to identify phytoplankton blooms in the Great Australian Bight (GAB), and associate them with nitrate sources. We find that 88 % of the nitrate utilized in blooms is originated between the GAB and the SubAntarctic Front. Large nitrate concentrations are supplied at depth but do not reach the euphotic zone often. As a result, 55 % of blooms utilize nitrate supplied in the top 100 m.
Peter Köhler, Lennert B. Stap, Anna S. von der Heydt, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-23, https://doi.org/10.5194/cp-2016-23, 2016
Revised manuscript not accepted
Short summary
Short summary
Evidence indicate that specific equilibrium climate sensitivity, the global annual mean surface temperature change as a response to a change in radiative forcing, is state dependent. We here show that the interpretation of data in the state-dependent case is not straightforward. We analyse the differences of a point-wise approach and one based on a piece-wise linear analysis, combine both, compare with potential model results and apply the theoretical concepts to data of the last 800 kyr.
Qing Yi Feng, Ruggero Vasile, Marc Segond, Avi Gozolchiani, Yang Wang, Markus Abel, Shilomo Havlin, Armin Bunde, and Henk A. Dijkstra
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2015-273, https://doi.org/10.5194/gmd-2015-273, 2016
Revised manuscript not accepted
Short summary
Short summary
We present the toolbox ClimateLearn to tackle problems in climate prediction using machine learning techniques and climate network analysis. Because spatial temporal information on climate variability can be efficiently represented by complex network measures, such data are considered here as input to the machine-learning algorithms. As an example, the toolbox is applied to the prediction of the occurrence and the development of El Niño in the equatorial Pacific.
P. Köhler, B. de Boer, A. S. von der Heydt, L. B. Stap, and R. S. W. van de Wal
Clim. Past, 11, 1801–1823, https://doi.org/10.5194/cp-11-1801-2015, https://doi.org/10.5194/cp-11-1801-2015, 2015
Short summary
Short summary
We find that the specific equilibrium climate sensitivity due to radiative forcing of CO2 and land ice albedo has been state-dependent for the last 2.1Myr (most of the Pleistocene). Its value is ~45% larger during intermediate glaciated climates and interglacial periods than during Pleistocene full glacial conditions. The state dependency is mainly caused by a latitudinal dependency in ice sheet area changes. Due to uncertainties in CO2, firm conclusions for the Pliocene are not yet possible.
H. Ihshaish, A. Tantet, J. C. M. Dijkzeul, and H. A. Dijkstra
Geosci. Model Dev., 8, 3321–3331, https://doi.org/10.5194/gmd-8-3321-2015, https://doi.org/10.5194/gmd-8-3321-2015, 2015
Short summary
Short summary
Par@Graph, a software toolbox to reconstruct and analyze large-scale complex climate networks. It exposes parallelism on distributed-memory computing platforms to enable the construction of massive networks from large number of time series based on the calculation of common statistical similarity measures between them. Providing additionally parallel graph algorithms to enable fast calculation of important and common properties of the generated networks on SMP machines.
L. Hahn-Woernle, H. A. Dijkstra, and H. J. Van der Woerd
Ocean Sci., 10, 993–1011, https://doi.org/10.5194/os-10-993-2014, https://doi.org/10.5194/os-10-993-2014, 2014
Short summary
Short summary
Measured vertical mixing profiles are applied to a 1-D phytoplankton model. Results show that shifts in vertical mixing are able to induce a transition from an upper chlorophyll maximum to a deep one and vice versa. Furthermore, a clear correlation between the surface phytoplankton concentration and mixing-induced nutrient flux is found for nutrient-limited cases. This result suggests that characteristics of the vertical mixing could be determined from the surface phytoplankton concentration.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, B. van Werkhoven, H. E. Bal, F. Seinstra, J. Maassen, and M. van Meersbergen
Ocean Sci., 10, 881–891, https://doi.org/10.5194/os-10-881-2014, https://doi.org/10.5194/os-10-881-2014, 2014
Short summary
Short summary
Regional sea surface height (SSH) changes due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated with a high- and low-resolution model. A rapid decrease of the AMOC in the high-resolution version induces shorter return times of several specific regional and coastal extremes in North Atlantic SSH than in the low-resolution version. This effect is caused by a change in main eddy pathways associated with a change in separation latitude of the Gulf Stream.
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Earth Syst. Dynam., 5, 257–270, https://doi.org/10.5194/esd-5-257-2014, https://doi.org/10.5194/esd-5-257-2014, 2014
D. Le Bars, J. V. Durgadoo, H. A. Dijkstra, A. Biastoch, and W. P. M. De Ruijter
Ocean Sci., 10, 601–609, https://doi.org/10.5194/os-10-601-2014, https://doi.org/10.5194/os-10-601-2014, 2014
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Geosci. Model Dev., 7, 821–845, https://doi.org/10.5194/gmd-7-821-2014, https://doi.org/10.5194/gmd-7-821-2014, 2014
G. Sgubin, S. Pierini, and H. A. Dijkstra
Ocean Sci., 10, 201–213, https://doi.org/10.5194/os-10-201-2014, https://doi.org/10.5194/os-10-201-2014, 2014
A. Tantet and H. A. Dijkstra
Earth Syst. Dynam., 5, 1–14, https://doi.org/10.5194/esd-5-1-2014, https://doi.org/10.5194/esd-5-1-2014, 2014
A. A. Cimatoribus, S. Drijfhout, and H. A. Dijkstra
Ocean Sci. Discuss., https://doi.org/10.5194/osd-10-2461-2013, https://doi.org/10.5194/osd-10-2461-2013, 2013
Preprint withdrawn
A. S. von der Heydt, A. Nnafie, and H. A. Dijkstra
Clim. Past, 7, 903–915, https://doi.org/10.5194/cp-7-903-2011, https://doi.org/10.5194/cp-7-903-2011, 2011
M. Tigchelaar, A. S. von der Heydt, and H. A. Dijkstra
Clim. Past, 7, 235–247, https://doi.org/10.5194/cp-7-235-2011, https://doi.org/10.5194/cp-7-235-2011, 2011
J. O. Sewall, R. S. W. van de Wal, K. van der Zwan, C. van Oosterhout, H. A. Dijkstra, and C. R. Scotese
Clim. Past, 3, 647–657, https://doi.org/10.5194/cp-3-647-2007, https://doi.org/10.5194/cp-3-647-2007, 2007
Related subject area
Dynamics of the Earth system: concepts
Rate-induced tipping in natural and human systems
Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics
Multi-million-year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes
Reliability of resilience estimation based on multi-instrument time series
The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes
ESD Ideas: planetary antifragility: a new dimension in the definition of the safe operating space for humanity
Glacial runoff buffers droughts through the 21st century
Inarticulate past: similarity properties of the ice–climate system and their implications for paleo-record attribution
Extreme weather and societal impacts in the eastern Mediterranean
Natural hazards and extreme events in the Baltic Sea region
Taxonomies for structuring models for World–Earth systems analysis of the Anthropocene: subsystems, their interactions and social–ecological feedback loops
ESD Ideas: A weak positive feedback between sea level and the planetary albedo
The potential for structural errors in emergent constraints
Sea level dynamics and coastal erosion in the Baltic Sea region
Earth system economics: a biophysical approach to the human component of the Earth system
The half-order energy balance equation – Part 1: The homogeneous HEBE and long memories
The half-order energy balance equation – Part 2: The inhomogeneous HEBE and 2D energy balance models
A dynamical systems characterization of atmospheric jet regimes
Synchronized spatial shifts of Hadley and Walker circulations
ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability
Temperatures from energy balance models: the effective heat capacity matters
Relating climate sensitivity indices to projection uncertainty
The role of prior assumptions in carbon budget calculations
Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework
π-theorem generalization of the ice-age theory
Earth system data cubes unravel global multivariate dynamics
ESD Ideas: Why are glaciations slower than deglaciations?
Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time
Climate system response to stratospheric sulfate aerosols: sensitivity to altitude of aerosol layer
Minimal dynamical systems model of the Northern Hemisphere jet stream via embedding of climate data
Millennium-length precipitation reconstruction over south-eastern Asia: a pseudo-proxy approach
Including the efficacy of land ice changes in deriving climate sensitivity from paleodata
The role of moisture transport for precipitation in the inter-annual and inter-daily fluctuations of the Arctic sea ice extension
On the assessment of the moisture transport by the Great Plains low-level jet
ESD Ideas: The stochastic climate model shows that underestimated Holocene trends and variability represent two sides of the same coin
Cascading transitions in the climate system
The climate of a retrograde rotating Earth
Diurnal land surface energy balance partitioning estimated from the thermodynamic limit of a cold heat engine
How intermittency affects the rate at which rainfall extremes respond to changes in temperature
Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data
On deeper human dimensions in Earth system analysis and modelling
Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset
Estimating sowing and harvest dates based on the Asian summer monsoon
Quantifying changes in spatial patterns of surface air temperature dynamics over several decades
Systematic Correlation Matrix Evaluation (SCoMaE) – a bottom–up, science-led approach to identifying indicators
Climate indices for the Baltic states from principal component analysis
Fractal scaling analysis of groundwater dynamics in confined aquifers
An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle
Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques
Young people's burden: requirement of negative CO2 emissions
Paul D. L. Ritchie, Hassan Alkhayuon, Peter M. Cox, and Sebastian Wieczorek
Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023, https://doi.org/10.5194/esd-14-669-2023, 2023
Short summary
Short summary
Complex systems can undergo abrupt changes or tipping points when external forcing crosses a critical level and are of increasing concern because of their severe impacts. However, tipping points can also occur when the external forcing changes too quickly without crossing any critical levels, which is very relevant for Earth’s systems and contemporary climate. We give an intuitive explanation of such rate-induced tipping and provide illustrative examples from natural and human systems.
Georg Feulner, Mona Bukenberger, and Stefan Petri
Earth Syst. Dynam., 14, 533–547, https://doi.org/10.5194/esd-14-533-2023, https://doi.org/10.5194/esd-14-533-2023, 2023
Short summary
Short summary
One limit of planetary habitability is defined by the threshold of global glaciation. If Earth cools, growing ice cover makes it brighter, leading to further cooling, since more sunlight is reflected, eventually leading to global ice cover (Snowball Earth). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
Gaëlle Leloup and Didier Paillard
Earth Syst. Dynam., 14, 291–307, https://doi.org/10.5194/esd-14-291-2023, https://doi.org/10.5194/esd-14-291-2023, 2023
Short summary
Short summary
Records of past carbon isotopes exhibit oscillations. It is clear over very different time periods that oscillations of 400 kyr take place. Also, strong oscillations of approximately 8–9 Myr are seen over different time periods. While earlier modelling studies have been able to produce 400 kyr oscillations, none of them produced 8–9 Myr cycles. Here, we propose a simple model for the carbon cycle that is able to produce 8–9 Myr oscillations in the modelled carbon isotopes.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Oliver López-Corona, Melanie Kolb, Elvia Ramírez-Carrillo, and Jon Lovett
Earth Syst. Dynam., 13, 1145–1155, https://doi.org/10.5194/esd-13-1145-2022, https://doi.org/10.5194/esd-13-1145-2022, 2022
Short summary
Short summary
Climate change, the loss of biodiversity and land-use change, among others, have been recognized as main human perturbations to Earth system dynamics, the so-called planetary boundaries. Effort has been made to understand how to define a safe operating space for humanity (accepted levels of these perturbations). In this work we address the problem by assessing the Earth's capacity to respond to these perturbations, a capacity that the planet is losing.
Lizz Ultee, Sloan Coats, and Jonathan Mackay
Earth Syst. Dynam., 13, 935–959, https://doi.org/10.5194/esd-13-935-2022, https://doi.org/10.5194/esd-13-935-2022, 2022
Short summary
Short summary
Global climate models suggest that droughts could worsen over the coming century. In mountain basins with glaciers, glacial runoff can ease droughts, but glaciers are retreating worldwide. We analyzed how one measure of drought conditions changes when accounting for glacial runoff that changes over time. Surprisingly, we found that glacial runoff can continue to buffer drought throughout the 21st century in most cases, even as the total amount of runoff declines.
