Articles | Volume 13, issue 4
https://doi.org/10.5194/esd-13-1689-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-1689-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021
Sjoukje Y. Philip
CORRESPONDING AUTHOR
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Geert Jan van Oldenborgh
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
deceased, 12 October 2021
Faron S. Anslow
Pacific Climate Impacts Consortium, University of Victoria, Victoria, V8R4J1, Canada
Sonia I. Seneviratne
Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Robert Vautard
Institut Pierre-Simon Laplace, CNRS, Sorbonne Université, Paris, France
Dim Coumou
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Institute for Environmental Studies (IVM), VU Amsterdam, Amsterdam, the Netherlands
Kristie L. Ebi
Center for Health and the Global Environment, University of Washington, Seattle, WA, USA
Julie Arrighi
Red Cross Red Crescent Climate Centre, The Hague, the Netherlands
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
Global Disaster Preparedness Center, American Red Cross, Washington, DC, USA
Roop Singh
Red Cross Red Crescent Climate Centre, The Hague, the Netherlands
Maarten van Aalst
Red Cross Red Crescent Climate Centre, The Hague, the Netherlands
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
International Research Institute for Climate and Society, Columbia University, New York, NY, USA
Carolina Pereira Marghidan
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
Michael Wehner
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Wenchang Yang
Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
School of Geography and the Environment, University of Oxford, Oxford, UK
Dominik L. Schumacher
Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Mathias Hauser
Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Rémy Bonnet
Institut Pierre-Simon Laplace, CNRS, Sorbonne Université, Paris, France
Linh N. Luu
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Flavio Lehner
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
Nathan Gillett
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, Canada
Jordis S. Tradowsky
Deutscher Wetterdienst, Regionales Klimabüro Potsdam, Potsdam, Germany
Bodeker Scientific, Alexandra, New Zealand
Gabriel A. Vecchi
Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
The High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
Chris Rodell
Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
Roland B. Stull
Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
Rosie Howard
Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
Friederike E. L. Otto
School of Geography and the Environment, University of Oxford, Oxford, UK
Related authors
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024, https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Short summary
To assess the role of climate change in individual weather events, different lines of evidence need to be combined in order to draw robust conclusions about whether observed changes can be attributed to anthropogenic climate change. Here we present a transparent method, developed over 8 years, to combine such lines of evidence in a single framework and draw conclusions about the overarching role of human-induced climate change in individual weather events.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Vikki Thompson, Sjoukje Y. Philip, Izidine Pinto, and Sarah F. Kew
EGUsphere, https://doi.org/10.5194/egusphere-2024-1136, https://doi.org/10.5194/egusphere-2024-1136, 2024
Preprint archived
Short summary
Short summary
In October 2023 Storm Babet brought flooding and strong winds to the UK. We show that similar events are more likely when the North Atlantic sea surface temperatures are higher. The North Atlantic exhibits multidecadal variability impacting the sea surface temperatures. This suggests that trends in storms similar to Babet are driven by multidecadal variability more than climate change. Increasing our knowledge of the causes of extreme weather can allow us to prepare and adapt for future changes.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Geert Jan van Oldenborgh, Sjoukje Philip, Emma Aalbers, Robert Vautard, Friederike Otto, Karsten Haustein, Florence Habets, Roop Singh, and Heidi Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-308, https://doi.org/10.5194/hess-2016-308, 2016
Manuscript not accepted for further review
Short summary
Short summary
Extreme rain caused flooding in France and Germany at the end of May 2016. After such an event the question is always posed to what extent it can be attributed to anthropogenic climate change. Using observations and five model ensembles we give a first answer. For the 3-day precipitation extremes over the Seine and Loire basins that caused the flooding all methods agree that the probability has increased by a factor of about two. For 1-day precipitation extremes in Germany the methods disagree.
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024, https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Short summary
To assess the role of climate change in individual weather events, different lines of evidence need to be combined in order to draw robust conclusions about whether observed changes can be attributed to anthropogenic climate change. Here we present a transparent method, developed over 8 years, to combine such lines of evidence in a single framework and draw conclusions about the overarching role of human-induced climate change in individual weather events.
Shiv Priyam Raghuraman, Brian Soden, Amy Clement, Gabriel Vecchi, Sofia Menemenlis, and Wenchang Yang
Atmos. Chem. Phys., 24, 11275–11283, https://doi.org/10.5194/acp-24-11275-2024, https://doi.org/10.5194/acp-24-11275-2024, 2024
Short summary
Short summary
The rapid global warming of 2023 has led to concerns that it could be externally driven. Here we show that climate models subject only to internal variability predict such warming spikes but rarely (p~1.6 %). However, when a prolonged La Niña immediately precedes an El Niño, as occurred leading up to 2023, such spikes are not uncommon (p~10.3 %). Virtually all of the spikes occur during an El Niño, strongly suggesting that internal variability drove the 2023 warming.
Raul R. Wood, Joren Janzing, Amber van Hamel, Jonas Götte, Dominik L. Schumacher, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2905, https://doi.org/10.5194/egusphere-2024-2905, 2024
Short summary
Short summary
Continuous and high-quality meteorological datasets are crucial to study extreme hydro-climatic events. We here conduct a comprehensive spatio-temporal evaluation of precipitation and temperature from four climate reanalysis datasets, focusing on mean and extreme metrics, variability, trends, and the representation of droughts and floods over Switzerland. Our analysis shows that all datasets have some merit when limitations are considered, and that one dataset performs better than the others.
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2024-2980, https://doi.org/10.5194/egusphere-2024-2980, 2024
Short summary
Short summary
This study examines the mechanisms that characterise long-lasting (persistent) and short hot spells in Europe in a comparative framework. By analysing weather data, we found that long spells in Southwestern Europe are typically preceded by dry soil conditions and driven by multiple persistence-inducing mechanisms. In contrast, short spells occur in a more transient atmospheric situation and exhibit fewer drivers. Understanding persistent heat extremes can help improve their prediction.
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2316, https://doi.org/10.5194/egusphere-2024-2316, 2024
Short summary
Short summary
We report in detail the most recent large landslide-triggered glacial lake outburst flood (GLOF) in the Peruvian Andes (the 2023 Rasac GLOF), analyze its preconditions, consequences, and the role of changing climate. Our study contibutes to understanding GLOF occurrence patterns in space and time and corroborates increasing frequency of such events in changing mountains.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Rémy Bonnet, Christine M. McKenna, and Amanda C. Maycock
Weather Clim. Dynam., 5, 913–926, https://doi.org/10.5194/wcd-5-913-2024, https://doi.org/10.5194/wcd-5-913-2024, 2024
Short summary
Short summary
Climate models underestimate multidecadal winter North Atlantic Oscillation (NAO) variability. Understanding the origin of this weak variability is important for making reliable climate projections. We use multi-model climate simulations to explore statistical relationships with drivers that may contribute to NAO variability. We find a relationship between modelled stratosphere–troposphere coupling and multidecadal NAO variability, offering an avenue to improve the simulation of NAO variability.
Ruth A. R. Digby, Knut von Salzen, Adam H. Monahan, Nathan P. Gillett, and Jiangnan Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1796, https://doi.org/10.5194/egusphere-2024-1796, 2024
Short summary
Short summary
The refractive index of black carbon (BCRI), which determines how much energy black carbon absorbs and scatters, is difficult to measure and different climate models use different values. We show that varying the BCRI across commonly used values can increase absorbing aerosol optical depth by 42 % and the warming effect from interactions between black carbon and radiation by 47 %, an appreciable fraction of the overall spread between models reported in recent literature assessments.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Vikki Thompson, Sjoukje Y. Philip, Izidine Pinto, and Sarah F. Kew
EGUsphere, https://doi.org/10.5194/egusphere-2024-1136, https://doi.org/10.5194/egusphere-2024-1136, 2024
Preprint archived
Short summary
Short summary
In October 2023 Storm Babet brought flooding and strong winds to the UK. We show that similar events are more likely when the North Atlantic sea surface temperatures are higher. The North Atlantic exhibits multidecadal variability impacting the sea surface temperatures. This suggests that trends in storms similar to Babet are driven by multidecadal variability more than climate change. Increasing our knowledge of the causes of extreme weather can allow us to prepare and adapt for future changes.
Bryce E. Harrop, Jian Lu, L. Ruby Leung, William K. M. Lau, Kyu-Myong Kim, Brian Medeiros, Brian J. Soden, Gabriel A. Vecchi, Bosong Zhang, and Balwinder Singh
Geosci. Model Dev., 17, 3111–3135, https://doi.org/10.5194/gmd-17-3111-2024, https://doi.org/10.5194/gmd-17-3111-2024, 2024
Short summary
Short summary
Seven new experimental setups designed to interfere with cloud radiative heating have been added to the Energy Exascale Earth System Model (E3SM). These experiments include both those that test the mean impact of cloud radiative heating and those examining its covariance with circulations. This paper documents the code changes and steps needed to run these experiments. Results corroborate prior findings for how cloud radiative heating impacts circulations and rainfall patterns.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993, https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Short summary
This study uses deep learning to predict spatially contiguous water runoff in Switzerland from 1962–2023. It outperforms traditional models, requiring less data and computational power. Key findings include increased dry years and summer water scarcity. This method offers significant advancements in water monitoring.
Maximillian Van Wyk de Vries, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Alexander L. Densmore, Tek Bahadur Dong, Alexandre Dunant, Erin L. Harvey, Ganesh K. Jimee, Mark E. Kincey, Katie Oven, Sarmila Paudyal, Dammar Singh Pujara, Anuradha Puri, Ram Shrestha, Nick J. Rosser, and Simon J. Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-397, https://doi.org/10.5194/egusphere-2024-397, 2024
Preprint archived
Short summary
Short summary
This study focuses on understanding soil moisture, a key factor for evaluating hillslope stability and landsliding. In Nepal, where landslides are common, we used a computer model to better understand how rapidly soil dries out after the monsoon season. We calibrated the model using field data and found that, by adjusting soil properties, we could predict moisture levels more accurately. This helps understand where landslides might occur, even where direct measurements are not possible.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Ankur Dixit, Sandeep Sahany, Flavio Lehner, and Saroj Kanta Mishra
EGUsphere, https://doi.org/10.5194/egusphere-2024-587, https://doi.org/10.5194/egusphere-2024-587, 2024
Preprint archived
Short summary
Short summary
This study calibrates WRF-Hydro in a Himalayan basin, finding precipitation choice significantly influences results over parameter sets. Study highlights the importance of tailored calibration strategies and parameter sensitivity analyses for accurate streamflow predictions in Himalayan basins, crucial for effective water resource management.
