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Abstract. Having descended through the water column, microplankton in ocean sediments is representative of
the ocean surface environment, where it originated. Sedimentary microplankton is therefore used as an archive
of past and present surface oceanographic conditions. However, these particles are advected by turbulent ocean
currents during their sinking journey. So far, it is unknown to what extent this particle advection shapes the
microplankton composition in sediments. Here we use global simulations of sinking particles in a strongly ed-
dying global ocean model, and define ocean bottom provinces based on the particle surface origin locations. We
find that these provinces can be detected in global datasets of sedimentary microplankton assemblages, demon-
strating the effect provincialism has on the composition of sedimentary remains of surface plankton. These
provinces explain the microplankton composition, in addition to, e.g., the ocean surface environment. Connected
provinces have implications for the optimal spatial extent of microplankton sediment sample datasets that are
used for palaeoceanographic reconstruction, and for the optimal spatial averaging of sediment samples over
global datasets.

1 Introduction

Microplankton communities are sensitive to surface oceano-
graphic conditions in which they live. Their remains are pre-
served in the sedimentary archive of the ocean basins and are
therefore used to reconstruct present and past surface ocean
conditions. However, the sedimentary microplankton com-
munity is not driven by abiotic climate variables (e.g. temper-
ature or nutrient availability) alone. These climate variables
only explain part of the sedimentary species variability, for
both dinoflagellate cysts (Zonneveld et al., 2010; Esper and
Zonneveld, 2007) and planktic foraminifera (Morey et al.,
2005). As a result, there is a large unexplained residual error
in relationships between plankton composition and environ-
mental conditions. This impacts the accuracy of the recon-

struction of past environmental conditions using microfossil
assemblages. Hence, it is crucial to investigate which other
processes determine the species distribution in the sedimen-
tary archive, especially when such distributions are used to
reconstruct these sea surface variables in the geologic past.

Global surface ocean currents, and the way in which these
currents connect the ocean, are shown to shape the plank-
ton community structure near the ocean surface (Jonnson
and Watson, 2016; Wilkins et al., 2013; Hellweger, 2014).
The connectivity of the two-dimensional (2D) surface ocean
flow is well-studied in models (Froyland et al., 2007, 2014;
Onink et al., 2019; McAdam and van Sebille, 2018). Floating
particles accumulate towards the so-called garbage patches
on decadal timescales (Lebreton et al., 2012), which often
match well with relatively high concentrations of surface
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drifters (van Sebille et al., 2012) and microplastics (van Se-
bille et al., 2015b). In addition to the ocean surface connec-
tivity, the three-dimensional (3D) ocean connectivity is ex-
pected to have an influence on the distribution of sedimentary
particles.

Studies show that advection of sinking particles in 3D
ocean flow has implications for sedimentary microplankton
distributions (van Sebille et al., 2015a; Nooteboom et al.,
2019; Weyl, 1978; Mollenhauer et al., 2003; Ganssen and
Kroon, 1991). An initially uniform distribution of particles at
the ocean surface becomes more heterogeneous (i.e. mixed)
when these particles are sinking (Monroy et al., 2019; Drótos
et al., 2019). At the same time, the influence of ocean cur-
rents on sedimentary particle distributions is spatially vary-
ing (Nooteboom et al., 2020). Hence, one might expect that
the sedimentary archive is shaped by 3D particle advection
by ocean currents during the sinking process.

The behaviour of sinking particles in a 3D flow is quite dif-
ferent compared to that in a 2D flow. For instance, a 2D flow
is divergent in an upwelling region (which drives the particle
convergence in garbage patches), while a 3D flow is non-
divergent. However, attracting structures (Bettencourt et al.,
2012) and transport barriers (Bettencourt et al., 2015; Chang
et al., 2018) of 3D particle paths can also emerge inside the
ocean. In this way, particles can cluster in specific areas when
they are collected at a 2D surface after their sinking journey
(Monroy et al., 2017; Eaton and Fessler, 1994), as is also
measured at the ocean subsurface (Mitchell et al., 2008; Lo-
gan and Wilkinson, 1990).

In this paper, we investigate how oceanographically dis-
connected areas shape the sedimentary microplankton com-
position. We cluster sedimentary sites based on similar ocean
surface origin locations of particles that ended up at these
sediment sites after their sinking journey. We compare the
clusters with well-known features of the ocean flow and
detect these clusters in measurements of sedimentary mi-
croplankton.

2 Method

2.1 Sedimentary data

We use two global datasets of sedimentary microplank-
ton, one with dinoflagellate cysts (dinocysts; Marret et al.,
2019) and the second with planktic foraminifera (Siccha
and Kucera, 2017). We use the surface sediment samples
from sites south of 65◦ N (2849 and 4017 sites for the
dinocysts and foraminifera respectively) because the OFES
ocean model (which is used for particle advection; see be-
low) ends at 75◦ N, which makes the clustering results at high
northern latitudes unreliable. For some statistical analyses,
we only consider sites in the Southern Hemisphere (725 and
1858 sites for respectively the dinocysts and foraminifera), in
order to limit the total diversity of microplankton species in
the datasets. We consider the fraction (i.e. the relative abun-

dance) of microplankton species for every surface sediment
sample.