Mikhail Y. Verbitsky
Earth Syst. Dynam., 13, 879–884, https://doi.org/10.5194/esd-13-879-2022, https://doi.org/10.5194/esd-13-879-2022, 2022
Short summary
Short summary
Reconstruction and explanation of past climate evolution using proxy records is the essence of paleoclimatology. In this study, we use dimensional analysis of a dynamical model on orbital timescales to recognize theoretical limits of such forensic inquiries. Specifically, we demonstrate that major past events could have been produced by physically dissimilar processes making the task of paleo-record attribution to a particular phenomenon fundamentally difficult if not impossible.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Jonathan F. Donges, Wolfgang Lucht, Sarah E. Cornell, Jobst Heitzig, Wolfram Barfuss, Steven J. Lade, and Maja Schlüter
Earth Syst. Dynam., 12, 1115–1137, https://doi.org/10.5194/esd-12-1115-2021, https://doi.org/10.5194/esd-12-1115-2021, 2021
Ben Marzeion
Earth Syst. Dynam., 12, 1057–1060, https://doi.org/10.5194/esd-12-1057-2021, https://doi.org/10.5194/esd-12-1057-2021, 2021
Short summary
Short summary
The oceans are typically darker than land surfaces. Expanding oceans through sea-level rise may thus lead to a darker planet Earth, reflecting less sunlight. The additionally absorbed sunlight may heat planet Earth, leading to further sea-level rise. Here, we provide a rough estimate of the strength of this feedback: it turns out to be very weak, but clearly positive, thereby destabilizing the Earth system.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Eric D. Galbraith
Earth Syst. Dynam., 12, 671–687, https://doi.org/10.5194/esd-12-671-2021, https://doi.org/10.5194/esd-12-671-2021, 2021
Short summary
Short summary
Scientific tradition has left a gap between the study of humans and the rest of the Earth system. Here, a holistic approach to the global human system is proposed, intended to provide seamless integration with natural sciences. At the core, this focuses on what humans are doing with their time, what the bio-physical outcomes of those activities are, and what the lived experience is. The quantitative approach can facilitate data analysis across scales and integrated human–Earth system modeling.
Shaun Lovejoy
Earth Syst. Dynam., 12, 469–487, https://doi.org/10.5194/esd-12-469-2021, https://doi.org/10.5194/esd-12-469-2021, 2021
Short summary
Short summary
Monthly scale, seasonal-scale, and decadal-scale modeling of the atmosphere is possible using the principle of energy balance. Yet the scope of classical approaches is limited because they do not adequately deal with energy storage in the Earth system. We show that the introduction of a vertical coordinate implies that the storage has a huge memory. This memory can be used for macroweather (long-range) forecasts and climate projections.
Shaun Lovejoy
Earth Syst. Dynam., 12, 489–511, https://doi.org/10.5194/esd-12-489-2021, https://doi.org/10.5194/esd-12-489-2021, 2021
Short summary
Short summary
Radiant energy is exchanged between the Earth's surface and outer space. Some of the local imbalances are stored in the subsurface, and some are transported horizontally. In Part 1 I showed how – in a horizontally homogeneous Earth – these classical approaches imply long-memory storage useful for seasonal forecasting and multidecadal projections. In this Part 2, I show how to apply these results to the heterogeneous real Earth.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Kyung-Sook Yun, Axel Timmermann, and Malte F. Stuecker
Earth Syst. Dynam., 12, 121–132, https://doi.org/10.5194/esd-12-121-2021, https://doi.org/10.5194/esd-12-121-2021, 2021
Short summary
Short summary
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What has been overlooked so far is the question of whether these two circulations can shift their positions in a synchronized manner. We here show the synchronized spatial shifts between Walker and Hadley cells and further highlight a novel aspect of how tropical sea surface temperature anomalies can couple these two circulations. The re-positioning has important implications for extratropical rainfall.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Gerrit Lohmann
Earth Syst. Dynam., 11, 1195–1208, https://doi.org/10.5194/esd-11-1195-2020, https://doi.org/10.5194/esd-11-1195-2020, 2020
Short summary
Short summary
With the development of computer capacities, simpler models like energy balance models have not disappeared, and a stronger emphasis has been given to the concept of a hierarchy of models. The global temperature is calculated by the radiation budget through the incoming energy from the Sun and the outgoing energy from the Earth. The argument that the temperature can be calculated by a simple radiation budget is revisited, and it is found that the effective heat capacity matters.
Benjamin Sanderson
Earth Syst. Dynam., 11, 721–735, https://doi.org/10.5194/esd-11-721-2020, https://doi.org/10.5194/esd-11-721-2020, 2020
Short summary
Short summary
Here, we assess the degree to which the idealized responses to transient forcing increase and step change forcing increase relate to warming under future scenarios. We find a possible explanation for the poor performance of transient metrics (relative to equilibrium response) as a metric of high-emission future warming in terms of their sensitivity to non-equilibrated initial conditions, and propose alternative metrics which better describe warming under high mitigation scenarios.
Benjamin Sanderson
Earth Syst. Dynam., 11, 563–577, https://doi.org/10.5194/esd-11-563-2020, https://doi.org/10.5194/esd-11-563-2020, 2020
Short summary
Short summary
Levels of future temperature change are often used interchangeably with carbon budget allowances in climate policy, a relatively robust relationship on the timescale of this century. However, recent advances in understanding underline that continued warming after net-zero emissions have been achieved cannot be ruled out by observations of warming to date. We consider here how such behavior could be constrained and how policy can be framed in the context of these uncertainties.
Jonathan F. Donges, Jobst Heitzig, Wolfram Barfuss, Marc Wiedermann, Johannes A. Kassel, Tim Kittel, Jakob J. Kolb, Till Kolster, Finn Müller-Hansen, Ilona M. Otto, Kilian B. Zimmerer, and Wolfgang Lucht
Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, https://doi.org/10.5194/esd-11-395-2020, 2020
Short summary
Short summary
We present an open-source software framework for developing so-called
world–Earth modelsthat link physical, chemical and biological processes with social, economic and cultural processes to study the Earth system's future trajectories in the Anthropocene. Due to its modular structure, the software allows interdisciplinary studies of global change and sustainable development that combine stylized model components from Earth system science, climatology, economics, ecology and sociology.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020, https://doi.org/10.5194/esd-11-281-2020, 2020
Short summary
Short summary
Using the central theorem of dimensional analysis, the π theorem, we show that the relationship between the amplitude and duration of glacial cycles is governed by a property of scale invariance that does not depend on the physical nature of the underlying positive and negative feedbacks incorporated by the system. It thus turns out to be one of the most fundamental properties of the Pleistocene climate.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Christine Ramadhin and Chuixiang Yi
Earth Syst. Dynam., 11, 13–16, https://doi.org/10.5194/esd-11-13-2020, https://doi.org/10.5194/esd-11-13-2020, 2020
Short summary
Short summary
Here we explore ancient climate transitions from warm periods to ice ages and from ice ages to warm periods of the last 400 000 years. The changeovers from warm to ice age conditions are slower than those from ice age to warm conditions. We propose the presence of strong negative sea–ice feedbacks may be responsible for slowing the transition from warm to full ice age conditions. By improving understanding of past abrupt changes, we may have improved knowledge of future system behavior.