Rosa Pietroiusti, Inne Vanderkelen, Friederike E. L. Otto, Clair Barnes, Lucy Temple, Mary Akurut, Philippe Bally, Nicole P. M. van Lipzig, and Wim Thiery
Earth Syst. Dynam., 15, 225–264, https://doi.org/10.5194/esd-15-225-2024, https://doi.org/10.5194/esd-15-225-2024, 2024
Short summary
Short summary
Heavy rainfall in eastern Africa between late 2019 and mid 2020 caused devastating floods and landslides and drove the levels of Lake Victoria to a record-breaking maximum in May 2020. In this study, we characterize the spatial extent and impacts of the floods in the Lake Victoria basin and investigate how human-induced climate change influenced the probability and intensity of the record-breaking lake levels and flooding by applying a multi-model extreme event attribution methodology.
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-40, https://doi.org/10.5194/nhess-2024-40, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Mapping exposure to landslides is necessary to mitigate risk and reduce vulnerability. In this study, we show that there is a poor correlation between building damage and deaths from landslides- such that the deadliest landslides do not always destroy the most buildings and vice versa. This has important implications for our management on landslide risk.
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024, https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
Short summary
The COVID-19 lockdowns reduced aerosol emissions. We ask whether these reductions affected regional aerosol optical depth (AOD) and compare the observed changes to predictions from Earth system models. Only India has an observed AOD reduction outside of typical variability. Models overestimate the response in some regions, but when key biases have been addressed, the agreement is improved. Our results suggest that current models can realistically predict the effects of future emission changes.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Yann Quilcaille, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 14, 1333–1362, https://doi.org/10.5194/esd-14-1333-2023, https://doi.org/10.5194/esd-14-1333-2023, 2023
Short summary
Short summary
Climate models are powerful tools, but they have high computational costs, hindering their use in exploring future climate extremes. We demonstrate MESMER-X, the only existing emulator for spatial climate extremes (heatwaves, fires, droughts) that mimics all of their relevant properties. Thanks to its negligible computational cost, MESMER-X may greatly accelerate the exploration of future climate extremes or enable the integration of climate extremes in economic and financial models.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Martin Hirschi, Bas Crezee, Pietro Stradiotti, Wouter Dorigo, and Sonia I. Seneviratne
EGUsphere, https://doi.org/10.5194/egusphere-2023-2499, https://doi.org/10.5194/egusphere-2023-2499, 2023
Short summary
Short summary
Based on surface and root-zone soil moisture, we compare the ability of selected long-term reanalysis and merged remote-sensing products to represent major agroecological drought events. While all products capture the investigated droughts, they particularly show differences in the drought magnitudes. Globally, the diverse and regionally contradicting dry-season soil moisture trends of the products is an important factor governing their drought representation and monitoring capability.
Chiem van Straaten, Dim Coumou, Kirien Whan, Bart van den Hurk, and Maurice Schmeits
Weather Clim. Dynam., 4, 887–903, https://doi.org/10.5194/wcd-4-887-2023, https://doi.org/10.5194/wcd-4-887-2023, 2023
Short summary
Short summary
Variability in the tropics can influence weather over Europe. This study evaluates a summertime connection between the two. It shows that strongly opposing west Pacific sea surface temperature anomalies have occurred more frequently since 1980, likely due to a combination of long-term warming in the west Pacific and the El Niño Southern Oscillation. Three to six weeks later, the distribution of hot and cold airmasses over Europe is affected.
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andrew Wood
EGUsphere, https://doi.org/10.5194/egusphere-2023-2326, https://doi.org/10.5194/egusphere-2023-2326, 2023
Short summary
Short summary
There is a perceived mismatch between the spatial scales that global climate models can produce data and that needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We identified a potential set of water use decision metrics to assess their credibility in the Community Earth System Model v2 (CESM2). CESM2 can reliably reproduce many of these metrics and shows potential to support long-range water resource decisions.
Jouke H. S. de Baar, Linh Nhat Luu, Gerard van der Schrier, Else J. M. van den Besselaar, and Irene Garcia-Marti
Adv. Sci. Res., 20, 91–95, https://doi.org/10.5194/asr-20-91-2023, https://doi.org/10.5194/asr-20-91-2023, 2023
Short summary
Short summary
In this work, we present the most recent updates in the E-OBS gridded data set for daily mean wind speed over Europe. The data set is provided as an ensemble of equally likely realisations. In addition, we make a preliminary study into possible causes of the observed terrestrial wind stilling effect, such as local changes in surface roughness length. As one of the results, we do observe a terrestrial wind stilling effect, however, the trend varies locally over Europe.
Giorgia Di Capua, Dim Coumou, Bart van den Hurk, Antje Weisheimer, Andrew G. Turner, and Reik V. Donner
Weather Clim. Dynam., 4, 701–723, https://doi.org/10.5194/wcd-4-701-2023, https://doi.org/10.5194/wcd-4-701-2023, 2023
Short summary
Short summary
Heavy rainfall in tropical regions interacts with mid-latitude circulation patterns, and this interaction can explain weather patterns in the Northern Hemisphere during summer. In this analysis we detect these tropical–extratropical interaction pattern both in observational datasets and data obtained by atmospheric models and assess how well atmospheric models can reproduce the observed patterns. We find a good agreement although these relationships are weaker in model data.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 14, 629–667, https://doi.org/10.5194/esd-14-629-2023, https://doi.org/10.5194/esd-14-629-2023, 2023
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occur and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Carolina Pereira Marghidan, Maarten van Aalst, Justine Blanford, Genito Maure, and Tatiana Marrufo
AGILE GIScience Ser., 4, 11, https://doi.org/10.5194/agile-giss-4-11-2023, https://doi.org/10.5194/agile-giss-4-11-2023, 2023
Yann Quilcaille, Fulden Batibeniz, Andreia F. S. Ribeiro, Ryan S. Padrón, and Sonia I. Seneviratne
Earth Syst. Sci. Data, 15, 2153–2177, https://doi.org/10.5194/essd-15-2153-2023, https://doi.org/10.5194/essd-15-2153-2023, 2023
Short summary
Short summary
We present a new database of four annual fire weather indicators over 1850–2100 and over all land areas. In a 3°C warmer world with respect to preindustrial times, the mean fire weather would increase on average by at least 66% in both intensity and duration and even triple for 1-in-10-year events. The dataset is a freely available resource for fire danger studies and beyond, highlighting that the best course of action would require limiting global warming as much as possible.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Fulden Batibeniz, Mathias Hauser, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 14, 485–505, https://doi.org/10.5194/esd-14-485-2023, https://doi.org/10.5194/esd-14-485-2023, 2023
Short summary
Short summary
We study single and concurrent heatwaves, droughts, precipitation, and wind extremes. Globally, these extremes become more frequent and affect larger land areas under future warming, with several countries experiencing extreme events every single month. Concurrent heatwaves–droughts (precipitation–wind) are projected to increase the most in mid–high-latitude countries (tropics). Every mitigation action to avoid further warming will reduce the number of people exposed to extreme weather events.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Raed Hamed, Sem Vijverberg, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 14, 255–272, https://doi.org/10.5194/esd-14-255-2023, https://doi.org/10.5194/esd-14-255-2023, 2023
Short summary
Short summary
Spatially compounding soy harvest failures can have important global impacts. Using causal networks, we show that soy yields are predominately driven by summer soil moisture conditions in North and South America. Summer soil moisture is affected by antecedent soil moisture and by remote extra-tropical SST patterns in both hemispheres. Both of these soil moisture drivers are again influenced by ENSO. Our results highlight physical pathways by which ENSO can drive spatially compounding impacts.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022, https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022, https://doi.org/10.5194/esd-13-1305-2022, 2022
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation, and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occurs and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, https://doi.org/10.5194/ascmo-8-135-2022, https://doi.org/10.5194/ascmo-8-135-2022, 2022
Short summary
Short summary
We developed a framework to produce global real-time estimates of how human-caused climate change affects the likelihood of daily weather events. A multi-method approach provides ensemble attribution estimates accompanied by confidence intervals, creating new opportunities for climate change communication. Methodological efficiency permits daily analysis using forecasts or observations. Applications with daily maximum temperature highlight the framework's capacity on daily and global scales.
Shruti Nath, Quentin Lejeune, Lea Beusch, Sonia I. Seneviratne, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 13, 851–877, https://doi.org/10.5194/esd-13-851-2022, https://doi.org/10.5194/esd-13-851-2022, 2022
Short summary
Short summary
Uncertainty within climate model projections on inter-annual timescales is largely affected by natural climate variability. Emulators are valuable tools for approximating climate model runs, allowing for easy exploration of such uncertainty spaces. This study takes a first step at building a spatially resolved, monthly temperature emulator that takes local yearly temperatures as the sole input, thus providing monthly temperature distributions which are of critical value to impact assessments.