2.2 Clustering methods and particle tracking

The particle tracking results from Nooteboom et al. (2019)
provide us with distributions of surface origin locations for
a global 1◦× 1◦ grid of sediment sites, for several sinking
speeds. We use the results that are obtained in the eddying
OFES model (Sasaki et al., 2008; Masumoto et al., 2004)
with a sinking speed of 6 m d−1. Results with a sinking speed
of 11, 25, and 250 m d−1 can be found in the Supplement.
Values of 6 and 11 m d−1 are representative of single sink-
ing dinocysts, 25 m d−1 representative of small aggregates,
and 250 m d−1 representative of large aggregates and plank-
tic foraminifera (Anderson et al., 1985; Nooteboom et al.,
2019, 2020; van Sebille et al., 2015a). Sinking speeds lower
than 6 m d−1 can occur (e.g. due to oxidation of organic ma-
terial and the development of gas within a shell), which may
have an effect on the computed clusters. However, sinking
speeds lower than 6 m d−1 are not tested in this paper be-
cause the backtracking method is computationally infeasible
at lower sinking speeds due to long particle travel times.

The sinking speeds and backtracking analysis from Noote-
boom et al. (2019) are specifically designed to be compatible
with the life cycle of dinocysts (Nooteboom et al., 2019): par-
ticles are released at the bottom of the ocean every 5 d and
tracked back in time until they reach 10 m depth, providing
a particle distribution at the ocean surface (Fig. 1a). Single
foraminifera typically sink at higher velocities than dinocysts
(&100 m d−1), and most of their lateral transport occurs dur-
ing their lifespan, when they are passively advected while
they control their buoyancy and remain at their preferential
depth (van Sebille et al., 2015a). However, we assume in this
paper that the strength, direction, and “mixing” of planktic
foraminifera by ocean currents has a similar spatially varying
character compared to sinking dinocysts. We test whether the
clustering results match both dinocyst and foraminifera sam-
ple datasets.

Our goal is to obtain provinces of sediment sites from the
backtracked surface origin locations which are oceanograph-
ically (1) disconnected (i.e. provinces between which par-
ticles are not likely to travel) and (2) isolated (i.e. provinces
with sediment sites which share similar origin locations com-
pared to the sediment sites outside of the province). We quan-
tify these areas by disconnected and isolated clusters of sed-
imentary sites. Assuming that the flow from 2000 to 2005,
as simulated by the OFES model, is representative of the real
ocean flow in the past decades (during which the microplank-
ton actually sedimented; Jonkers et al., 2019), we ideally find
the disconnectedness and isolation of clusters in the surface
sediment sample datasets.

We use two types of clustering techniques. First, hierar-
chical clustering provides boundaries where sinking particles
are less likely to cross (hence it finds oceanographically dis-

Earth Syst. Dynam., 13, 357–371, 2022 https://doi.org/10.5194/esd-13-357-2022



P. D. Nooteboom et al.: Sedimentary microplankton distributions are shaped by oceanographically connected areas 359

Figure 1. Illustration of the impact of isolated clusters on sedimentary microplankton composition. (a) Illustration of the particle backtrack
analysis from Nooteboom et al. (2019), resulting in a particle distribution of origin locations for one sediment site or release location on which
the clustering methods are applied (figure adapted from Nooteboom et al., 2020). (b) A (noisy) sediment sample site outside of the isolated
clusters (station J299) and a site within oceanographically isolated OPTICS cluster 1 (station J285) in the South Atlantic. (c, d) Pie charts of
the dinocyst species composition in the sites from (b). The clustered site contains a species composition which is less biodiverse compared
to the noisy site. The Shannon biodiversity indices of respectively the clustered and noisy site are 0.7788 and 1.6842. This illustration uses
the same OPTICS clusters as are shown later in Fig. 4.

connected areas). This technique starts with the full ocean
as only cluster and splits a cluster into two clusters at every
iteration (see Appendix A1 for more details). The clusters
from this technique can be compared to areas that are known
to be oceanographically (dis)connected from each other, and
these clusters can be used to test if more similar microplank-
ton species are found within each connected area compared
to between connected areas. Advantages of the hierarchical
clustering method are that the cluster structure is preserved
as more iterations are applied, and it does not require many
parameters. The only parameter that the hierarchical cluster-
ing uses is the stop criterion (i.e. the iteration number where
the algorithm stops with creating new clusters).

Second, we use the Ordering Points To Identify the Clus-
tering Structure (OPTICS) algorithm to find oceanograph-
ically isolated clusters. OPTICS provides a density-based
value (the reachability) of sedimentary sites which quanti-

fies how strongly a site is connected to other sites. Oceano-
graphically isolated clusters can be obtained from the “dense
regions” (i.e. areas with low reachability values), by setting
a threshold on the slope that surrounds the dense values in
the reachability plot (ξ ; see Fig. 1b for an example). The
sediment sites outside of these clusters are less isolated and
referred to as “noisy”. These clusters allow us to test if sedi-
mentary species compositions are more homogeneous inside
isolated areas compared to outside of these areas (see Fig. 1).

The advantage of OPTICS is that parameter values have a
clear interpretation. First, the parameter smin is the minimum
number of particle release locations in clusters, which repre-
sents a minimum spatial scale of clusters (in m2). The second
parameter ξ determines the degree of isolation of the cluster-
ing: OPTICS generally finds fewer and smaller clusters if ξ is
larger. Another advantage of OPTICS is that not all areas are
clustered, such that it allows us to distinguish between noisy
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(not clustered) and oceanographically isolated (clustered) ar-
eas (see Appendix A2 for more details about OPTICS).

