

Supplement of

Conditions for instability in the climate–carbon cycle system

Joseph Clarke et al.

Correspondence to: Joseph Clarke (j.j.clarke@exeter.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Sect. S1 Critical Lambda

Setting equation (12) to zero gives

$$\lambda = \frac{A}{B} \quad (\text{Eq. S1})$$

with

$$\begin{aligned} A = & -c_2 \nu_1 \nu_2 \left(\kappa \log(2) C_A^* \left(\frac{d\Pi}{dC_A} \mathcal{E}' \frac{V_1}{V_2} C_L^* + \Pi_0 (\mathcal{E}' \frac{V_1}{V_2} + \frac{V_1}{V_2} + 1) \right) - \alpha \beta \mathcal{E}' \Pi_0 Q_{2\times} \frac{V_1}{V_2} C_L^* \right) \\ & - c_1 \kappa \nu_1 \nu_2 \log(2) C_A^* \left(\frac{d\Pi}{dC_A} \mathcal{E}' \frac{V_1}{V_2} C_L^* + \Pi_0 (\mathcal{E}' \frac{V_1}{V_2} + \frac{V_1}{V_2} + 1) \right) \\ & + \alpha \beta \kappa \Pi_0 Q_{2\times} C_L^* \left(\mathcal{E}' \nu_1 + \nu_2 \left(\frac{V_1}{V_2} + 1 \right) \right) \quad (\text{Eq. S2}) \end{aligned}$$

and

$$\begin{aligned} \frac{B}{\log(2) C_A^* C_L^*} = & \nu_1 \left(\nu_2 \left(c_2 \frac{d\Pi}{dC_A} \mathcal{E}' \frac{V_1}{V_2} + \mathcal{E}' \kappa \frac{V_1}{V_2} + \kappa + \kappa \frac{V_1}{V_2} \right) + \frac{d\Pi}{dC_A} \mathcal{E}' \kappa \right) \\ & + \frac{d\Pi}{dC_A} \kappa \nu_2 \left(\frac{V_1}{V_2} + 1 \right) \\ & + \Pi_0 \left(\nu_1 \left(c_2 \nu_2 \left(\mathcal{E}' \frac{V_1}{V_2} + \frac{V_1}{V_2} + 1 \right) + (\mathcal{E}' + 1) \kappa \right) + \kappa \nu_2 \left(\frac{V_1}{V_2} + 1 \right) \right) \quad (\text{Eq. S3}) \end{aligned}$$

where $\mathcal{E}' = \mathcal{E}'(C_1^*)$ and the prime denotes a derivative with respect to C_1 . We can simplify this further by making the ‘obvious’ assumption that $\mathcal{E}' \nu_1 \gg \nu_2$, $\nu_1 \gg \nu_2$, $c_2 \gg c_1$ and $1 \gg V_1/V_2$. Neglecting these small terms and rearranging gives

$$\frac{\alpha \beta Q_{2\times}}{\lambda \log 2} = \frac{C_A^*}{\kappa \Pi_0 C_L^* \mathcal{E}' \nu_1} \frac{\kappa C_L^* \frac{d\Pi}{dC_A} \mathcal{E}' \nu_1 + \kappa C_L^* \nu_1 \nu_2 + \Pi_0 (\kappa \nu_1 + \mathcal{E}' \kappa \nu_1 + c_2 \nu_1 \nu_2)}{1 - \frac{C_A^* \nu_2 c_2}{C_L^* \mathcal{E}' \alpha \beta Q_{2\times}}}. \quad (\text{Eq. S4})$$

Applying the binomial theorem to the denominator and working to first order gives

$$\frac{\alpha \beta Q_{2\times}}{\lambda \log 2} = \left(\frac{d \log \Pi}{d \log C_A} + \frac{C_A^*}{C_L^*} \left(1 + \frac{1}{\mathcal{E}'} + \frac{c_2 \nu_2}{\kappa \mathcal{E}'} + \frac{C_L^* \nu_2}{\Pi_0 \mathcal{E}'} \right) \right) \left(1 + \frac{C_A^* \nu_2 c_2}{C_L^* \mathcal{E}' \alpha \beta Q_{2\times}} \right) \quad (\text{Eq. S5})$$

as desired.

Sect. S2 Fitting Alk

The parameter *Alk* was estimated by fitting the ocean model (equation (1d) and equation (1e)) to the ocean carbon uptake from the Global Carbon Budget (GCB) [Fri+22].