Linh N. Luu, Robert Vautard, Pascal Yiou, and Jean-Michel Soubeyroux
Earth Syst. Dynam., 13, 687–702, https://doi.org/10.5194/esd-13-687-2022, https://doi.org/10.5194/esd-13-687-2022, 2022
Short summary
Short summary
This study downscales climate information from EURO-CORDEX (approx. 12 km) output to a higher horizontal resolution (approx. 3 km) for the south of France. We also propose a matrix of different indices to evaluate the high-resolution precipitation output. We find that a higher resolution reproduces more realistic extreme precipitation events at both daily and sub-daily timescales. Our results and approach are promising to apply to other Mediterranean regions and climate impact studies.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Lea Beusch, Zebedee Nicholls, Lukas Gudmundsson, Mathias Hauser, Malte Meinshausen, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, https://doi.org/10.5194/gmd-15-2085-2022, 2022
Short summary
Short summary
We introduce the first chain of computationally efficient Earth system model (ESM) emulators to translate user-defined greenhouse gas emission pathways into regional temperature change time series accounting for all major sources of climate change projection uncertainty. By combining the global mean emulator MAGICC with the spatially resolved emulator MESMER, we can derive ESM-specific and constrained probabilistic emulations to rapidly provide targeted climate information at the local scale.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Jessica Keune, Dominik L. Schumacher, and Diego G. Miralles
Geosci. Model Dev., 15, 1875–1898, https://doi.org/10.5194/gmd-15-1875-2022, https://doi.org/10.5194/gmd-15-1875-2022, 2022
Short summary
Short summary
Air transports moisture and heat, shaping the weather we experience. When and where was this air moistened and warmed by the surface? To address this question, atmospheric models trace the history of air parcels in space and time. However, their uncertainties remain unexplored, which hinders their utility and application. Here, we present a framework that sheds light on these uncertainties. Our approach sets a new standard in the assessment of atmospheric moisture and heat trajectories.
Aine M. Gormley-Gallagher, Sebastian Sterl, Annette L. Hirsch, Sonia I. Seneviratne, Edouard L. Davin, and Wim Thiery
Earth Syst. Dynam., 13, 419–438, https://doi.org/10.5194/esd-13-419-2022, https://doi.org/10.5194/esd-13-419-2022, 2022
Short summary
Short summary
Our results show that agricultural management can impact the local climate and highlight the need to evaluate land management in climate models. We use regression analysis on climate simulations and observations to assess irrigation and conservation agriculture impacts on warming trends. This allowed us to distinguish between the effects of land management and large-scale climate forcings such as rising CO2 concentrations and thus gain insight into the impacts under different climate regimes.
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021, https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Short summary
We address the question of how large an initial condition ensemble of climate model simulations should be if we are concerned with accurately projecting future changes in temperature and precipitation extremes. We find that for most cases (and both models considered), an ensemble of 20–25 members is sufficient for many extreme metrics, spatial scales and time horizons. This may leave computational resources to tackle other uncertainties in climate model simulations with our ensembles.
Raed Hamed, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 12, 1371–1391, https://doi.org/10.5194/esd-12-1371-2021, https://doi.org/10.5194/esd-12-1371-2021, 2021
Short summary
Short summary
Soy yields in the US are affected by climate variability. We identify the main within-season climate drivers and highlight potential compound events and associated agricultural impacts. Our results show that soy yields are most negatively influenced by the combination of high temperature and low soil moisture during the summer crop reproductive period. Furthermore, we highlight the role of temperature and moisture coupling across the year in generating these hot–dry extremes and linked impacts.
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Christina Heinze-Deml, Sebastian Sippel, Angeline G. Pendergrass, Flavio Lehner, and Nicolai Meinshausen
Geosci. Model Dev., 14, 4977–4999, https://doi.org/10.5194/gmd-14-4977-2021, https://doi.org/10.5194/gmd-14-4977-2021, 2021
Short summary
Short summary
Quantifying dynamical and thermodynamical components of regional precipitation change is a key challenge in climate science. We introduce a novel statistical model (Latent Linear Adjustment Autoencoder) that combines the flexibility of deep neural networks with the robustness advantages of linear regression. The method enables estimation of the contribution of a coarse-scale atmospheric circulation proxy to daily precipitation at high resolution and in a spatially coherent manner.
Greg E. Bodeker, Jan Nitzbon, Jordis S. Tradowsky, Stefanie Kremser, Alexander Schwertheim, and Jared Lewis
Earth Syst. Sci. Data, 13, 3885–3906, https://doi.org/10.5194/essd-13-3885-2021, https://doi.org/10.5194/essd-13-3885-2021, 2021
Short summary
Short summary
Ozone in Earth's atmosphere has undergone significant changes since first measured systematically from space in the late 1970s. The purpose of the paper is to present a new, spatially filled, global total column ozone climate data record spanning from October 1978 to December 2016. The database is compiled from measurements from 17 different satellite-based instruments where offsets and drifts between the instruments have been corrected using ground-based measurements.
Yves Balkanski, Rémy Bonnet, Olivier Boucher, Ramiro Checa-Garcia, and Jérôme Servonnat
Atmos. Chem. Phys., 21, 11423–11435, https://doi.org/10.5194/acp-21-11423-2021, https://doi.org/10.5194/acp-21-11423-2021, 2021
Short summary
Short summary
Earth system models have persistent biases that impinge on our ability to make robust future regional predictions of precipitation. For the last 15 years, there has been little improvement in these biases. This work presents an accurate representation of dust absorption based upon observed dust mineralogical composition and size distribution. The striking result is that this more accurate representation improves tropical precipitations for climate models with too weak an African monsoon.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Robin D. Lamboll, Chris D. Jones, Ragnhild B. Skeie, Stephanie Fiedler, Bjørn H. Samset, Nathan P. Gillett, Joeri Rogelj, and Piers M. Forster
Geosci. Model Dev., 14, 3683–3695, https://doi.org/10.5194/gmd-14-3683-2021, https://doi.org/10.5194/gmd-14-3683-2021, 2021
Short summary
Short summary
Lockdowns to avoid the spread of COVID-19 have created an unprecedented reduction in human emissions. We can estimate the changes in emissions at a country level, but to make predictions about how this will affect our climate, we need more precise information about where the emissions happen. Here we combine older estimates of where emissions normally occur with very recent estimates of sector activity levels to enable different groups to make simulations of the climatic effects of lockdown.
Ethan R. Dale, Stefanie Kremser, Jordis S. Tradowsky, Greg E. Bodeker, Leroy J. Bird, Gustavo Olivares, Guy Coulson, Elizabeth Somervell, Woodrow Pattinson, Jonathan Barte, Jan-Niklas Schmidt, Nariefa Abrahim, Adrian J. McDonald, and Peter Kuma
Earth Syst. Sci. Data, 13, 2053–2075, https://doi.org/10.5194/essd-13-2053-2021, https://doi.org/10.5194/essd-13-2053-2021, 2021
Short summary
Short summary
MAPM is a project whose goal is to develop a method to infer particulate matter (PM) emissions maps from PM concentration measurements. In support of MAPM, we conducted a winter field campaign in New Zealand. In addition to two types of instruments measuring PM, an array of other meteorological sensors were deployed, measuring temperature and wind speed as well as probing the vertical structure of the lower atmosphere. In this article, we present the measurements taken during this campaign.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 21, 1407–1425, https://doi.org/10.5194/acp-21-1407-2021, https://doi.org/10.5194/acp-21-1407-2021, 2021
Short summary
Short summary
Wildfire smoke-plume rise, which determines the emissions injection height, is widely recognized as an area of uncertainty within regional and global chemical transport models. In this work we propose a simple energy balance parameterization to predict the mean smoke equilibrium height for fires of arbitrary shape and intensity.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Quentin Lejeune, Edouard L. Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 1209–1232, https://doi.org/10.5194/esd-11-1209-2020, https://doi.org/10.5194/esd-11-1209-2020, 2020
Short summary
Short summary
Trees are darker than crops or grasses; hence, they absorb more solar radiation. Therefore, land cover changes modify the fraction of solar radiation reflected by the land surface (its albedo), with consequences for the climate. We apply a new statistical method to simulations conducted with 15 recent climate models and find that albedo variations due to land cover changes since 1860 have led to a decrease in the net amount of energy entering the atmosphere by −0.09 W m2 on average.
Carley E. Iles, Robert Vautard, Jane Strachan, Sylvie Joussaume, Bernd R. Eggen, and Chris D. Hewitt
Geosci. Model Dev., 13, 5583–5607, https://doi.org/10.5194/gmd-13-5583-2020, https://doi.org/10.5194/gmd-13-5583-2020, 2020
Short summary
Short summary
We investigate how increased resolution affects the simulation of European climate extremes for global and regional climate models to inform modelling strategies. Precipitation extremes become heavier with higher resolution, especially over mountains, wind extremes become somewhat stronger, and for temperature extremes warm biases are reduced over mountains. Differences with resolution for the global model appear to come from downscaling effects rather than improved large-scale circulation.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, https://doi.org/10.5194/ascmo-6-177-2020, 2020
Short summary
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Kathrin Wehrli, Mathias Hauser, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 855–873, https://doi.org/10.5194/esd-11-855-2020, https://doi.org/10.5194/esd-11-855-2020, 2020
Short summary
Short summary
The 2018 summer was unusually hot for large areas in the Northern Hemisphere, and heatwaves on three continents led to major impacts on agriculture and society. This study investigates storylines for the extreme 2018 summer, given the observed atmospheric circulation but different levels of background global warming. The results reveal a strong contribution by the present-day level of global warming and show a dramatic outlook for similar events in a warmer climate.
Landon A. Rieger, Jason N. S. Cole, John C. Fyfe, Stephen Po-Chedley, Philip J. Cameron-Smith, Paul J. Durack, Nathan P. Gillett, and Qi Tang
Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, https://doi.org/10.5194/gmd-13-4831-2020, 2020
Short summary
Short summary
Recently, the stratospheric aerosol forcing dataset used as an input to the Coupled Model Intercomparison Project phase 6 was updated. This work explores the impact of those changes on the modelled historical climates in the CanESM5 and EAMv1 models. Temperature differences in the stratosphere shortly after the Pinatubo eruption are found to be significant, but surface temperatures and precipitation do not show a significant change.
Mark D. Risser and Michael F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115–139, https://doi.org/10.5194/ascmo-6-115-2020, https://doi.org/10.5194/ascmo-6-115-2020, 2020
Short summary
Short summary
Evaluation of modern high-resolution global climate models often does not account for the geographic location of the underlying weather station data. In this paper, we quantify the impact of geographic sampling on the relative performance of climate model representations of precipitation extremes over the United States. We find that properly accounting for the geographic sampling of weather stations can significantly change the assessment of model performance.