We also test the seasonal dependence of hierarchical clus-
ters (see Figs. S3 and S4), by only considering particles
that started sinking in a specific season (in the backtracking
analysis of Fig. 1a). While some of the cluster boundaries
changed between summer and winter, the change in the over-
all clustering structure was limited if only a specific season of
origin locations was considered (similar to van Sebille et al.,
2015a, who only found a small seasonal effect in temperature
offsets due to lateral transport of foraminifera).

2.3 Statistical analyses

We apply several statistical tools to test hypotheses about the
sediment sample sites and the clusters in which they are lo-
cated. A partial Mantel test (Legendre and Legendre, 2012)
is used to test whether the reachability from the OPTICS al-
gorithm correlates with the sediment sample taxonomy, inde-
pendent of the spatial distance between sediment sample site
locations. A partial Mantel test requires at least three types
of distance matrices, which contain distances between the
sediment sample sites. We calculate the Mantel correlation
between taxonomic distance and a distance which is deter-
mined from the reachability of the OPTICS clustering (see
Appendix B), while we remove the effect of the spatial dis-
tance between sites on this correlation. If the Mantel corre-
lation is significantly positive between these variables while
removing the effect of the spatial distance metric between
the sites, then this correlation is independent of the spatial
distance.

We use canonical correspondence analysis (CCA; Braak
and Verdonkschot, 1995) to infer the relation between
species in clustered sediment sites and environment parame-
ters at the ocean surface. In this context, CCA ideally shows
unique species responses to changes in environment input pa-
rameters. We use sea surface temperature (SST) and surface
nitrate (NO3) as environmental parameters, as prior literature
reported them to explain a major part of the species variabil-
ity in the Southern Ocean (Prebble et al., 2013; Esper and
Zonneveld, 2007). This study infers SST and NO3 for sedi-
ment sample locations from 1◦×1◦ fields of the World Ocean
Atlas (Locarnini et al., 2013; Garcia et al., 2013). Further pa-
rameters, such as phosphorus, silicate, and salt concentration,
were tested (as in Hohmann et al., 2019), though a spurious
CCA response led to their exclusion from further analysis in
this paper.

We compare the CCA’s explained variation in sedimen-
tary samples (1) only drawn from only isolated clusters and
(2) with samples drawn from all available locations. Com-
paring the explained species variation in both cases allows
us to draw conclusions about the source of variation between
both CCA results in order to quantify the significance of the
clustering approach. We apply a one-sided randomisation test
to investigate whether the increase in explained variance is

significant. This implies that we randomly take subsamples
of the full dataset, which are equally sized to the number
of clustered sediment samples. The p value of the permuta-
tion test is the fraction of random subsamples that resulted in
a higher explained variance compared to the CCA analysis
with the clustered samples.

The foraminifera dataset also contains deep-dwelling
species, which live near the thermocline (typically a few
100 m depth). Although it is often assumed that these deep-
dwelling species relate to sea surface variables in statistical
analyses, this assumption might not be valid (Telford and
Kucera, 2013). We applied the CCA analysis while only us-
ing the species which are known to be near-surface dwelling
in the subtropical Atlantic (the red group in Fig. 7 of Rebo-
tim et al., 2017; supporting Fig. S11 this paper). This leads to
similar conclusions, although less significant values are ob-
tained because the dataset size is lower.

The clusters that are obtained from the OPTICS algorithm
represent areas of relative oceanographic isolation. We test
whether the species distributions in sediments outside clus-
ters are more mixed compared than samples inside clusters
during their sinking journey. We use Shannon entropy (Shan-
non, 1948) to quantify taxonomic mixing, which is defined at
site j as N j

s =−
∑
i

pij ln(pij ). Here pij denotes the relative

abundance of a species i at site j . Shannon entropy is of-
ten used as a biodiversity index (Morris et al., 2014), being
a combined signal of species richness (number of species in
the sediment sample) and evenness (how evenly these species
are distributed). We choose the Shannon entropy here as bio-
diversity index because it can be compared to the mixing of
sinking particles, and Shannon entropy is often used to quan-
tify the loss of information by mixing (e.g. in thermodynam-
ics). We compare the average Shannon entropy of sediment
sample sites within (N

c
s) and outside (N

nc
s ) clusters.

3 Results

3.1 Oceanographically disconnected clusters

We interpret splits of oceanographically disconnected clus-
ters from the hierarchical clustering method as boundaries
with a low connectivity across them (Fig. 2). The probability
that particles cross these boundaries is larger if the iteration
number is higher. We observe that these cluster edges com-
pare well to large-scale ocean connectivity. The first iteration
splits the Mediterranean Sea from the global ocean because
no sinking particles travel through the Strait of Gibraltar in
the simulation. Next, the Pacific is separated from the Arc-
tic, since few particles are transported through the Bering
Strait (Coachman and Aagaard, 1988). At the subsequent
iterations, the large-scale ocean basins disconnect: the Pa-
cific, Atlantic, and Indian oceans are split from the South-
ern Ocean at approximately 25◦ S. We find that areas near
western boundary currents may only split into clusters at rel-
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Figure 2. Edges between oceanographically disconnected clusters
of sedimentary locations from the hierarchical clustering method.
(a) The cluster edges after 90 iterations, where the colour indi-
cates at which iteration number a cluster edge is created. (b) The
ANOSIM test statistic (red) and p values (blue; 999 permuta-
tions; logarithmic scale) for the clusters at every iteration number,
which tests whether the sedimentary microplankton composition
(both dinocysts and foraminifera; sites below 65◦ N) is more similar
within than between clusters.

atively high iterations because the sediments in these areas
have a relatively large connectivity, with particles originat-
ing from a large area (see also Nooteboom et al., 2019).