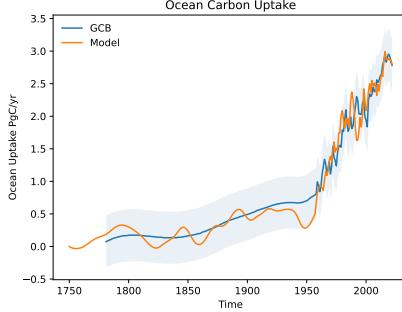


Figure S1: The ocean carbon uptake as estimated by equation (Eq. S6), where Alk has been chosen to minimise the squared error between the estimated uptake and the GCB ocean uptake estimate.

The system

$$\frac{dC_1}{dt} = \nu_1(C_A(t) - \mathcal{E}(C_1)) - \nu_2 \left(C_1 - \frac{V_1}{V_2} C_2 \right) \quad (\text{Eq. S6a})$$

$$\frac{dC_2}{dt} = \nu_2 \left(C_1 - \frac{V_1}{V_2} C_2 \right) \quad (\text{Eq. S6b})$$

was integrated with $C_A(t)$ defined as the mass of CO_2 in the atmosphere in year t as estimated by GCB. The ocean uptake, defined as the change in $C_1 + C_2$ in each year could then be compared to the annual ocean uptake as estimated by GCB. The parameter Alk was chosen to minimise the squared error between these quantities. The best fit parameter of Alk was 5130 Pg C.

The fitted ocean carbon uptake is shown in Fig. S1.

Sect. S3 JULES-IMOGEN

Figure S2 shows the response of NPP in JULES to increased CO_2 . Atmospheric CO_2 was increased linearly at a rate of 5 ppm yr^{-1} with IMOGEN's climate sensitivity set to 3.3 K. It was found that equation (3) could reproduce the results of this experiment with Π_0 set to 65 Pg C yr^{-1} and $C_{1/2}$ set to 344 ppm.

Figure S3 shows the total soil carbon in JULES after spin up. Over the course of the simulation, the soil carbon changes by 0.008% and has an average of 1630 Pg C.

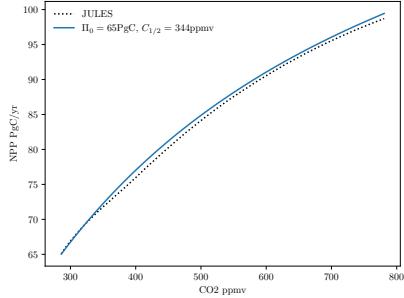


Figure S2: The response of NPP to increased CO_2 in JULES, with a climate sensitivity of 3.3K. CO_2 was increased linearly by 5 ppm yr^{-1} . Equation (3) was linearly regressed to this to give an estimate for $C_{1/2}$. The value of Π_0 was also extracted.

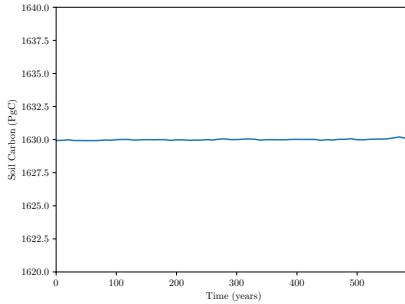


Figure S3: Equilibrium soil carbon. The change is 0.008% over the course of the simulation.

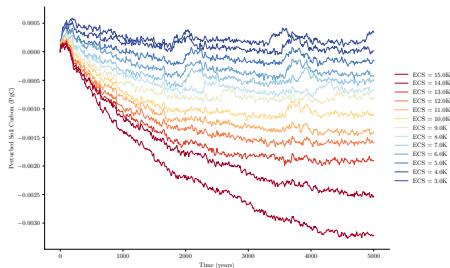


Figure S4: Change in global soil carbon in JULES/IMOGEN for a range of ECS values. The decrease indicates the rise in CO_2 is caused by a loss of soil carbon.

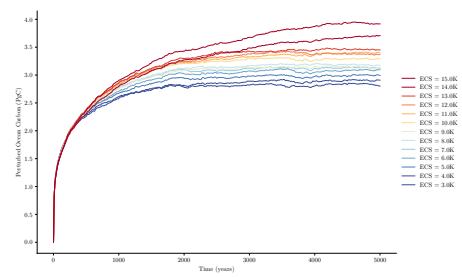


Figure S5: Change in ocean carbon JULES/IMOGEN for a range of ECS values. The rise is caused by absorbing the initial CO_2 perturbation.

References

[Fri+22] Pierre Friedlingstein et al. “Global Carbon Budget 2022”. In: *Earth System Science Data* 14.11 (Nov. 2022), pp. 4811–4900. ISSN: 1866-3516. DOI: 10.5194/essd-14-4811-2022. URL: <https://essd.copernicus.org/articles/14/4811/2022/>.