M. Levent Kavvas, Tongbi Tu, Ali Ercan, and James Polsinelli
Earth Syst. Dynam., 11, 1–12, https://doi.org/10.5194/esd-11-1-2020, https://doi.org/10.5194/esd-11-1-2020, 2020
Short summary
Short summary
After deriving a fractional continuity equation, a previously-developed equation for water flux in porous media was combined with the Dupuit approximation to obtain an equation for groundwater motion in multi-fractional space in unconfined aquifers. As demonstrated in the numerical application, the orders of the fractional space and time derivatives modulate the speed of groundwater table evolution, slowing the process with the decrease in the powers of the fractional derivatives from 1.
Krishna-Pillai Sukumara-Pillai Krishnamohan, Govindasamy Bala, Long Cao, Lei Duan, and Ken Caldeira
Earth Syst. Dynam., 10, 885–900, https://doi.org/10.5194/esd-10-885-2019, https://doi.org/10.5194/esd-10-885-2019, 2019
Short summary
Short summary
We find that sulfate aerosols are more effective in cooling the climate system when they reside higher in the stratosphere. We explain this sensitivity in terms of radiative forcing at the top of the atmosphere. Sulfate aerosols heat the stratospheric layers, causing an increase in stratospheric water vapor content and a reduction in high clouds. These changes are larger when aerosols are prescribed near the tropopause, offsetting part of the aerosol-induced negative radiative forcing/cooling.
Davide Faranda, Yuzuru Sato, Gabriele Messori, Nicholas R. Moloney, and Pascal Yiou
Earth Syst. Dynam., 10, 555–567, https://doi.org/10.5194/esd-10-555-2019, https://doi.org/10.5194/esd-10-555-2019, 2019
Short summary
Short summary
We show how the complex dynamics of the jet stream at midlatitude can be described by a simple mathematical model. We match the properties of the model to those obtained by the jet data derived from observations.
Stefanie Talento, Lea Schneider, Johannes Werner, and Jürg Luterbacher
Earth Syst. Dynam., 10, 347–364, https://doi.org/10.5194/esd-10-347-2019, https://doi.org/10.5194/esd-10-347-2019, 2019
Short summary
Short summary
Quantifying hydroclimate variability beyond the instrumental period is essential for putting fluctuations into long-term perspective and providing a validation for climate models. We evaluate, in a virtual setup, the potential for generating millennium-long summer precipitation reconstructions over south-eastern Asia.
We find that performing a real-world reconstruction with the current available proxy network is indeed feasible, as virtual-world reconstructions are skilful in most areas.
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019, https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Short summary
Processes causing the same global-average radiative forcing might lead to different global temperature changes. We expand the theoretical framework by which we calculate paleoclimate sensitivity with an efficacy factor. Applying the revised approach to radiative forcing caused by CO2 and land ice albedo perturbations, inferred from data of the past 800 000 years, gives a new paleo-based estimate of climate sensitivity.
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 10, 121–133, https://doi.org/10.5194/esd-10-121-2019, https://doi.org/10.5194/esd-10-121-2019, 2019
Short summary
Short summary
Ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring. On a daily basis extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons it thus contributes to Arctic sea ice melting. These patterns differ sharply from that linked to decline, especially in summer when the opposite trend applies.
Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raquel Nieto, and Luis Gimeno
Earth Syst. Dynam., 10, 107–119, https://doi.org/10.5194/esd-10-107-2019, https://doi.org/10.5194/esd-10-107-2019, 2019
Short summary
Short summary
We analyse moisture transport triggered by the Great Plains low-level jet (GPLLJ), a maximum in wind speed fields located within the first kilometre of the US Great Plain's troposphere, through the innovative Eulerian Weather Research and Forecasting Model tracer tool. Much moisture associated with this low-level jet has been found in northern regions located in a vast extension of the continent, highlighting the key role played by the GPLLJ in North America's advective transport of moisture.
Gerrit Lohmann
Earth Syst. Dynam., 9, 1279–1281, https://doi.org/10.5194/esd-9-1279-2018, https://doi.org/10.5194/esd-9-1279-2018, 2018
Short summary
Short summary
Long-term sea surface temperature trends and variability are underestimated in models compared to paleoclimate data. The idea is presented that the trends and variability are related, which is elaborated in a conceptual model framework. The temperature spectrum can be used to estimate the timescale-dependent climate sensitivity.
Mark M. Dekker, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1243–1260, https://doi.org/10.5194/esd-9-1243-2018, https://doi.org/10.5194/esd-9-1243-2018, 2018
Short summary
Short summary
We introduce a framework of cascading tipping, i.e. a sequence of abrupt transitions occurring because a transition in one system affects the background conditions of another system. Using bifurcation theory, various types of these events are considered and early warning indicators are suggested. An illustration of such an event is found in a conceptual model, coupling the North Atlantic Ocean with the equatorial Pacific. This demonstrates the possibility of events such as this in nature.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 9, 1127–1140, https://doi.org/10.5194/esd-9-1127-2018, https://doi.org/10.5194/esd-9-1127-2018, 2018
Short summary
Short summary
Turbulent fluxes represent an efficient way to transport heat and moisture from the surface into the atmosphere. Due to their inherently highly complex nature, they are commonly described by semiempirical relationships. What we show here is that these fluxes can also be predicted by viewing them as the outcome of a heat engine that operates between the warm surface and the cooler atmosphere and that works at its limit.
Marc Schleiss
Earth Syst. Dynam., 9, 955–968, https://doi.org/10.5194/esd-9-955-2018, https://doi.org/10.5194/esd-9-955-2018, 2018
Short summary
Short summary
The present study aims at explaining how intermittency (i.e., the alternation of dry and rainy periods) affects the rate at which precipitation extremes increase with temperature. Using high-resolution rainfall data from 99 stations in the United States, we show that at scales beyond a few hours, intermittency causes rainfall extremes to deviate substantially from Clausius–Clapeyron. A new model is proposed to better represent and predict these changes across scales.