In the North Atlantic region, we observe that Hudson Bay
becomes a cluster and the subtropical Atlantic is split from
the Nordic Seas at the Greenland–Scotland ridge (Fratan-
toni, 2001; McClean et al., 2002; Bower et al., 2019). The
Irminger Basin is still connected with the Labrador Sea,
where sinking of water occurs (Pickart et al., 2003; Kats-
man et al., 2018), which makes transport of sinking particles
outside of this area less likely. Only a few particles cross the
connection between the Labrador Sea and Baffin Bay (Mc-
Clean et al., 2002; Fischer et al., 2018).

We do not find a cluster at subpolar latitudes, which iso-
lates Antarctica along latitudinal bands (only the Weddell
and the Ross Sea are a cluster). One might expect such a
cluster because near-surface currents are known to isolate
Antarctica (Fraser et al., 2018; Dufour et al., 2015; Döös
et al., 2008). However, deep passive particles advected by
three-dimensional flow are shown to move upwards along
isopycnals towards Antarctica (Drake et al., 2018; Tamsitt
et al., 2018). As a result, the sinking particles can be trans-
ported towards Antarctica at depth. The location of south-
ward particle transport is mainly determined by topographic
steering of the flow, resulting in five hotspots of southward
particle transport (Tamsitt et al., 2017) which roughly coin-
cide with the Southern Ocean clusters in Fig. 2.

Some of the clusters in Fig. 2 are similar to connected re-
gions based on the surface flow (see Fig. 8 from Froyland
et al., 2014). The North and South Atlantic are split similarly
from west Africa to Venezuela. The North Pacific and South
Pacific are split in a similar way from Australia to the south
of Chile. A cluster around the Pacific cold tongue (East Trop-
ical Pacific) develops (Moum et al., 2013; Froyland et al.,
2014). Moreover, the Benguela upwelling area (Nelson and
Hutchings, 1983) (near south-west Africa) is more connected
with the Southern Ocean than with the Atlantic. Near-surface
currents have an important influence on the total lateral trans-
port of sinking particles in these areas, since they are similar
to the surface connectivity areas from Froyland et al. (2014).

We test whether sites within hierarchical clusters have
a lower (Euclidean) taxonomic distance compared to sites
of different clusters with analysis of similarities (ANOSIM;
Clarke, 1993). The clustering corresponds to a high statistical
significance for (1) positive ANOSIM test statistic together
with (2) low p values (p value< 0.001). According to the
ANOSIM tests, the clustering of sediment samples is signif-
icant across all iterations (Fig. 2c). Hence, sediment samples
within clusters are more similar than those between clusters.
The test statistic increases at higher iteration numbers, for
both the dinoflagellate cyst (dinocyst) and the foraminifera
dataset. Although these ANOSIM results look promising, it
is important to note that the ANOSIM test statistics are partly
positive because the sediment sites within clusters are closer
to each other (i.e. there is a distance effect independent of the
clustering).

The hierarchical clustering is overall insensitive to the
sinking speed used of particles (see Figs. S1 and S2 in the
Supplement with sinking speeds 11 and 25 m d−1 respec-
tively; see Appendix A1 for an explanation on why we did
not test a sinking speed of 250 m d−1). Only some minor dif-
ferences occur in the North Pacific, and some cluster sepa-
rations occur at slightly different iteration numbers. The fact
that similar boundaries of little cross-transport emerge at a
different sinking speed proves that the clustering does not
greatly depend on the sinking speed of particles.

3.2 Oceanographically isolated clusters

The OPTICS clustering algorithm provides a density-based
value (the reachability) of sedimentary sites, which quanti-
fies how strongly a site is connected to other sites. Oceano-
graphically isolated clusters can be obtained from the dense
regions (i.e. areas with low reachability values), by setting
a threshold on the slope that surrounds the dense values in
the reachability plot (ξ ). The sediment sites outside of these
clusters are less isolated and referred to as noisy.

According to the OPTICS algorithm, the western bound-
ary currents are unlikely to be part of any isolated cluster,
since the points near the western boundary currents have a
relatively high reachability (Fig. 3a). This is expected be-
cause the origin locations of sediment samples near west-
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Figure 3. Reachability plot of the sedimentary particle release lo-
cations from the OPTICS algorithm. Sediment locations in dense
areas (i.e. with low reachability values in a) share a similar parti-
cle distribution of backtracked surface origin locations, while areas
with high reachability values have backtracked particle distribution
which are more spread out and share origin locations with a lot of
other sedimentary release locations. A sinking speed of 6 m d−1 is
used and parameter smin = 300 (i.e. OPTICS clusters will consist
of a minimum of 300 sediment sites). (a) Site reachability in space:
sites in dense areas with a low reachability are oceanographically
isolated. (b) A scatter plot of the ordering of the sediment loca-
tions i against their reachability r(pi ). (c) Partial Mantel correlation
of the reachability distance Dr (a lower value of Dr between two
sites indicates a stronger oceanographic connection between these
sites; see Appendix B) with the taxonomy (red) and SST (black),
both with spatial distance held constant, for different smin values.
A total of 999 permutations were used for every partial Mantel test;
every test with respect to the taxonomy (red) is significant with p
value< 0.003.

ern boundary currents comprise a large area. Dense areas
are those at higher latitudes, close to Antarctica and in the
Nordic Seas, and the midlatitude gyres. Sediment sample
sites within these areas have more similar surface origin lo-
cations compared to sediment sites outside of dense areas.
The high reachability values in the Mediterranean Sea and
Red Sea are rather artificial. OPTICS searches for dense re-
gions (low reachability) by searching for sedimentary sites
with relatively many other sites having similar surface origin
locations. Since the Mediterranean Sea and Red Sea are en-
closed by land, these sedimentary sites have only few neigh-
bouring sites, resulting in a relatively high reachability.

