Articles | Volume 16, issue 6
https://doi.org/10.5194/esd-16-2087-2025
https://doi.org/10.5194/esd-16-2087-2025
Research article
 | Highlight paper
 | 
20 Nov 2025
Research article | Highlight paper |  | 20 Nov 2025

Conditions for instability in the climate–carbon cycle system

Joseph Clarke, Chris Huntingford, Paul D. L. Ritchie, Rebecca Varney, Mark S. Williamson, and Peter Cox

Related authors

Emergent constraints on climate sensitivity and recent record-breaking warm years
Patric J. L. Boardman, Joseph Clarke, Peter M. Cox, Chris Huntingford, Christopher D. Jones, and Mark S. Williamson
EGUsphere, https://doi.org/10.5194/egusphere-2025-4899,https://doi.org/10.5194/egusphere-2025-4899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Emergent constraints for the climate system as effective parameters of bulk differential equations
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023,https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary

Cited articles

Arnscheidt, C. W. and Rothman, D. H.: Asymmetry of extreme Cenozoic climate–carbon cycle events, Science Advances, 7, eabg6864, https://doi.org/10.1126/sciadv.abg6864, 2021. a
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020. a, b
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a, b
Bolin, B. and Eriksson, E.: Distribution of matter in the sea and the atmosphere, The Atmosphere and the Sea in Motion, ROCKEFELLER INSTITUTE PRESS, 130–142, 1959. a, b, c, d
Boot, A., von der Heydt, A. S., and Dijkstra, H. A.: Effect of the Atlantic Meridional Overturning Circulation on atmospheric pCO2 variations, Earth Syst. Dynam., 13, 1041–1058, https://doi.org/10.5194/esd-13-1041-2022, 2022. a
Download
Chief editor
This study identifies a potential instability in the global carbon cycle driven by feedbacks between climate, weathering, and ocean chemistry, suggesting abrupt shifts under extreme perturbations. Although the conditions required are severe, the findings reveal that Earth’s carbon system may have multiple stable states, with implications for climate tipping points. The work offers a crucial theoretical framework for understanding past and future carbon cycle disruptions, making it highly relevant to geoscientific and climate research.
Short summary
An increase in CO2 in the atmosphere warms the climate through the greenhouse effect, but also leads to uptake of CO2 by the land and ocean. However, the warming is also expected to suppress carbon uptake. If this suppression were strong enough, it could overwhelm the uptake of carbon, leading to a runaway feedback loop causing severe global warming. We find it is possible that this runaway could be relevant in complex climate models and even at the end of the last ice age.
Share
Altmetrics
Final-revised paper
Preprint