Ragnhild Bieltvedt Skeie, Terje Berntsen, Magne Aldrin, Marit Holden, and Gunnar Myhre
Earth Syst. Dynam., 9, 879–894, https://doi.org/10.5194/esd-9-879-2018, https://doi.org/10.5194/esd-9-879-2018, 2018
Short summary
Short summary
A key question in climate science is how the global mean surface temperature responds to changes in greenhouse gases. This dependency is quantified by the climate sensitivity, which is determined by the complex feedbacks in the climate system. In this study observations of past climate change are used to estimate this sensitivity. Our estimate is consistent with values for the equilibrium climate sensitivity estimated by complex climate models but sensitive to the use of uncertain input data.
Dieter Gerten, Martin Schönfeld, and Bernhard Schauberger
Earth Syst. Dynam., 9, 849–863, https://doi.org/10.5194/esd-9-849-2018, https://doi.org/10.5194/esd-9-849-2018, 2018
Short summary
Short summary
Cultural processes are underrepresented in Earth system models, although they decisively shape humanity’s planetary imprint. We set forth ideas on how Earth system analysis can be enriched by formalising aspects of religion (understood broadly as a collective belief in things held sacred). We sketch possible modelling avenues (extensions of existing Earth system models and new co-evolutionary models) and suggest research primers to explicate and quantify mental aspects of the Anthropocene.
Stefan Lange
Earth Syst. Dynam., 9, 627–645, https://doi.org/10.5194/esd-9-627-2018, https://doi.org/10.5194/esd-9-627-2018, 2018
Short summary
Short summary
The bias correction of surface downwelling longwave and shortwave radiation using parametric quantile mapping methods is shown to be more effective (i) at the daily than at the monthly timescale, (ii) if the spatial resolution gap between the reference data and the data to be corrected is bridged in a more suitable manner than by bilinear interpolation, and (iii) if physical upper limits are taken into account during the adjustment of either radiation component.
Camilla Mathison, Chetan Deva, Pete Falloon, and Andrew J. Challinor
Earth Syst. Dynam., 9, 563–592, https://doi.org/10.5194/esd-9-563-2018, https://doi.org/10.5194/esd-9-563-2018, 2018
Short summary
Short summary
Sowing and harvest dates are a significant source of uncertainty within crop models. South Asia is one region with a large uncertainty. We aim to provide more accurate sowing and harvest dates than currently available and that are relevant for climate impact assessments. This method reproduces the present day sowing and harvest dates for most parts of India and when applied to two future periods provides a useful way of modelling potential growing season adaptations to changes in future climate.
Dario A. Zappalà, Marcelo Barreiro, and Cristina Masoller
Earth Syst. Dynam., 9, 383–391, https://doi.org/10.5194/esd-9-383-2018, https://doi.org/10.5194/esd-9-383-2018, 2018
Short summary
Short summary
The dynamics of our climate involves multiple timescales, and while a lot of work has been devoted to quantifying variations in time-averaged variables or variations in their seasonal cycles, variations in daily variability that occur over several decades still remain poorly understood. Here we analyse daily surface air temperature and demonstrate that inter-decadal changes can be precisely identified and quantified with the Hilbert analysis tool.
Nadine Mengis, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 9, 15–31, https://doi.org/10.5194/esd-9-15-2018, https://doi.org/10.5194/esd-9-15-2018, 2018
Short summary
Short summary
The Systematic Correlation Matrix Evaluation (SCoMaE) method applies statistical information to systematically select, transparent, nonredundant indicators for a comprehensive assessment of the Earth system state. We show that due to changing climate forcing, such as anthropogenic climate change, the ad hoc assessment indicators might need to be reevaluated. Within an iterative process, this method would allow us to select scientifically consistent and societally relevant assessment indicators.
Liga Bethere, Juris Sennikovs, and Uldis Bethers
Earth Syst. Dynam., 8, 951–962, https://doi.org/10.5194/esd-8-951-2017, https://doi.org/10.5194/esd-8-951-2017, 2017
Short summary
Short summary
We define three new climate indices based on monthly mean temperature and total precipitation values that describe the main features of the climate in the Baltic states. Higher values in each index correspond to (1) less distinct seasonality and (2) warmer and (3) wetter climate. It was calculated that in the future all three indices will increase. Such indices summarize and illustrate the spatial features of the Baltic climate, and they can be used in further analysis of climate change impact.
Tongbi Tu, Ali Ercan, and M. Levent Kavvas
Earth Syst. Dynam., 8, 931–949, https://doi.org/10.5194/esd-8-931-2017, https://doi.org/10.5194/esd-8-931-2017, 2017
Short summary
Short summary
Groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior, and the underlying distribution exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics. The estimated Hurst exponent is highly dependent on the length and the specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 8, 849–864, https://doi.org/10.5194/esd-8-849-2017, https://doi.org/10.5194/esd-8-849-2017, 2017
Short summary
Short summary
We provide an explanation why land temperatures respond more strongly to global warming than ocean temperatures, a robust finding in observations and models that has so far not been understood well. We explain it by the different ways by which ocean and land surfaces buffer the strong variation in solar radiation and demonstrate this with a simple, physically based model. Our explanation also illustrates why nighttime temperatures warm more strongly, another robust finding of global warming.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017, https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Short summary
Global temperature now exceeds +1.25 °C relative to 1880–1920, similar to warmth of the Eemian period. Keeping warming less than 1.5 °C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.
Cited articles
Anderson, D. M., Lively, J. J., Reardon, E. M., and Price, C. A.: Sinking
characteristics of dinoflagellate cysts, Limnol. Oceanogr., 30, 1000–1009,
https://doi.org/10.4319/lo.1985.30.5.1000, 1985. a
Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J.: OPTICS: Ordering
Points to Identify the Clustering Structure OPTICS, SCM Sigmod Rec., 2, 49–60, https://doi.org/10.1145/304182.304187, 1999. a
Bettencourt, J. H., López, C., and Hernández-garcía, E.:
Oceanic three-dimensional Lagrangian coherent structures: A study of a
mesoscale eddy in the Benguela upwelling region, Ocean Model., 51, 73–83,
https://doi.org/10.1016/j.ocemod.2012.04.004, 2012. a
Bettencourt, J. H., López, C., Hernández-garcía, E., Montes, I., Sudre, J., Dewitte, B., Paulmier, A., and Garçon, V.: Boundaries of the Peruvian oxygen minimum zone shaped by coherent mesoscale dynamics, Nat. Geosci., 8, 937–941, https://doi.org/10.1038/NGEO2570, 2015. a
Bower, A., Lozier, S., Biastoch, A., Drouin, K., Foukal, N., Furey, H.,
Lankhorst, M., Ruhs, S., and Zou, S.: Lagrangian Views of the Pathways of
the Atlantic Meridional Overturning Circulation, J. Geophys. Res.-Oceans,
124, 5313–5335, https://doi.org/10.1029/2019JC015014, 2019. a
Braak, C. J. F. F. and Verdonkschot, P. F. M. M.: Canonical correspondence
analysis and related multivariate methods in aquatic ecology, Aquat. Sci., 57, 255–289, https://doi.org/10.1007/BF00877430, 1995. a
Canals, M., Pham, C. K., Bergmann, M., Gutow, L., Hanke, G., van Sebille, E.,
Angiolillo, M., Buhl-Mortensen, L., Cau, A., Ioakeimidis, C., Kammann, U.,
and Lundsten, L.: The quest for seafloor macrolitter: A critical review of
background knowledge, current methods and future prospects, Environ. Res.