The reachability distance (Dr; see Appendix B) between
sediment sample sites correlates positively with sediment
sample taxonomy. Furthermore, this correlation is indepen-
dent of the spatial distance between sites, according to the
partial Mantel tests (Legendre and Legendre, 2012) (Fig. 3c).
This means that oceanographically connected sites have
a similar taxonomy, independent of their spatial distance.
Large values of smin (> 600; i.e. the OPTICS parameter

which determines the minimum surface area in square metres
of OPTICS clusters) tend to have the largest correlation (also
at other sinking speeds; see Appendix B). This is probably
because the reachability is smoother at higher smin, which
makes the reachability distance less noisy. At small spatial
scales (smin ≤ 200), the correlation between dinocyst taxon-
omy and Dr could be indirect because then Dr correlates
more strongly with the environment (in terms of sea surface
temperature) compared to taxonomy.

We compute clusters by setting a threshold on the slope (ξ )
that surrounds the reachability valleys in Fig. 3a. For ξ =
0.002 and smin = 300 (Fig. 4), we obtain 13 clusters, of
which three regions are isolated by the Antarctic Circum-
polar Current (ACC), three in the Indian ocean, one in the
Pacific warm pool, the South Atlantic gyre, near the Hum-
boldt upwelling zone, near the Caribbean Sea, the eastern
North Atlantic and two clusters near the Arctic. The clusters
represent locations that are oceanographically isolated, with
sediment sample sites that have backtracked origin locations
which are similar to the other sites in the cluster. The en-
vironmental variability within these clusters can be reason-
ably large (e.g. the sea surface temperatures at backtracked
origin locations in the cluster west of Australia range be-
tween 10–25 ◦C; see https://planktondrift.science.uu.nl/, last
access: 14 February 2022).

The comparison between the clusters and taxonomic dis-
tance of Southern Hemisphere sample sites in these clus-
ters (Fig. 4c and d) becomes interesting for clusters which
are spatially close (Fig. 4b). For instance, the red and yel-
low clusters in the South Atlantic Ocean are spatially close,
but sediment samples in those clusters are separated by their
observed dinocyst taxonomy (Fig. 4c). This implies that we
find a signal of the oceanographic separation of these areas
in the sedimentary data. If noisy sites (such as the noisy site
in Fig. 1b) were part of clusters, sites in different clusters are
likely to contain a similar microplankton composition and
the taxonomic separation of clusters is unclear.

To test if sedimentary sites within clusters are better corre-
lated with environmental conditions at the surface, we ap-
plied CCA either including or excluding the sedimentary
sites outside the isolated clusters (Fig. 5). We find that the
amount of explained variation by the canonical axes in-
creases significantly if noisy sediment samples are excluded
for the foraminifera (∼ 0.92 to ∼ 0.95) and especially for
the dinocysts (∼ 0.82 to ∼ 0.98), for the same OPTICS clus-
ters as in Fig. 4. Hence, we find that the linear relationship
between environmental variables and microplankton compo-
sition of the CCA explains a larger part of the sedimentary
species composition if noisy sites are excluded. In that sense,
the signal is “cleaner” for sediment sample sites within com-
pared to outside clusters, which has implications for palaeo-
ceanographic reconstructions of SST with these sedimentary
data.

The robustness of the relationship between sedimentary
sites and environmental variables is investigated by testing
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Figure 4. Oceanographically isolated OPTICS clusters of sedimentary particle release locations with clustering parameters smin = 300
(i.e. the minimum size of clusters) and ξ = 0.002 (i.e. the level of isolation). The clustering is applied globally and the clusters are compared
to Southern Hemisphere sediment sample sites. The coloured regions are clusters, the grey regions are “noisy” and therefore not part of a
cluster. These colours were used for all subpanels. (a) Global map of the position of the clusters (coloured regions), and dinocyst (white)
and foraminifera (black) sample locations. (b) Ordering of sedimentary locations i against their reachability r(pi ). To visualise the sediment
sample site taxonomy for (c) the dinocysts and (d) the planktic foraminifera in two dimensions, we use classical multidimensional scaling
(MDS; Fouss et al., 2016). MDS creates a two-dimensional approximation of the species composition in the sediment samples in this figure
(instead of 91 and 50 dimensions or species for the dinocysts and foraminifera respectively).