Brecht Martens, Dominik L. Schumacher, Hendrik Wouters, Joaquín Muñoz-Sabater, Niko E. C. Verhoest, and Diego G. Miralles
Geosci. Model Dev., 13, 4159–4181, https://doi.org/10.5194/gmd-13-4159-2020, https://doi.org/10.5194/gmd-13-4159-2020, 2020
Short summary
Short summary
Climate reanalyses are widely used in different fields and an in-depth evaluation of the different variables provided by reanalyses is a necessary means to provide feedback on the quality to their users and the operational centres producing these data sets. In this study, we show the improvements of ECMWF's latest climate reanalysis (ERA5) upon its predecessor (ERA-Interim) in partitioning the available energy at the land surface.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
Dim Coumou and Paolo De Luca
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2020-40, https://doi.org/10.5194/wcd-2020-40, 2020
Preprint withdrawn
Short summary
Short summary
We show that the persistence of summer weather has increased throughout the mid-latitudes over the last 40 years, in both observations and CMIP6 models. Our results provide solid evidence that the weakening of the summer jet-stream has already made weather more persistent. We also show that future greenhouse-gases emissions will further increase weather persistence, creating risks from high-impact, stalling weather extremes like persistent heat waves and stalling cyclones.
Flavio Lehner, Clara Deser, Nicola Maher, Jochem Marotzke, Erich M. Fischer, Lukas Brunner, Reto Knutti, and Ed Hawkins
Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, https://doi.org/10.5194/esd-11-491-2020, 2020
Short summary
Short summary
Projections of climate change are uncertain because climate models are imperfect, future greenhouse gases emissions are unknown and climate is to some extent chaotic. To partition and understand these sources of uncertainty and make the best use of climate projections, large ensembles with multiple climate models are needed. Such ensembles now exist in a public data archive. We provide several novel applications focused on global and regional temperature and precipitation projections.
Rémy Bonnet, Julien Boé, and Florence Habets
Hydrol. Earth Syst. Sci., 24, 1611–1631, https://doi.org/10.5194/hess-24-1611-2020, https://doi.org/10.5194/hess-24-1611-2020, 2020
Short summary
Short summary
In this paper, the multidecadal variations of the Seine basin since the 1850s are investigated, based on a new hydrometeorological reconstruction derived from hydrological modeling. The hydrological and climatic mechanisms underlying these variations are highlighted. The analysis of the hydrometeorological reconstruction shows that high and low flows are influenced by these multidecadal hydroclimate variations.
Ryan S. Padrón, Lukas Gudmundsson, Dominik Michel, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 24, 793–807, https://doi.org/10.5194/hess-24-793-2020, https://doi.org/10.5194/hess-24-793-2020, 2020
Short summary
Short summary
We focus on the net exchange of water between land and air via evapotranspiration and dew during the night. We provide, for the first time, an overview of the magnitude and variability of this flux across the globe from observations and climate models. Nocturnal water loss from land is 7 % of total evapotranspiration on average and can be greater than 15 % locally. Our results highlight the relevance of this often overlooked flux, with implications for water resources and climate studies.
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
Short summary
Earth system models (ESMs) are invaluable to study the climate system but expensive to run. Here, we present a statistical tool which emulates ESMs at a negligible computational cost by creating stochastic realizations of yearly land temperature field time series. Thereby, 40 ESMs are considered, and for each ESM, a single simulation is required to train the tool. The resulting ESM-specific realizations closely resemble ESM simulations not employed during training at point to regional scales.
Neil C. Swart, Jason N. S. Cole, Viatcheslav V. Kharin, Mike Lazare, John F. Scinocca, Nathan P. Gillett, James Anstey, Vivek Arora, James R. Christian, Sarah Hanna, Yanjun Jiao, Warren G. Lee, Fouad Majaess, Oleg A. Saenko, Christian Seiler, Clint Seinen, Andrew Shao, Michael Sigmond, Larry Solheim, Knut von Salzen, Duo Yang, and Barbara Winter
Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, https://doi.org/10.5194/gmd-12-4823-2019, 2019
Short summary
Short summary
The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and quantifies the model performance. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science applications in Canada.
Chris D. Jones, Thomas L. Frölicher, Charles Koven, Andrew H. MacDougall, H. Damon Matthews, Kirsten Zickfeld, Joeri Rogelj, Katarzyna B. Tokarska, Nathan P. Gillett, Tatiana Ilyina, Malte Meinshausen, Nadine Mengis, Roland Séférian, Michael Eby, and Friedrich A. Burger
Geosci. Model Dev., 12, 4375–4385, https://doi.org/10.5194/gmd-12-4375-2019, https://doi.org/10.5194/gmd-12-4375-2019, 2019
Short summary
Short summary
Global warming is simply related to the total emission of CO2 allowing us to define a carbon budget. However, information on the Zero Emissions Commitment is a key missing link to assess remaining carbon budgets to achieve the climate targets of the Paris Agreement. It was therefore decided that a small targeted MIP activity to fill this knowledge gap would be extremely valuable. This article formalises the experimental design alongside the other CMIP6 documentation papers.
Sihan Li, David E. Rupp, Linnia Hawkins, Philip W. Mote, Doug McNeall, Sarah N. Sparrow, David C. H. Wallom, Richard A. Betts, and Justin J. Wettstein
Geosci. Model Dev., 12, 3017–3043, https://doi.org/10.5194/gmd-12-3017-2019, https://doi.org/10.5194/gmd-12-3017-2019, 2019
Short summary
Short summary
Understanding the unfolding challenges of climate change relies on climate models, many of which have regional biases larger than the expected climate signal over the next half-century. This work shows the potential for improving climate model simulations through a multiphased parameter refinement approach. Regional warm biases are substantially reduced, suggesting this iterative approach is one path to improving climate models and simulations of present and future climate.
Robert Vautard, Geert Jan van Oldenborgh, Friederike E. L. Otto, Pascal Yiou, Hylke de Vries, Erik van Meijgaard, Andrew Stepek, Jean-Michel Soubeyroux, Sjoukje Philip, Sarah F. Kew, Cecilia Costella, Roop Singh, and Claudia Tebaldi
Earth Syst. Dynam., 10, 271–286, https://doi.org/10.5194/esd-10-271-2019, https://doi.org/10.5194/esd-10-271-2019, 2019
Short summary
Short summary
The effect of human activities on the probability of winter wind storms like the ones that occurred in Western Europe in January 2018 is analysed using multiple model ensembles. Despite a significant probability decline in observations, we find no significant change in probabilities due to human influence on climate so far. However, such extreme events are likely to be slightly more frequent in the future. The observed decrease in storminess is likely to be due to increasing roughness.
Mathias Hauser, Wim Thiery, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 10, 157–169, https://doi.org/10.5194/esd-10-157-2019, https://doi.org/10.5194/esd-10-157-2019, 2019
Short summary
Short summary
We develop a method to keep the amount of water in the soil at the present-day level, using only local water sources in a global climate model. This leads to less drying over many land areas, but also decreases river runoff. We find that temperature extremes in the 21st century decrease substantially using our method. This provides a new perspective on how land water can influence regional climate and introduces land water management as potential tool for local mitigation of climate change.
Sjoukje Philip, Sarah Sparrow, Sarah F. Kew, Karin van der Wiel, Niko Wanders, Roop Singh, Ahmadul Hassan, Khaled Mohammed, Hammad Javid, Karsten Haustein, Friederike E. L. Otto, Feyera Hirpa, Ruksana H. Rimi, A. K. M. Saiful Islam, David C. H. Wallom, and Geert Jan van Oldenborgh
Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, https://doi.org/10.5194/hess-23-1409-2019, 2019
Short summary
Short summary
In August 2017 Bangladesh faced one of its worst river flooding events in recent history. For the large Brahmaputra basin, using precipitation alone as a proxy for flooding might not be appropriate. In this paper we explicitly test this assumption by performing an attribution of both precipitation and discharge as a flooding-related measure to climate change. We find the change in risk to be of similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach.
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019, https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Short summary
We present the automated method for recognizing atmospheric rivers in climate data, i.e., climate model output and reanalysis product. The method is based on topological data analysis and machine learning, both of which are powerful tools that the climate science community often does not use. An advantage of the proposed method is that it is free of selection of subjective threshold conditions on a physical variable. This method is also suitable for rapidly analyzing large amounts of data.
Jordis S. Tradowsky, Gregory E. Bodeker, Richard R. Querel, Peter J. H. Builtjes, and Jürgen Fischer
Earth Syst. Sci. Data, 10, 2195–2211, https://doi.org/10.5194/essd-10-2195-2018, https://doi.org/10.5194/essd-10-2195-2018, 2018
Short summary
Short summary
A best-estimate data set of the temperature profile above the atmospheric measurement facility at Lauder, New Zealand, has been developed. This site atmospheric state best estimate (SASBE) combines atmospheric measurements made at two locations and includes an estimate of uncertainty on every data point. The SASBE enhances the value of measurements made by a reference-quality climate observing network and may be used for a variety of purposes in research and education.
Christoph C. Raible, Martina Messmer, Flavio Lehner, Thomas F. Stocker, and Richard Blender
Clim. Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018, https://doi.org/10.5194/cp-14-1499-2018, 2018
Short summary
Short summary
Extratropical cyclones in winter and their characteristics are investigated in depth for the Atlantic European region from 850 to 2100 CE. During the Common Era, cyclone characteristics show pronounced variations mainly caused by internal variability of the coupled climate system. When anthropogenic forcing becomes dominant, a strong increase of extreme cyclone-related precipitation is found due to thermodynamics, though dynamical processes can play an important role during the last millennium.
Ronny Meier, Edouard L. Davin, Quentin Lejeune, Mathias Hauser, Yan Li, Brecht Martens, Natalie M. Schultz, Shannon Sterling, and Wim Thiery
Biogeosciences, 15, 4731–4757, https://doi.org/10.5194/bg-15-4731-2018, https://doi.org/10.5194/bg-15-4731-2018, 2018
Short summary
Short summary
Deforestation not only releases carbon dioxide to the atmosphere but also affects local climatic conditions by altering energy fluxes at the land surface and thereby the local temperature. Here, we evaluate the local impact of deforestation in a widely used land surface model. We find that the model reproduces the daytime warming effect of deforestation well. On the other hand, the warmer temperatures observed during night in forests are not present in this model.