Lett., 16, 023001, https://doi.org/10.1088/1748-9326/abc6d4, 2020. a
Chang, H., Huntley, H. S., Kirwan Jr., A. D., Lipphardt Jr., B. L., and
Sulman, M. H. M.: Transport structures in a 3D periodic flow, Commun. Nonlin. Sci. Numer. Simul., 61, 84–103, https://doi.org/10.1016/j.cnsns.2018.01.014, 2018. a
Clarke, K. R.: Non-parametric multivariate analyses of changes in community
structure, Aust. J. Ecol., 18, 117–143, 1993. a
Coachman, L. K. and Aagaard, K.: Transports Through Bering Strait' Annual and
Interannual Variability, J. Geophys. Res., 93, 535–539, 1988. a
de la Fuente, R., Drótos, G., Hernández-García, E., López, C., and van Sebille, E.: Sinking microplastics in the water column: simulations in the Mediterranean Sea, Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021, 2021. a
Döös, K., Nycander, J., and Coward, A. C.: Lagrangian decomposition of the Deacon Cell, J. Geophys. Res., 113, 1–13, https://doi.org/10.1029/2007JC004351, 2008. a
Drake, H. F., Morrison, A. K., Griffies, S. M., Sarmiento, J. L., Weijer, W.,
and Gray, A. R.: Lagrangian Timescales of Southern Ocean Upwelling in a
Hierarchy of Model Resolutions, Geophys. Res. Lett., 45, 891–898,
https://doi.org/10.1002/2017GL076045, 2018. a
Drótos, G., Monroy, P., Hernández-garcía, E., and López, C.: Inhomogeneities and caustics in the sedimentation of noninertial particles in incompressible flows, Chaos, 29, 013115,
https://doi.org/10.1063/1.5024356, 2019. a
Dufour, C. O., Griffies, S. M., Souza, G. F., Frenger, I., Morrison, A. K.,
Palter, J. B., Sarmiento, J. L., Galbraith, E. D., Dunne, J. P., Anderson, W. G., and Slater, R. D.: Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical Tracers in the Southern Ocean, J. Phys. Ocean., 45, 3057–3081, https://doi.org/10.1175/JPO-D-14-0240.1, 2015. a
Eaton, J. K. and Fessler, J. R.: Preferential concentration of particles by
turbulence, Int. J. Multiph. Flow, 20, 169–209, 1994. a
Esper, O. and Zonneveld, K. A. F.: The potential of organic-walled
dinoflagellate cysts for the reconstruction of past sea-surface conditions in
the Southern Ocean, Mar. Micropaleontol., 65, 185–212,
https://doi.org/10.1016/j.marmicro.2007.07.002, 2007. a, b
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise, KDD, 226–231, https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf (last access: 14 February 2022), 1996. a
Fenton, I. S., Pearson, P. N., Jones, T. D., and Purvis, A.: Environmental
Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in
Marine Sediments, PLoS One, 11, 1–22, https://doi.org/10.1371/journal.pone.0165522,
2016. a
Fischer, J., Karstensen, J., Oltmanns, M., and Schmidtko, S.: Mean circulation and EKE distribution in the Labrador Sea Water level of the subpolar North Atlantic, Ocean Sci., 14, 1167–1183, https://doi.org/10.5194/os-14-1167-2018, 2018. a
Fouss, F., Saerens, M., and Shimbo, M.: Classical Multidimensional Scaling:
Basic Notions, in: Algorithms Model. Netw. Data Link Anal., chap. 10.3,
Cambridge University Press, ISBN 9781316418321, https://doi.org/10.1017/CBO9781316418321, 2016. a
Fraser, C. I., Morrison, A. K., Hogg, A. M., Macaya, E. C., Sebille, E. V.,
Ryan, P. G., Padovan, A., Jack, C., Valdivia, N., and Waters, J. M.:
Antarctica's ecological isolation will be broken by storm-driven dispersal
and warming, Nat. Clim. Change, 8, 704–708, https://doi.org/10.1038/s41558-018-0209-7, 2018. a
Fratantoni, D. M.: North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters, J. Geophys. Res., 106, 22067–22093, https://doi.org/10.1029/2000JC000730, 2001. a
Froyland, G., Padberg, K., England, M. H., and Treguier, A. M.: Detection of
Coherent Oceanic Structures via Transfer Operators, Phys. Rev. Lett., 224503, 1–4, https://doi.org/10.1103/PhysRevLett.98.224503, 2007. a
Froyland, G., Stuart, R. M., and van Sebille, E.: How well-connected is the
surface of the global ocean?, Chaos, 24, 0–10, https://doi.org/10.1063/1.4892530, 2014. a, b, c, d
Ganssen, G. and Kroon, D.: Evidence for Red Sea surface circulation from
oxygen isotopes of modern surface waters and planktonic foraminiferal tests,
Paleoceanography, 6, 73–82, https://doi.org/10.1029/90PA01976, 1991. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: NOAA Atlas NESDIS 76, WORLD Ocean ATLAS 2013, https://repository.library.noaa.gov/view/noaa/14850 (last access:
14 February 2022), 2013. a
Hellweger, F. L.: Biogegraphic patterns in ocean microbes emerge in a natural