the sensitivity of the CCA results to these parameters ξ
and smin (Fig. 6). For the dinocyst dataset we find an increase
in explained variation by the canonical axes for most tested
values of smin and ξ . By increasing the reachability slope
that surrounds the oceanographically isolated clusters (ξ ),
a higher constraint is put on the isolation of these clusters
and fewer sediment sample sites are part of a cluster. If this
slope ξ is chosen too high, no clusters exist or they are too
small to contain any sediment sample sites at all. Moreover,
a higher value of ξ means that fewer sedimentary sites are
used in the CCA (i.e. the dataset size is reduced), which may
lead to an insignificant result according to the randomisation
test. A relatively low value of ξ on the other hand may lead
to insignificant results due to the inclusion of noisy sites in
clusters. Hence, there seems to be an optimal value ξ , for
which this increase in variance is maximised. These results
are more often insignificant for the dinocysts compared to
the foraminifera because the dinocyst dataset is smaller. If
smin is higher (i.e. the OPTICS algorithm finds larger clus-
ters; in km2), the negative and insignificant values in Fig. 6
are partly caused by including noisy sites in clusters. These
results highlight the importance of choosing an appropriate
combination of ξ and smin for the CCA to show a significant
increased explained species variability if only clustered sites
are used.

The clustered samples are less taxonomically mixed (i.e.
are less biodiverse) for most values of ξ and smin, as we
can see from the comparison between the Shannon en-
tropy (Ns; see the Method section) within and outside of
clusters (Fig. 7). For the high values of smin, we find that the
clusters are less taxonomically mixed if ξ is increased. This
result supports that measured microplankton biodiversity in
sediments is relatively large in areas with strong mixing of
sinking particles by ocean currents. However, the Shannon
entropy is also influenced by the species distributions at the
ocean surface, for which much fewer species composition
data are available compared to their sedimentary remains.
At smaller values of smin (smin < 200 and smin < 300 for the
dinocysts and foraminifera respectively; Fig. 7) high (sur-
face) productivity areas are also clustered (e.g. the south-
west Atlantic or the Humboldt area; see Fig. 4). Hence, a
relatively high sedimentary biodiversity in these clusters can
be explained by the high biodiversity at the ocean surface,
before these particles start sinking.

We also tested the OPTICS results for sinking velocities
higher than 6 m d−1 (11, 25, and 250 m d−1; see Figs. S5–S10
and S11–S14). Similar clusters can be found with the other
sinking velocities. A higher sinking speed decreases the par-
ticle travel time; thus the lateral transport and the mixing of
sinking particles is overall lower (Nooteboom et al., 2019).
However, the spatial dependence of the lateral transport is
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Figure 5. The relation between microplankton species variability and environmental variables according to a CCA analysis, while including
and excluding unclustered sediment samples (using the isolated clusters from Fig. 4). Sea surface temperature (top) and nitrate concentration
(bottom) at sediment sample sites with dinocysts (left; a–d) and foraminifera (right; e–h) against the first canonical axis from the CCA
analysis, including (a, c, e, g) and excluding (b, d, f, h) sediment sample sites outside of the oceanographically isolated clusters. The
sediment sample sites that belong to a cluster are coloured; “noisy” samples (i.e. not part of any cluster) are grey. The tables at the bottom
show the proportion of total variance that is explained by the canonical axes if the noisy samples are included or excluded. Overall, 13.5 %
(for dinocysts) and 10.8 % (for foraminifera) of the sediment sample sites is in clusters; the remainder is in noisy regions. The increase in
explained variance is supported by a permutation test with 999 permutations (p values are< 0.0001 and 0.024 for dinocysts and foraminifera
respectively).

Figure 6. Increase in explained environmental variability by microplankton sediment sample sites in the CCA analyses if sediment samples
outside of the oceanographically isolated OPTICS clusters are excluded, for different parameter values smin (i.e. the minimum size of clusters)
and ξ (i.e. the level of isolation). (a) The dinocyst and (b) the foraminifera dataset. High and significant values indicate that sediment samples
within clusters have a clearer relationship with the surface environment. Blue are configurations of smin and ξ for which no sediment sample
sites are part of a cluster. Only Southern Hemisphere sedimentary microplankton data were used here. Vertical stripes indicate an insignificant
randomisation test with 999 permutations at a 5 % significance level.
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Figure 7. Sedimentary microplankton biodiversity outside minus inside oceanographically isolated provinces. The average Shannon entropy
of (a) dinocysts and (b) foraminifera sediment samples inside OPTICS clusters Nc

s compared to outside clusters Nnc
s for different values

of smin (i.e. the minimum size of clusters) and ξ (i.e. the level of isolation). High values indicate that the number of species in samples within
clusters are lower and species are distributed less evenly in samples compared to samples outside clusters. Blue are configurations of smin
and ξ for which no sediment sample sites are part of a cluster.

similar: both at low and high sinking velocities, the lateral
particle transport is relatively large near western boundary
currents and low in the middle of midlatitude gyres (Noote-
boom et al., 2020). As a result, the clusters are located in
similar areas for different sinking speeds. It is only the spa-
tial scale of these clusters that might be different. The spatial
scale (i.e. the size) of the clusters can again be controlled
by the parameters smin and ξ . Note that high-productivity ar-
eas are less likely clustered at higher sinking speeds, which
has implications for the Shannon entropy within and out-
side clusters (Fig. 7): higher biodiversity is measured out-
side compared to within clusters for a larger area of smin and
ξ values as the sinking speed increases.