Christine A. Shields, Jonathan J. Rutz, Lai-Yung Leung, F. Martin Ralph, Michael Wehner, Brian Kawzenuk, Juan M. Lora, Elizabeth McClenny, Tashiana Osborne, Ashley E. Payne, Paul Ullrich, Alexander Gershunov, Naomi Goldenson, Bin Guan, Yun Qian, Alexandre M. Ramos, Chandan Sarangi, Scott Sellars, Irina Gorodetskaya, Karthik Kashinath, Vitaliy Kurlin, Kelly Mahoney, Grzegorz Muszynski, Roger Pierce, Aneesh C. Subramanian, Ricardo Tome, Duane Waliser, Daniel Walton, Gary Wick, Anna Wilson, David Lavers, Prabhat, Allison Collow, Harinarayan Krishnan, Gudrun Magnusdottir, and Phu Nguyen
Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, https://doi.org/10.5194/gmd-11-2455-2018, 2018
Short summary
Short summary
ARTMIP (Atmospheric River Tracking Method Intercomparison Project) is a community effort with the explicit goal of understanding the uncertainties, and the implications of those uncertainties, in atmospheric river science solely due to detection algorithm. ARTMIP strives to quantify these differences and provide guidance on appropriate algorithmic choices for the science question posed. Project goals, experimental design, and preliminary results are provided.
Monika J. Barcikowska, Scott J. Weaver, Frauke Feser, Simone Russo, Frederik Schenk, Dáithí A. Stone, Michael F. Wehner, and Matthias Zahn
Earth Syst. Dynam., 9, 679–699, https://doi.org/10.5194/esd-9-679-2018, https://doi.org/10.5194/esd-9-679-2018, 2018
Stefanie Kremser, Jordis S. Tradowsky, Henning W. Rust, and Greg E. Bodeker
Atmos. Meas. Tech., 11, 3021–3029, https://doi.org/10.5194/amt-11-3021-2018, https://doi.org/10.5194/amt-11-3021-2018, 2018
Short summary
Short summary
We investigate the feasibility of quantifying the difference in biases of two instrument types (i.e. radiosondes) by flying the old and new instruments on alternating days, so-called interlacing, to statistically derive the systematic biases between the instruments. While it is in principle possible to estimate the difference between two instrument biases from interlaced measurements, the number of required interlaced flights is very large for reasonable autocorrelation coefficient values.
Erik Kjellström, Grigory Nikulin, Gustav Strandberg, Ole Bøssing Christensen, Daniela Jacob, Klaus Keuler, Geert Lenderink, Erik van Meijgaard, Christoph Schär, Samuel Somot, Silje Lund Sørland, Claas Teichmann, and Robert Vautard
Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, https://doi.org/10.5194/esd-9-459-2018, 2018
Short summary
Short summary
Based on high-resolution regional climate models we investigate European climate change at 1.5 and 2 °C of global warming compared to pre-industrial levels. Considerable near-surface warming exceeding that of the global mean is found for most of Europe, already at the lower 1.5 °C of warming level. Changes in precipitation and near-surface wind speed are identified. The 1.5 °C of warming level shows significantly less change compared to the 2 °C level, indicating the importance of mitigation.
Paul J. Kushner, Lawrence R. Mudryk, William Merryfield, Jaison T. Ambadan, Aaron Berg, Adéline Bichet, Ross Brown, Chris Derksen, Stephen J. Déry, Arlan Dirkson, Greg Flato, Christopher G. Fletcher, John C. Fyfe, Nathan Gillett, Christian Haas, Stephen Howell, Frédéric Laliberté, Kelly McCusker, Michael Sigmond, Reinel Sospedra-Alfonso, Neil F. Tandon, Chad Thackeray, Bruno Tremblay, and Francis W. Zwiers
The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, https://doi.org/10.5194/tc-12-1137-2018, 2018
Short summary
Short summary
Here, the Canadian research network CanSISE uses state-of-the-art observations of snow and sea ice to assess how Canada's climate model and climate prediction systems capture variability in snow, sea ice, and related climate parameters. We find that the system performs well, accounting for observational uncertainty (especially for snow), model uncertainty, and chaotic climate variability. Even for variables like sea ice, where improvement is needed, useful prediction tools can be developed.
Michael Wehner, Dáithí Stone, Dann Mitchell, Hideo Shiogama, Erich Fischer, Lise S. Graff, Viatcheslav V. Kharin, Ludwig Lierhammer, Benjamin Sanderson, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 299–311, https://doi.org/10.5194/esd-9-299-2018, https://doi.org/10.5194/esd-9-299-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change challenged the scientific community to describe the impacts of stabilizing the global temperature at its 21st Conference of Parties. A specific target of 1.5 °C above preindustrial levels had not been seriously considered by the climate modeling community prior to the Paris Agreement. This paper analyzes heat waves in simulations designed for this target. We find there are reductions in extreme temperature compared to a 2 °C target.
Didin Agustian Permadi, Nguyen Thi Kim Oanh, and Robert Vautard
Atmos. Chem. Phys., 18, 3321–3334, https://doi.org/10.5194/acp-18-3321-2018, https://doi.org/10.5194/acp-18-3321-2018, 2018
Short summary
Short summary
This research quantified impacts resulted in the future (2030) from emission reduction measures for Southeast Asia (SEA) countries. Emission scenarios were developed based on current policies in Indonesia and Thailand. Impacts were quantified in terms of the avoided number of premature death and reduction in radiative forcing resulted from the emission reduction measures.
Michael F. Wehner, Kevin A. Reed, Burlen Loring, Dáithí Stone, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 187–195, https://doi.org/10.5194/esd-9-187-2018, https://doi.org/10.5194/esd-9-187-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios using a high-resolution global climate model. We find more frequent and intense tropical cyclones, but a reduction in weaker storms.
Didin Agustian Permadi, Nguyen Thi Kim Oanh, and Robert Vautard
Atmos. Chem. Phys., 18, 2725–2747, https://doi.org/10.5194/acp-18-2725-2018, https://doi.org/10.5194/acp-18-2725-2018, 2018
Short summary
Short summary
This research quantified the emissions of toxic air pollutants and climate forcing agents from Southeast Asia in 2007. The emission results were used for model simulation of particulate matter air quality. The model outputs were reasonably comparable to available ground level measurement data for both meteorology and air quality. The aerosol optical depth (AOD) for total aerosol and for black carbon alone was calculated and compared to satellite AOD.
Geert Jan van Oldenborgh, Sjoukje Philip, Sarah Kew, Michiel van Weele, Peter Uhe, Friederike Otto, Roop Singh, Indrani Pai, Heidi Cullen, and Krishna AchutaRao
Nat. Hazards Earth Syst. Sci., 18, 365–381, https://doi.org/10.5194/nhess-18-365-2018, https://doi.org/10.5194/nhess-18-365-2018, 2018
Short summary
Short summary
On 19 May 2016 a temperature of 51.0 °C in Phalodi (northwest India) set a new Indian record. In 2015 a very lethal heat wave had occurred in the southeast. We find that in India the trend in extreme temperatures due to greenhouse gases is largely cancelled by increasing air pollution and irrigation. The health impacts of heat waves do increase due to higher humidity and air pollution. This implies that we expect heat waves to become much hotter as soon as air pollution is brought under control.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Nadya Moisseeva and Roland Stull
Atmos. Chem. Phys., 17, 15037–15043, https://doi.org/10.5194/acp-17-15037-2017, https://doi.org/10.5194/acp-17-15037-2017, 2017
Short summary
Short summary
This technical note presents simple noniterative approximations for two common thermodynamic relationships used for moist convection. The method offers roughly 2 orders of magnitude improvement in accuracy over the only existing noniterative solution. The proposed approach alleviates the need for costly numerical integration of saturated thermodynamic equations within numerical weather prediction models and in theoretical studies.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Benjamin M. Sanderson, Yangyang Xu, Claudia Tebaldi, Michael Wehner, Brian O'Neill, Alexandra Jahn, Angeline G. Pendergrass, Flavio Lehner, Warren G. Strand, Lei Lin, Reto Knutti, and Jean Francois Lamarque
Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, https://doi.org/10.5194/esd-8-827-2017, 2017
Short summary
Short summary
We present the results of a set of climate simulations designed to simulate futures in which the Earth's temperature is stabilized at the levels referred to in the 2015 Paris Agreement. We consider the necessary future emissions reductions and the aspects of extreme weather which differ significantly between the 2 and 1.5 °C climate in the simulations.
Erin Coughlan de Perez, Elisabeth Stephens, Konstantinos Bischiniotis, Maarten van Aalst, Bart van den Hurk, Simon Mason, Hannah Nissan, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 21, 4517–4524, https://doi.org/10.5194/hess-21-4517-2017, https://doi.org/10.5194/hess-21-4517-2017, 2017
Short summary
Short summary
Disaster managers would like to use seasonal forecasts to anticipate flooding months in advance. However, current seasonal forecasts give information on rainfall instead of flooding. Here, we find that the number of extreme events, rather than total rainfall, is most related to flooding in different regions of Africa. We recommend several forecast adjustments and research opportunities that would improve flood information at the seasonal timescale in different regions.