agent-based model, Science, 345, 1346–1349, https://doi.org/10.1126/science.1254421, 2014. a
Hohmann, S., Kucera, M., and Vernal, A. D.: Identifying the signature of
sea-surface properties in dinocyst assemblages: Implications for
quantitative palaeoceanographical reconstructions by transfer functions and
analogue techniques, Mar. Micropaleontol., 159, 101816,
https://doi.org/10.1016/j.marmicro.2019.101816, 2019. a, b
Jonkers, L., Hillebrand, H., and Kucera, M.: Global change drives modern
plankton communities away from the pre-industrial state, Nature, 372,
372–382, https://doi.org/10.1038/s41586-019-1230-3, 2019. a, b
Jonnson, B. F. and Watson, J. R.: The timescales of global surface-ocean
connectivity, Nat. Commun., 7, 1–6, https://doi.org/10.1038/ncomms11239, 2016. a, b
Katsman, C. A., Dijfhout, S. S., Dijkstra, H. A., and Spall, M. A.: Sinking of Dense North Atlantic Waters in a Global Ocean Model: Location and Controls, J. Geophys. Res.-Oceans, 124, 3563–3576, https://doi.org/10.1029/2017JC013329, 2018. a
Kooi, M., Nes, E. H. V., Scheffer, M., and Koelmans, A. A.: Ups and Downs in
the Ocean: Effects of Biofouling on Vertical Transport of Microplastics,
Environ. Sci. Technol., 51, 7963–7971, https://doi.org/10.1021/acs.est.6b04702, 2017. a
Lange, M. and Sebille, E. V.: Parcels v0.9: Prototyping a Lagrangian ocean
analysis framework for the petascale age, Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, 2017. a
Lebreton, L. C., Greer, S. D., and Borrero, J. C.: Numerical modelling of
floating debris in the world's oceans, Mar. Pollut. Bull., 64, 653–661,
https://doi.org/10.1016/j.marpolbul.2011.10.027, 2012. a
Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F.,
Chaffron, S., Ignacio-espinosa, J. C., Roux, S., Vincent, F., and Bittner, L.: Determinants of community structure in the global plankton interactome,
Science, 348, 1–10, 2015. a
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: NOAA Atlas NESDIS 73, WORLD Ocean ATLAS 2013, https://repository.library.noaa.gov/view/noaa/14847 (last access: 14 February 2022), 2013. a
Logan, B. E. and Wilkinson, D. B.: Fractal geometry of marine snow and other
biological aggregates, Limnol. Oceanogr., 35, 130–136, 1990. a
Marret, F., Bradley, L., Vernal, A. D., Hardy, W., Kim, S.-Y., Mudie, P.,
Penaud, A., Pospelova, V., Price, A. M., Radi, T., and Rochon, A.: From bi-polar to regional distribution of modern dinoflagellate cysts, an overview of their biogeography, Mar. Micropaleontol., 195, 101753, https://doi.org/10.1016/j.marmicro.2019.101753, 2019. a, b
Masumoto, Y., Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y.,
Miyama, T., Motoi, T., Mitsudera, H., Takahashi, K., Sakuma, H., and Yamagata, T.: A Fifty-Year Eddy-Resolving Simulation of the World Ocean –
Preliminary Outcomes of OFES (OGCM for the Earth Simulator), J. Earth
Simulat., 1, 35–56, 2004. a
McAdam, R. and van Sebille, E.: Surface Connectivity and Interocean Exchanges
From Drifter-Based Transition Matrices, J. Geophys. Res.-Oceans, 123, 514–532, https://doi.org/10.1002/2017JC013363, 2018. a
Meilland, J., Howa, H., Hulot, V., Demangel, I., Salaün, J., and Garlan, T.: Population dynamics of modern planktonic foraminifera in the western Barents Sea, Biogeosciences, 17, 1437–1450, https://doi.org/10.5194/bg-17-1437-2020, 2020. a
Mitchell, J. G., Yamazaki, H., Seuront, L., Wolk, F., and Li, H.:
Phytoplankton patch patterns: Seascape anatomy in a turbulent ocean, J. Mar. Syst., 69, 247–253, https://doi.org/10.1016/j.jmarsys.2006.01.019, 2008. a
Mollenhauer, G., Eglinton, T. I., Ohkouchi, N., Schneider, R. R., Müller,
P. J., Grootes, P. M., and Rullkötter, J.: Asynchronous alkenone and
foraminifera records from the Benguela Upwelling System, Geochim. Cosmochim.
Ac., 67, 2157–2171, https://doi.org/10.1016/S0016-7037(03)00168-6, 2003. a
Monroy, P., Hernández-García, E., Rossi, V., and López, C.: Modeling the dynamical sinking of biogenic particles in oceanic flow, Nonlin. Processes Geophys., 24, 293–305, https://doi.org/10.5194/npg-24-293-2017, 2017. a
Monroy, P., Drótos, G., Hernández-garcía, E., and López, C.: Spatial Inhomogeneities in the Sedimentation of Biogenic Particles in Ocean Flows: Analysis in the Benguela Region, J. Geophys. Res.-Oceans, 124, 1–19, https://doi.org/10.1029/2019JC015016, 2019. a
Morey, A., Mix, A. C., and Pisias, N. G.: Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables, Quaternary Sci. Rev., 24, 925–950, https://doi.org/10.1016/j.quascirev.2003.09.011, 2005.