4 Discussion

We clustered sediment sites based on the ocean surface ori-
gin locations of sinking particles that end up at these sites in
an ocean model. These clusters reveal which sedimentary ar-
eas are oceanographically (1) (dis)connected or (2) isolated.
The connectivity which is given by the clusters is an aggre-
gate of the ocean connectivity at all depths that the sinking
particles traverse before ending up in the sediments. This
type of connectivity, and the way it shapes the sedimentary
microplankton composition, is additive to the environment
and surface ocean connectivity which influences the plank-
ton community structure at the ocean surface (Jonnson and
Watson, 2016; Wilkins et al., 2013). Nevertheless, the near-
surface flow likely has a large imprint on the clusters since
these contain the strongest ocean currents.

It was shown before that the ocean surface ecological
affinity of certain sedimentary microplankton species can im-

prove if the lateral advection of sinking particles is taken into
account (Nooteboom et al., 2019). This paper explores rea-
sons why sedimentary plankton assemblages include species
that occur outside their surface water habitat range. Mi-
croplankton species mix by turbulent ocean currents during
their sinking journey, which can result in a relevant lateral
displacement along transport. The extent by which this oc-
curs differs strongly in the world oceans and is larger in areas
that are referred to as noisy in this paper.

We conclude that ocean sediments are to a spatially vary-
ing degree provincial, and province boundaries are gov-
erned by near-surface and deep currents in the ocean.
These provinces have implications for sedimentary mi-
croplankton assemblages. Their quantification helps to de-
termine ocean sediment regions that are oceanographically
(a) (dis)connected and (b) isolated from the area outside
of these regions. Quantification of connected and isolated
provinces has at least four implications for future studies.

First, the clustering methods that are presented in this pa-
per can help to improve the application of transfer functions
on microplankton assemblages. Transfer functions train a
model on surface sediment samples and ocean surface en-
vironmental variables (in the present day), in order to make
quantitative climate reconstructions of past climates from mi-
croplankton in deeper sediments. Hence, these transfer func-
tion models use spatial variability of an environmental vari-
able to predict its temporal variability in a single location.
One challenge of transfer functions is to choose a proper
spatial extent to train the prediction model (Hohmann et al.,
2019; often in the present-day situation). A small spatial ex-
tent does not capture enough of species and environment
variability. If the spatial extent is too large, different pro-
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cesses determine the sedimentary species distribution which
reduces the transfer function skill.

The hierarchical clustering method (which finds oceano-
graphically disconnected clusters) can help to determine
bounds on the spatial extent that is used for the training of
transfer functions (e.g. a transfer function can be trained on
sites within a single cluster), since it shows areas which are
oceanographically separated from each other. These clusters
are created in a present-day configuration in this study and
may change in past climates. The OPTICS clustering can be
used to find oceanographically isolated clusters to determine
the spatial extent of a regional transfer function model. In
this case, it is advisable to check if the OPTICS cluster is
large enough (i.e. the deep sediments do not contain species
outside of the cluster).

Second, the connectivity between provinces could have
an effect on biogeochemical properties of microplankton
species that are applied as a proxy of the ocean surface en-
vironment. These provinces can be used to correct for ocean
connectivity by providing a different reference frame (Weyl,
1978) if the proxies are used to assimilate, e.g., global sea
surface temperature fields (as in Tierney et al., 2020). This
may require the computation of these clusters using palaeo-
ceanographic models. Moreover, spatially varying Bayesian
regression is used to some of these biogeochemical prox-
ies because the proxy response differs across oceanic basins
(Tierney and Tingley, 2015, 2018). Since proxy calibration
residuals are often high in specific areas and related to lateral
advection (Tierney and Tingley, 2018), the (dis)connected
provinces from this paper can provide a spatial structure that
such a regression model uses for core-top calibration.

Third, the results in this paper have implications for other
types of sinking particles in the ocean. For instance, a large
fraction of marine plastic sinks to the ocean floor (Canals
et al., 2020; Kooi et al., 2017). Sedimentary plastic distri-
butions might be subject to similar mechanisms of mixing
during their sinking journey. Clustering of sedimentary sites
might indicate where the largest inhomogeneities of sedi-
mentary plastics appear (de la Fuente et al., 2021) or bound-
aries where sinking plastic is less likely to cross.

Fourth, our study provides micropalaeontologists with a
tool to qualitatively assess the importance of lateral transport
to sedimentary particle assemblages, which can be used in
studies that compare measured biological diversity and envi-
ronmental conditions in surface waters with their sedimen-
tary remains (e.g. Jonkers et al., 2019; Meilland et al., 2020),
particularly in those regions for which we here demonstrate
noisy behaviour: within oceanographically isolated clusters,
sedimentary microplankton biodiversity is only weakly de-
termined by lateral particle transport compared to the mi-
croplankton biodiversity near the ocean surface and species-
specific dissolution (Frenger et al., 2018; Taylor et al., 2018).

Drivers of biodiversity at the ocean surface, such as
species interactions (Lima-Mendez et al., 2015), ecologi-
cal limits and evolutionary dynamics (Fenton et al., 2016),

are complex. It is possible that oceanographically isolated
provinces do not directly drive a low biodiversity but in-
directly cause a low biodiversity through a lower varia-
tion in abiotic factors. Moreover, these provinces are likely
located in areas with relatively little eddy activity, while
mesoscale eddies can explain relatively high biodiversity val-
ues (Frenger et al., 2018).