Augustin Colette, Camilla Andersson, Astrid Manders, Kathleen Mar, Mihaela Mircea, Maria-Teresa Pay, Valentin Raffort, Svetlana Tsyro, Cornelius Cuvelier, Mario Adani, Bertrand Bessagnet, Robert Bergström, Gino Briganti, Tim Butler, Andrea Cappelletti, Florian Couvidat, Massimo D'Isidoro, Thierno Doumbia, Hilde Fagerli, Claire Granier, Chris Heyes, Zig Klimont, Narendra Ojha, Noelia Otero, Martijn Schaap, Katarina Sindelarova, Annemiek I. Stegehuis, Yelva Roustan, Robert Vautard, Erik van Meijgaard, Marta Garcia Vivanco, and Peter Wind
Geosci. Model Dev., 10, 3255–3276, https://doi.org/10.5194/gmd-10-3255-2017, https://doi.org/10.5194/gmd-10-3255-2017, 2017
Short summary
Short summary
The EURODELTA-Trends numerical experiment has been designed to assess the capability of chemistry-transport models to capture the evolution of surface air quality over the 1990–2010 period in Europe. It also includes sensitivity experiments in order to analyse the relative contribution of (i) emission changes, (ii) meteorological variability, and (iii) boundary conditions to air quality trends. The article is a detailed presentation of the experiment design and participating models.
Jakob Zscheischler, Rene Orth, and Sonia I. Seneviratne
Biogeosciences, 14, 3309–3320, https://doi.org/10.5194/bg-14-3309-2017, https://doi.org/10.5194/bg-14-3309-2017, 2017
Short summary
Short summary
We use newly established methods to compute bivariate return periods of temperature and precipitation and relate those to crop yield variability in Europe. Most often, crop yields are lower when it is hot and dry and higher when it is cold and wet. The variability in crop yields along a specific climate gradient can be captured well by return periods aligned with these gradients. This study provides new possibilities for investigating the relationship between crop yield variability and climate.
Benjamin M. Sanderson, Michael Wehner, and Reto Knutti
Geosci. Model Dev., 10, 2379–2395, https://doi.org/10.5194/gmd-10-2379-2017, https://doi.org/10.5194/gmd-10-2379-2017, 2017
Short summary
Short summary
How should climate model simulations be combined to produce an overall assessment that reflects both their performance and their interdependencies? This paper presents a strategy for weighting climate model output such that models that are replicated or models that perform poorly in a chosen set of metrics are appropriately weighted. We perform sensitivity tests to show how the method results depend on variables and parameter values.
Benoit P. Guillod, Richard G. Jones, Andy Bowery, Karsten Haustein, Neil R. Massey, Daniel M. Mitchell, Friederike E. L. Otto, Sarah N. Sparrow, Peter Uhe, David C. H. Wallom, Simon Wilson, and Myles R. Allen
Geosci. Model Dev., 10, 1849–1872, https://doi.org/10.5194/gmd-10-1849-2017, https://doi.org/10.5194/gmd-10-1849-2017, 2017
Short summary
Short summary
The weather@home climate modelling system uses the computing power of volunteers around the world to generate a very large number of climate model simulations. This is particularly useful when investigating extreme weather events, notably for the attribution of these events to anthropogenic climate change. A new version of weather@home is presented and evaluated, which includes an improved representation of the land surface and increased horizontal resolution over Europe.
Mathias Hauser, René Orth, and Sonia I. Seneviratne
Geosci. Model Dev., 10, 1665–1677, https://doi.org/10.5194/gmd-10-1665-2017, https://doi.org/10.5194/gmd-10-1665-2017, 2017
Short summary
Short summary
Water in the soil can influence temperature and precipitation of the atmosphere. However, the atmosphere also alters the soil moisture content. Climate model simulations prescribing soil moisture are a means to decouple these relationships. We find that the atmospheric response depends strongly on the method used to fix the soil moisture, as well as on the employed soil moisture data set.
Pascal Yiou, Aglaé Jézéquel, Philippe Naveau, Frederike E. L. Otto, Robert Vautard, and Mathieu Vrac
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, https://doi.org/10.5194/ascmo-3-17-2017, 2017
Short summary
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Martin Hirschi, Dominik Michel, Irene Lehner, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 21, 1809–1825, https://doi.org/10.5194/hess-21-1809-2017, https://doi.org/10.5194/hess-21-1809-2017, 2017
Short summary
Short summary
We compare lysimeter and eddy covariance (EC) flux measurements of evapotranspiration at a research catchment in Switzerland. The measurements are compared on various timescales, and with respect to a 40-year long-term lysimeter time series. Overall, the lysimeter and EC measurements agree well, especially on the annual timescale. Furthermore, we identify that lack of reliable EC data during/after rainfall events significantly contributes to an underestimation of EC evapotranspiration.
Karin van der Wiel, Sarah B. Kapnick, Geert Jan van Oldenborgh, Kirien Whan, Sjoukje Philip, Gabriel A. Vecchi, Roop K. Singh, Julie Arrighi, and Heidi Cullen
Hydrol. Earth Syst. Sci., 21, 897–921, https://doi.org/10.5194/hess-21-897-2017, https://doi.org/10.5194/hess-21-897-2017, 2017
Short summary
Short summary
During August 2016, heavy precipitation led to devastating floods in south Louisiana, USA. Here, we analyze the climatological statistics of the precipitation event, as defined by its 3-day total over 12–14 August. Using observational data and high-resolution global coupled model experiments, we find for a comparable event on the central US Gulf Coast an average return period of about 30 years and the odds being increased by at least 1.4 since 1900 due to anthropogenic climate change.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Sebastian Sippel, Jakob Zscheischler, Martin Heimann, Holger Lange, Miguel D. Mahecha, Geert Jan van Oldenborgh, Friederike E. L. Otto, and Markus Reichstein
Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, https://doi.org/10.5194/hess-21-441-2017, 2017
Short summary
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
Nathan P. Gillett, Hideo Shiogama, Bernd Funke, Gabriele Hegerl, Reto Knutti, Katja Matthes, Benjamin D. Santer, Daithi Stone, and Claudia Tebaldi
Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, https://doi.org/10.5194/gmd-9-3685-2016, 2016
Short summary
Short summary
Detection and attribution of climate change is the process of determining the causes of observed climate changes, which has underpinned key conclusions on the role of human influence on climate in the reports of the Intergovernmental Panel on Climate Change (IPCC). This paper describes a coordinated set of climate model experiments that will form part of the Sixth Coupled Model Intercomparison Project and will support improved attribution of climate change in the next IPCC report.
Mitchell T. Black, David J. Karoly, Suzanne M. Rosier, Sam M. Dean, Andrew D. King, Neil R. Massey, Sarah N. Sparrow, Andy Bowery, David Wallom, Richard G. Jones, Friederike E. L. Otto, and Myles R. Allen
Geosci. Model Dev., 9, 3161–3176, https://doi.org/10.5194/gmd-9-3161-2016, https://doi.org/10.5194/gmd-9-3161-2016, 2016
Short summary
Short summary
This study presents a citizen science computing project, known as weather@home Australia–New Zealand, which runs climate models on thousands of home computers. By harnessing the power of volunteers' computers, this project is capable of simulating extreme weather events over Australia and New Zealand under different climate scenarios.
Erin Coughlan de Perez, Bart van den Hurk, Maarten K. van Aalst, Irene Amuron, Deus Bamanya, Tristan Hauser, Brenden Jongma, Ana Lopez, Simon Mason, Janot Mendler de Suarez, Florian Pappenberger, Alexandra Rueth, Elisabeth Stephens, Pablo Suarez, Jurjen Wagemaker, and Ervin Zsoter
Hydrol. Earth Syst. Sci., 20, 3549–3560, https://doi.org/10.5194/hess-20-3549-2016, https://doi.org/10.5194/hess-20-3549-2016, 2016
Short summary
Short summary
Many flood disaster impacts could be avoided by preventative action; however, early action is not guaranteed. This article demonstrates the design of a new system of forecast-based financing, which automatically triggers action when a flood forecast arrives, before a potential disaster. We establish "action triggers" for northern Uganda based on a global flood forecasting system, verifying these forecasts and assessing the uncertainties inherent in setting a trigger in a data-scarce location.
David M. Lawrence, George C. Hurtt, Almut Arneth, Victor Brovkin, Kate V. Calvin, Andrew D. Jones, Chris D. Jones, Peter J. Lawrence, Nathalie de Noblet-Ducoudré, Julia Pongratz, Sonia I. Seneviratne, and Elena Shevliakova
Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, https://doi.org/10.5194/gmd-9-2973-2016, 2016
Short summary
Short summary
Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The goal of LUMIP is to take the next steps in land-use change science, and enable, coordinate, and ultimately address the most important land-use science questions in more depth and sophistication than possible in a multi-model context to date.
Geert Jan van Oldenborgh, Sjoukje Philip, Emma Aalbers, Robert Vautard, Friederike Otto, Karsten Haustein, Florence Habets, Roop Singh, and Heidi Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-308, https://doi.org/10.5194/hess-2016-308, 2016
Manuscript not accepted for further review
Short summary
Short summary
Extreme rain caused flooding in France and Germany at the end of May 2016. After such an event the question is always posed to what extent it can be attributed to anthropogenic climate change. Using observations and five model ensembles we give a first answer. For the 3-day precipitation extremes over the Seine and Loire basins that caused the flooding all methods agree that the probability has increased by a factor of about two. For 1-day precipitation extremes in Germany the methods disagree.
Li Liu, Fabien Solmon, Robert Vautard, Lynda Hamaoui-Laguel, Csaba Zsolt Torma, and Filippo Giorgi
Biogeosciences, 13, 2769–2786, https://doi.org/10.5194/bg-13-2769-2016, https://doi.org/10.5194/bg-13-2769-2016, 2016
Short summary
Short summary
To study the distribution of airborne ragweed pollen in changing environments and associated health risks over Europe, we introduce an approach with explicit treatment of pollen ripening, release and dispersion due to environmental drivers in an online modelling framework where climate is integrated with dispersion and vegetation production. From a simulated pollen season and concentration pattern health risks are evaluated through calculation of exposure time above health-relevant threshold levels.
D. Michel, C. Jiménez, D. G. Miralles, M. Jung, M. Hirschi, A. Ershadi, B. Martens, M. F. McCabe, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, https://doi.org/10.5194/hess-20-803-2016, 2016
Short summary
Short summary
In this study a common reference input data set from satellite and in situ data is used to run four established evapotranspiration (ET) algorithms using sub-daily and daily input on a tower scale as a testbed for a global ET product. The PT-JPL model and GLEAM provide the best performance for satellite and in situ forcing as well as for the different temporal resolutions. PM-MOD and SEBS perform less well: the PM-MOD model generally underestimates, while SEBS generally overestimates ET.