a
Morris, E. K., Caruso, T., Fischer, M., Hancock, C., Obermaier, E., Prati, D., Maier, T. S., Meiners, T., Caroline, M., Wubet, T., Wurst, S., Matthias, C., Socher, A., Sonnemann, I., and Nicole, W.: Choosing and using diversity
indices : insights for ecological applications from the German Biodiversity
Exploratories, Ecol. Evol., 4, 3514–3524, https://doi.org/10.1002/ece3.1155, 2014. a
Moum, J. N., Perlin, A., Nash, J. D., and Mcphaden, M. J.: Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing, Nature, 500, 1–4, https://doi.org/10.1038/nature12363, 2013. a
Nelson, G. and Hutchings, L.: The Benguela Upwelling Area, Prog. Ocean., 12,
333–356, 1983. a
Nooteboom, P. D.: pdnooteboom/ClusterSinkingParticles: Code for `Sedimentary microplankton distributions are shaped by oceanographically connected areas' by P. D. Nooteboom et al. (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.6077838, 2022a. a
Nooteboom, P. D.: Planktondrift [data set], https://planktondrift.science.uu.nl/ (last access: 14 February 2022), 2022b. a
Nooteboom, P. D., Bijl, P. K., van Sebille, E., von der Heydt, A. S., and
Dijkstra, H. A.: Transport Bias by Ocean Currents in Sedimentary Microplankton Assemblages: Implications for Paleoceanographic Reconstructions, Paleoceanogr. Paleocl., 34, 1178–1194, https://doi.org/10.1029/2019PA003606, 2019. a, b, c, d, e, f, g, h, i, j, k
Nooteboom, P. D., Delandmeter, P., Sebille, E. V., Bijl, P. K., Dijkstra,
H. A., and von der Heydt, A. S.: Resolution dependency of sinking Lagrangian
particles in ocean general circulation models, PLoS One, 15, 1–16,
https://doi.org/10.1371/journal.pone.0238650, 2020. a, b, c, d
Onink, V., Wichmann, D., Delandmeter, P., and van Sebille, E.: The Role of
Ekman Currents, Geostrophy, and Stokes Drift in the Accumulation of Floating Microplastic, J. Geophys. Res.-Oceans, 124, 1474–1490, https://doi.org/10.1029/2018JC014547, 2019. a
Ottens, J. J. and Nederbragt, A. J.: Planktic foraminiferal diversity as
indicator of ocean environments, Mar. Micropaleontol., 19, 13–28, 1992. a
Pickart, R. S., Straneo, F., and Moore, G. W. K.: Is Labrador Sea Water formed in the Irminger basin?, Deep-Sea Res. Pt. I, 50, 23–52, 2003. a
Prebble, J. G., Crouch, E. M., Carter, L., Cortese, G., Bostock, H., and Neil, H.: An expanded modern dinoflagellate cyst dataset for the Southwest Pacific and Southern Hemisphere with environmental associations, Mar.
Micropaleontol., 101, 33–48, https://doi.org/10.1016/j.marmicro.2013.04.004, 2013. a
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H.,
Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling
the depth habitat of planktonic foraminifera in the subtropical eastern North
Atlantic, Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, 2017. a
Sasaki, H., Nonaka, M., Masumoto, Y., Sasai, Y., Uehara, H., and Sakuma, H.:
An Eddy-Resolving Hindcast Simulation of the Quasiglobal Ocean from 1950 to 2003 on the Earth Simulator, in: High Resolut. Numer. Model. Atmos. Ocean, chap. 10, edited by: Hamilton, K. and Ohfuchi, W., Springer, New York, 157–185, ISBN 978-0-387-36671-5, e-ISBN 978-0-387-49791-4, 2008. a
Shannon, C. E.: A mathematical theory of communication, Bell Syst. Tech. J., 27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1948. a
Shi, J. and Jitendra, M.: Normalized Cuts and Image Segmentation, IEEE T.
Pattern Anal. Mach. Intel., 22, 888–905, 2000. a
Siccha, M. and Kucera, M.: Data Descriptor: ForCenS, a curated database of
planktonic foraminifera census counts in marine surface sediment samples,
Sci. Data, 4, 170109, https://doi.org/10.1038/sdata.2017.109, 2017. a, b
Tamsitt, V., Drake, H. F., Morrison, A. K., Talley, L. D., Dufour, C. O., Gray, A. R., Grif, S. M., Mazloff, M. R., Sarmiento, J. L., Wang, J., and Weijer, W.: Spiraling pathways of global deep waters to the surface of the Southern Ocean, Nat. Commun., 8, 1994–2017, https://doi.org/10.1038/s41467-017-00197-0, 2017. a
Tamsitt, V., Abernathey, R. P., Mazloff, M. R., Wang, J., and Talley, L. D.:
Oceans Upwelling Pathways in the Southern Ocean, J. Geophys. Res.-Oceans, 123, 1994–2017, https://doi.org/10.1002/2017JC013409, 2018. a
Taylor, B. J., Rae, J. W. B., Gray, W. R., Darling, K. F., Burke, A., Gersonde, R., Abelmann, A., Maier, E., Esper, O., and Ziveri, P.: Distribution and ecology of planktic foraminifera in the North Pacific: Implications for paleo-reconstructions, Quaternary Sci. Rev., 191, 256–274,
https://doi.org/10.1016/j.quascirev.2018.05.006, 2018. a
Telford, R. J. and Kucera, M.: Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions
may bias reconstructions, Clim. Past, 9, 859–870,
https://doi.org/10.5194/cp-9-859-2013, 2013. a
Tierney, J. E. and Tingley, M. P.: A TEX86 surface sediment database and
extended Bayesian calibration, Sci. Data, 2, 1–10, https://doi.org/10.1038/sdata.2015.29, 2015. a
Tierney, J. E. and Tingley, M. P.: BAYSPLINE: A New Calibration for the
Alkenone Paleothermometer, Paleoceanogr. Paleocl., 33, 281–301, https://doi.org/10.1002/2017PA003201, 2018. a, b
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen, C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584, 569–585, https://doi.org/10.1038/s41586-020-2617-x, 2020. a
van Sebille, E., England, M. H., and Froyland, G.: Origin, dynamics and
evolution of ocean garbage patches from observed surface drifters, Environ.
Res. Lett., 7, 044040, https://doi.org/10.1088/1748-9326/7/4/044040, 2012. a
van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D., van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., and Law, K. L.: A
global inventory of small floating plastic debris, Environ. Res. Lett., 10, 124006, https://doi.org/10.1088/1748-9326/10/12/124006, 2015b. a
Wichmann, D., Kehl, C., Dijkstra, H. A., and van Sebille, E.: Detecting flow features in scarce trajectory data using networks derived from symbolic itineraries: an application to surface drifters in the North Atlantic, Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020, 2020.
a, b
Wichmann, D., Kehl, C., Dijkstra, H. A., and van Sebille, E.: Ordering of trajectories reveals hierarchical finite-time coherent sets in Lagrangian particle data: detecting Agulhas rings in the South Atlantic Ocean, Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021, 2021. a
Wilkins, D., Sebille, E. V., Rintoul, S. R., Lauro, F. M., and Cavicchioli, R.: Advection shapes Southern Ocean microbial environment effects, Nat.
Commun., 4, 1–7, https://doi.org/10.1038/ncomms3457, 2013.
a, b
Zonneveld, K. A. F., Susek, E., and Fischer, G.: Seasonal variability of the
organic-walled dinoflagellate cyst production in the coastal upwelling region
off cape blanc (mauritania): A five-year survey, J. Phycol., 46, 202–215,
https://doi.org/10.1111/j.1529-8817.2009.00799.x, 2010. a
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Having descended through the water column, microplankton in ocean sediments represents the ocean...
Altmetrics
Final-revised paper
Preprint