The backtracking analysis on which we applied the clus-
tering was designed for dinocysts and not for foraminifera.
In particular, near-surface advection during the foraminifera
lifespan may have a larger impact on its sedimentary dis-
tribution compared to the lateral transport during sinking
(Ottens and Nederbragt, 1992). Clustering results from this
paper compared well with the foraminifera dataset in most
cases because the areas with strong particle mixing and lat-
eral transport (i.e. their spatial dependence) are likely similar
for foraminifera (and likely similar at the near-surface com-
pared to other depth levels). Nevertheless, future work could
apply these clustering methods on a backtracking analysis
which is designed for foraminifera (similar to van Sebille
et al., 2015a; Lange and Sebille, 2017). This means that par-
ticles are released at the ocean bottom, tracked back in time
until they reach the foraminifera dwelling depth, and finally
tracked back during their lifespan at this dwelling depth.

Appendix A: Clustering methods

A1 Hierarchical clustering

The particle tracking results from Nooteboom et al. (2019)
can be described by a bipartite graph (or transportation ma-
trix; Fig. A1a). This bipartite graph consists of bottom and
surface nodes (representative of surface and bottom boxes in
the transportation matrix; we use 1◦× 1◦ boxes in this pa-
per). Bottom and surface nodes are linked if the probability
that a particle which is found in a bottom box originates from
the surface box is greater than zero. We will use the projec-
tion of this bipartite graph on the bottom nodes (Fig. 1c).
This provides us with a graph of only bottom nodes, where
the weight of a link between two nodes is determined by the
number of common surface nodes they are linked to in the
bipartite graph.

Given the projection of the bipartite graph on the bot-
tom nodes, we apply the hierarchical clustering method
as described in Wichmann et al. (2020). Starting with the
largest connected component in the bottom projection as
the only cluster (which represents the full global ocean),
the clustering algorithm chooses one cluster at every itera-
tion and splits it into two clusters, such that the normalised
cut (NCut) is minimised (Shi and Jitendra, 2000). ForK clus-
ters S1, · · ·, SK , the NCut is defined as

NCut(S1, · · ·, SK ) :=
K∑
i=1

Q
(
Si,S

C
i

)
Q (Si,S)

, (A1)
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Figure A1. Illustrations for the embedding types that the hierar-
chical clustering method uses. (a) Illustration of the surface-bottom
transportation matrix (figure adapted from Nooteboom et al., 2019).
The transportation matrix contains the probabilities that a particle
that is found in a bottom box originated from a surface box. The
transportation matrix can also be interpreted as a bipartite graph
in (b), which has a bottom projection (c): the bottom nodes are
linked with a weight that is determined by the number of mutually
linked surface vertices in the bipartite graph.

where Q(Si,Sj ) is the sum of all weights connecting Si and
Sj , SC

i is the complement of Si . By definition, the NCut in-
creases at every iteration (i.e. if the number of clusters is
higher).

We do not test the hierarchical clustering at 250 m d−1

sinking speed of particles in the backtracking analysis. The
particle distributions spread less at this sinking velocity, and
the bottom projection of the bipartite graph becomes discon-
nected. Hence, these higher sinking speeds require a higher
resolution binning of the input used, which exceeds given
computational limitations.

A2 OPTICS clustering

We use OPTICS to compare clusters with the sediment sam-
ple sites, which is density-based and distinguishes different
clusters from “noise” (Wichmann et al., 2020). We apply OP-
TICS in this paper to the “direct embedding” of surface ori-
gin distributions (Fig. 1a).

The main result from OPTICS is the reachability plot (see
Wichmann et al., 2021, for more details). The reachability
plot is a representation of the global and local distribution
of points (which represent sedimentary sites in this paper)
at once. The valleys correspond to dense regions with
similar surface origin location, while the hills correspond
to the noisy locations. The reachability plot depends
on a parameter smin, for which we test multiple values
(smin ∈ [100,200,300,400,500,600,700,800,900,1000]).
smin sets the minimum number of “nearby” points in the
reachability plot for every point in a cluster (MinPts in Ester
et al., 1996). In general, a larger smin results in a smoother
reachability plot and larger clusters. If we let every particle
release location (released on a 1◦× 1◦ grid) represent an

area of 1◦ (∼ 104 km2), the OPTICS algorithm searches for
a cluster with a spatial scale ∼ smin× 104 km2.

In this paper, we use ξ clustering to obtain clusters from
the reachability plot (Ankerst et al., 1999). This implies that
we set a threshold on the steepness of the density (ξ ) and
cluster the valley of points that is surrounded by this steep-
ness ξ . In general, a larger ξ will reduce both the size and the
number of clusters.

Appendix B: The distance matrices defined

We use (symmetric) distance matrices based on four differ-
ent metrics. First, we use a matrix that contains Euclidean
taxonomic distances, calculated from the relative abundances
(fractions) of species. Second, we use the absolute SST dif-
ferences between the sites. Third, we use a distance which
is based on the reachability from the OPTICS algorithm.
Specifically, if r(pk) is the reachability of point pk and the
n points are ordered from p0 · · ·pn, the reachability distance
between two sediment sample sites (located near pi and pj
respectively with i ≤ j ) is Dr

ji =D
r
ij =maxi≤k≤j r(pk)−

mini≤k≤j r(pk). Intuitively,Dr
ij represents how much one has

to climb or descend in the reachability “landscape” if one
likes to move from point i to j . Fourth, we use a distance ma-
trix which contains the spatial distance (in metres) between
sediment sample sites. The partial Mantel test determines the
correlation between the reachability distance and either SST
or taxonomy distance matrices, keeping the spatial distance
matrix constant.
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