Konstantinos Markakis, Myrto Valari, Magnuz Engardt, Gwendoline Lacressonniere, Robert Vautard, and Camilla Andersson
Atmos. Chem. Phys., 16, 1877–1894, https://doi.org/10.5194/acp-16-1877-2016, https://doi.org/10.5194/acp-16-1877-2016, 2016
Short summary
Short summary
The overall climate benefit at both cities and pollutants is −2 to −10 % depending on metric. Over the city of Paris local mitigation of NOx emissions increases future ozone due to titration inhibition. Climate is the most influential factor for maximum ozone in Paris, which is particularly interesting from a health impact perspective. Over urban areas with major regional contribution (e.g. Stockholm) the bias due to coarse emission inventory may lead to policy misclassification.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
G. J. van Oldenborgh, F. E. L. Otto, K. Haustein, and H. Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-13197-2015, https://doi.org/10.5194/hessd-12-13197-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
On 4–6 December 2015, the storm 'Desmond' caused very heavy rainfall in northern England and Scotland, which led to widespread flooding. We provide an initial assessment of the influence of anthropogenic climate change on the likelihood of precipitation events like this. We use three independent methods of extreme event attribution based on observations and two climate models. All methods agree that the effect of climate change is positive, making events like this about 40% (5–80%) more likely.
S. Jeon, Prabhat, S. Byna, J. Gu, W. D. Collins, and M. F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, https://doi.org/10.5194/ascmo-1-45-2015, https://doi.org/10.5194/ascmo-1-45-2015, 2015
Short summary
Short summary
This paper investigates the influence of atmospheric rivers on spatial coherence of extreme precipitation under a changing climate. We use our TECA software developed for detecting atmospheric river events and apply statistical techniques based on extreme value theory to characterize the spatial dependence structure between precipitation extremes within the events. The results show that extreme rainfall caused by atmospheric river events is less spatially correlated under the warming scenario.
A. I. Stegehuis, R. Vautard, P. Ciais, A. J. Teuling, D. G. Miralles, and M. Wild
Geosci. Model Dev., 8, 2285–2298, https://doi.org/10.5194/gmd-8-2285-2015, https://doi.org/10.5194/gmd-8-2285-2015, 2015
Short summary
Short summary
Many climate models have difficulties in properly reproducing climate extremes such as heat wave conditions. We use a regional climate model with different atmospheric physics schemes to simulate the heat wave events of 2003 in western Europe and 2010 in Russia. The five best-performing and diverse physics scheme combinations may be used in the future to perform heat wave analysis and to investigate the impact of climate change in summer in Europe.
E. Coughlan de Perez, B. van den Hurk, M. K. van Aalst, B. Jongman, T. Klose, and P. Suarez
Nat. Hazards Earth Syst. Sci., 15, 895–904, https://doi.org/10.5194/nhess-15-895-2015, https://doi.org/10.5194/nhess-15-895-2015, 2015
Short summary
Short summary
How can we use weather or climate forecasts to avoid disasters? This article offers a framework for determining when it is "worth" taking action to try to avoid a potential disaster. Considering forecast probabilities, actions, and funding constraints, we propose a novel forecast-based financing system that would automatically trigger action based on forecasts of increased risks.
E. Katragkou, M. García-Díez, R. Vautard, S. Sobolowski, P. Zanis, G. Alexandri, R. M. Cardoso, A. Colette, J. Fernandez, A. Gobiet, K. Goergen, T. Karacostas, S. Knist, S. Mayer, P. M. M. Soares, I. Pytharoulis, I. Tegoulias, A. Tsikerdekis, and D. Jacob
Geosci. Model Dev., 8, 603–618, https://doi.org/10.5194/gmd-8-603-2015, https://doi.org/10.5194/gmd-8-603-2015, 2015
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
S. J. Sutanto, B. van den Hurk, P. A. Dirmeyer, S. I. Seneviratne, T. Röckmann, K. E. Trenberth, E. M. Blyth, J. Wenninger, and G. Hoffmann
Hydrol. Earth Syst. Sci., 18, 2815–2827, https://doi.org/10.5194/hess-18-2815-2014, https://doi.org/10.5194/hess-18-2815-2014, 2014
K. Markakis, M. Valari, A. Colette, O. Sanchez, O. Perrussel, C. Honore, R. Vautard, Z. Klimont, and S. Rao
Atmos. Chem. Phys., 14, 7323–7340, https://doi.org/10.5194/acp-14-7323-2014, https://doi.org/10.5194/acp-14-7323-2014, 2014
S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer
Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, https://doi.org/10.5194/gmd-7-1297-2014, 2014
L. Menut, R. Vautard, A. Colette, D. Khvorostyanov, A. Potier, L. Hamaoui-Laguel, N. Viovy, and M. Thibaudon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10891-2014, https://doi.org/10.5194/acpd-14-10891-2014, 2014
Revised manuscript not accepted
P. Yiou, M. Boichu, R. Vautard, M. Vrac, S. Jourdain, E. Garnier, F. Fluteau, and L. Menut
Clim. Past, 10, 797–809, https://doi.org/10.5194/cp-10-797-2014, https://doi.org/10.5194/cp-10-797-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
D. J. Ullman, A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi
Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, https://doi.org/10.5194/cp-10-487-2014, 2014
L. Gudmundsson and S. I. Seneviratne
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-13191-2013, https://doi.org/10.5194/hessd-10-13191-2013, 2013
Manuscript not accepted for further review
R. Orth and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3895–3911, https://doi.org/10.5194/hess-17-3895-2013, https://doi.org/10.5194/hess-17-3895-2013, 2013
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
S. F. Kew, F. M. Selten, G. Lenderink, and W. Hazeleger
Nat. Hazards Earth Syst. Sci., 13, 2017–2029, https://doi.org/10.5194/nhess-13-2017-2013, https://doi.org/10.5194/nhess-13-2017-2013, 2013
A. Colette, B. Bessagnet, R. Vautard, S. Szopa, S. Rao, S. Schucht, Z. Klimont, L. Menut, G. Clain, F. Meleux, G. Curci, and L. Rouïl
Atmos. Chem. Phys., 13, 7451–7471, https://doi.org/10.5194/acp-13-7451-2013, https://doi.org/10.5194/acp-13-7451-2013, 2013
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, https://doi.org/10.5194/gmd-6-791-2013, 2013
B. Orlowsky and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 1765–1781, https://doi.org/10.5194/hess-17-1765-2013, https://doi.org/10.5194/hess-17-1765-2013, 2013
T. Egorova, E. Rozanov, J. Gröbner, M. Hauser, and W. Schmutz
Atmos. Chem. Phys., 13, 3811–3823, https://doi.org/10.5194/acp-13-3811-2013, https://doi.org/10.5194/acp-13-3811-2013, 2013
A. H. Jarosch, C. G. Schoof, and F. S. Anslow
The Cryosphere, 7, 229–240, https://doi.org/10.5194/tc-7-229-2013, https://doi.org/10.5194/tc-7-229-2013, 2013
Related subject area
Earth system change: climate scenarios
Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels
Direct and indirect application of univariate and multivariate bias corrections on heat-stress indices based on multiple regional-climate-model simulations
Overview: The Baltic Earth Assessment Reports (BEAR)
The implications of maintaining Earth's hemispheric albedo symmetry for shortwave radiative feedbacks
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change
Evidence of localised Amazon rainforest dieback in CMIP6 models
Emit now, mitigate later? Earth system reversibility under overshoots of different magnitudes and durations
STITCHES: creating new scenarios of climate model output by stitching together pieces of existing simulations
An updated assessment of past and future warming over France based on a regional observational constraint
Combining machine learning and SMILEs to classify, better understand, and project changes in ENSO events
Impact of an acceleration of ice sheet melting on monsoon systems
Indices of extremes: geographic patterns of change in extremes and associated vegetation impacts under climate intervention
Present and future synoptic circulation patterns associated with cold and snowy spells over Italy
Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios
Atmospheric rivers in CMIP5 climate ensembles downscaled with a high-resolution regional climate model
Climate change in the Baltic Sea region: a summary
The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections
Climate change signal in the ocean circulation of the Tyrrhenian Sea
Oceanographic regional climate projections for the Baltic Sea until 2100
Ubiquity of human-induced changes in climate variability
Storylines of weather-induced crop failure events under climate change
Weather extremes over Europe under 1.5 and 2.0 °C global warming from HAPPI regional climate ensemble simulations
Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models
Seasonal discharge response to temperature-driven changes in evaporation and snow processes in the Rhine Basin
Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6
Historical and future contributions of inland waters to the Congo Basin carbon balance
Impact of precipitation and increasing temperatures on drought trends in eastern Africa
Comparing interannual variability in three regional single-model initial-condition large ensembles (SMILEs) over Europe
A continued role of short-lived climate forcers under the Shared Socioeconomic Pathways
Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels
ESD Ideas: Global climate response scenarios for IPCC assessments
Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals
Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering
Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6
Long-term variance of heavy precipitation across central Europe using a large ensemble of regional climate model simulations
Differing precipitation response between solar radiation management and carbon dioxide removal due to fast and slow components
Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors
Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts
Changes in statistical distributions of sub-daily surface temperatures and wind speed
The economically optimal warming limit of the planet
Arctic amplification under global warming of 1.5 and 2 °C in NorESM1-Happi
Tracking the moisture transport from the Pacific towards Central and northern South America since the late 19th century
Freshwater resources under success and failure of the Paris climate agreement
The response of precipitation characteristics to global warming from climate projections
The effect of overshooting 1.5 °C global warming on the mass loss of the Greenland ice sheet
ESD Ideas: a simple proposal to improve the contribution of IPCC WGI to the assessment and communication of climate change risks
The point of no return for climate action: effects of climate uncertainty and risk tolerance
Varying soil moisture–atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe
Population exposure to droughts in China under the 1.5 °C global warming target
Fulden Batibeniz, Mathias Hauser, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 14, 485–505, https://doi.org/10.5194/esd-14-485-2023, https://doi.org/10.5194/esd-14-485-2023, 2023
Short summary
Short summary
We study single and concurrent heatwaves, droughts, precipitation, and wind extremes. Globally, these extremes become more frequent and affect larger land areas under future warming, with several countries experiencing extreme events every single month. Concurrent heatwaves–droughts (precipitation–wind) are projected to increase the most in mid–high-latitude countries (tropics). Every mitigation action to avoid further warming will reduce the number of people exposed to extreme weather events.
Liying Qiu, Eun-Soon Im, Seung-Ki Min, Yeon-Hee Kim, Dong-Hyun Cha, Seok-Woo Shin, Joong-Bae Ahn, Eun-Chul Chang, and Young-Hwa Byun
Earth Syst. Dynam., 14, 507–517, https://doi.org/10.5194/esd-14-507-2023, https://doi.org/10.5194/esd-14-507-2023, 2023
Short summary
Short summary
This study evaluates four bias correction methods (three univariate and one multivariate) for correcting multivariate heat-stress indices. We show that the multivariate method can benefit the indirect correction that first adjusts individual components before index calculation, and its advantage is more evident for indices relying equally on multiple drivers. Meanwhile, the direct correction of heat-stress indices by the univariate quantile delta mapping approach also has comparable performance.
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023, https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
Short summary
The Baltic Earth Assessment Reports summarise the current state of knowledge on Earth system science in the Baltic Sea region. The 10 review articles focus on the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Some highlights of the results are presented here.
Aiden R. Jönsson and Frida A.-M. Bender
Earth Syst. Dynam., 14, 345–365, https://doi.org/10.5194/esd-14-345-2023, https://doi.org/10.5194/esd-14-345-2023, 2023
Short summary
Short summary
The Earth has nearly the same mean albedo in both hemispheres, a feature not well replicated by climate models. Global warming causes changes in surface and cloud properties that affect albedo and that feed back into the warming. We show that models predict more darkening due to ice loss in the Northern than in the Southern Hemisphere in response to increasing CO2 concentrations. This is, to varying degrees, counteracted by changes in cloud cover, with implications for cloud feedback on climate.
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023, https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary
Short summary
Precipitation change is an important consequence of climate change, but it is hard to detect and quantify. Our intuitive method yields robust and interpretable detection of forced precipitation change in three observational datasets for global mean and extreme precipitation, but the different observational datasets show different magnitudes of forced change. Assessment and reduction of uncertainties surrounding forced precipitation change are important for future projections and adaptation.
Isobel M. Parry, Paul D. L. Ritchie, and Peter M. Cox
Earth Syst. Dynam., 13, 1667–1675, https://doi.org/10.5194/esd-13-1667-2022, https://doi.org/10.5194/esd-13-1667-2022, 2022
Short summary
Short summary
Despite little evidence of regional Amazon rainforest dieback, many localised abrupt dieback events are observed in the latest state-of-the-art global climate models under anthropogenic climate change. The detected dieback events would still cause severe consequences for local communities and ecosystems. This study suggests that 7 ± 5 % of the northern South America region would experience abrupt downward shifts in vegetation carbon for every degree of global warming past 1.5 °C.
Jörg Schwinger, Ali Asaadi, Norman Julius Steinert, and Hanna Lee
Earth Syst. Dynam., 13, 1641–1665, https://doi.org/10.5194/esd-13-1641-2022, https://doi.org/10.5194/esd-13-1641-2022, 2022
Short summary
Short summary
We test whether climate change can be partially reversed if CO2 is removed from the atmosphere to compensate for too large past and near-term emissions by using idealized model simulations of overshoot pathways. On a timescale of 100 years, we find a high degree of reversibility if the overshoot size remains small, and we do not find tipping points even for intense overshoots. We caution that current Earth system models are most likely not able to skilfully model tipping points in ecosystems.
Claudia Tebaldi, Abigail Snyder, and Kalyn Dorheim
Earth Syst. Dynam., 13, 1557–1609, https://doi.org/10.5194/esd-13-1557-2022, https://doi.org/10.5194/esd-13-1557-2022, 2022
Short summary
Short summary
Impact modelers need many future scenarios to characterize the consequences of climate change. The climate modeling community cannot fully meet this need because of the computational cost of climate models. Emulators have fallen short of providing the entire range of inputs that modern impact models require. Our proposal, STITCHES, meets these demands in a comprehensive way and may thus support a fully integrated impact research effort and save resources for the climate modeling enterprise.
Aurélien Ribes, Julien Boé, Saïd Qasmi, Brigitte Dubuisson, Hervé Douville, and Laurent Terray
Earth Syst. Dynam., 13, 1397–1415, https://doi.org/10.5194/esd-13-1397-2022, https://doi.org/10.5194/esd-13-1397-2022, 2022
Short summary
Short summary
We use a novel statistical method to combine climate simulations and observations, and we deliver an updated assessment of past and future warming over France. As a key result, we find that the warming over that region was underestimated in previous multi-model ensembles by up to 50 %. We also assess the contribution of greenhouse gases, aerosols, and other factors to the observed warming, as well as the impact on the seasonal temperature cycle, and we discuss implications for climate services.
Nicola Maher, Thibault P. Tabarin, and Sebastian Milinski
Earth Syst. Dynam., 13, 1289–1304, https://doi.org/10.5194/esd-13-1289-2022, https://doi.org/10.5194/esd-13-1289-2022, 2022
Short summary
Short summary
El Niño events occur as two broad types: eastern Pacific (EP) and central Pacific (CP). EP and CP events differ in strength, evolution, and in their impacts. In this study we create a new machine learning classifier to identify the two types of El Niño events using observed sea surface temperature data. We apply our new classifier to climate models and show that CP events are unlikely to change in frequency or strength under a warming climate, with model disagreement for EP events.
Alizée Chemison, Dimitri Defrance, Gilles Ramstein, and Cyril Caminade
Earth Syst. Dynam., 13, 1259–1287, https://doi.org/10.5194/esd-13-1259-2022, https://doi.org/10.5194/esd-13-1259-2022, 2022
Short summary
Short summary
We study the impact of a rapid melting of the ice sheets on monsoon systems during the 21st century. The impact of a partial Antarctica melting is moderate. Conversely, Greenland melting slows down the oceanic Atlantic circulation and changes winds, temperature and pressure patterns, resulting in a southward shift of the tropical rain belt over Africa and America. The seasonality, duration and intensity of rainfall events are affected, with potential severe impacts on vulnerable populations.
Mari R. Tye, Katherine Dagon, Maria J. Molina, Jadwiga H. Richter, Daniele Visioni, Ben Kravitz, and Simone Tilmes
Earth Syst. Dynam., 13, 1233–1257, https://doi.org/10.5194/esd-13-1233-2022, https://doi.org/10.5194/esd-13-1233-2022, 2022
Short summary
Short summary
We examined the potential effect of stratospheric aerosol injection (SAI) on extreme temperature and precipitation. SAI may cause daytime temperatures to cool but nighttime to warm. Daytime cooling may occur in all seasons across the globe, with the largest decreases in summer. In contrast, nighttime warming may be greatest at high latitudes in winter. SAI may reduce the frequency and intensity of extreme rainfall. The combined changes may exacerbate drying over parts of the global south.
Miriam D'Errico, Flavio Pons, Pascal Yiou, Soulivanh Tao, Cesare Nardini, Frank Lunkeit, and Davide Faranda
Earth Syst. Dynam., 13, 961–992, https://doi.org/10.5194/esd-13-961-2022, https://doi.org/10.5194/esd-13-961-2022, 2022
Short summary
Short summary
Climate change is already affecting weather extremes. In a warming climate, we will expect the cold spells to decrease in frequency and intensity. Our analysis shows that the frequency of circulation patterns leading to snowy cold-spell events over Italy will not decrease under business-as-usual emission scenarios, although the associated events may not lead to cold conditions in the warmer scenarios.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Josep Cos, Francisco Doblas-Reyes, Martin Jury, Raül Marcos, Pierre-Antoine Bretonnière, and Margarida Samsó
Earth Syst. Dynam., 13, 321–340, https://doi.org/10.5194/esd-13-321-2022, https://doi.org/10.5194/esd-13-321-2022, 2022
Short summary
Short summary
The Mediterranean has been identified as being more affected by climate change than other regions. We find that amplified warming during summer and annual precipitation declines are expected for the 21st century and that the magnitude of the changes will mainly depend on greenhouse gas emissions. By applying a method giving more importance to models with greater performance and independence, we find that the differences between the last two community modelling efforts are reduced in the region.
Alba de la Vara, Iván M. Parras-Berrocal, Alfredo Izquierdo, Dmitry V. Sein, and William Cabos
Earth Syst. Dynam., 13, 303–319, https://doi.org/10.5194/esd-13-303-2022, https://doi.org/10.5194/esd-13-303-2022, 2022
Short summary
Short summary
We study with the regionally coupled climate model ROM the impact of climate change on the Tyrrhenian Sea circulation, as well as the possible mechanisms and consequences in the NW Mediterranean Sea. Our results show a shift towards the summer circulation pattern by the end of the century. Also, water flowing via the Corsica Channel is more stratified and smaller in volume. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions in the future.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Henrique M. D. Goulart, Karin van der Wiel, Christian Folberth, Juraj Balkovic, and Bart van den Hurk
Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, https://doi.org/10.5194/esd-12-1503-2021, 2021
Short summary
Short summary
Agriculture is sensitive to weather conditions and to climate change. We identify the weather conditions linked to soybean failures and explore changes related to climate change. Additionally, we build future versions of a historical extreme season under future climate scenarios. Results show that soybean failures are likely to increase with climate change. Future events with similar physical conditions to the extreme season are not expected to increase, but events with similar impacts are.
Kevin Sieck, Christine Nam, Laurens M. Bouwer, Diana Rechid, and Daniela Jacob
Earth Syst. Dynam., 12, 457–468, https://doi.org/10.5194/esd-12-457-2021, https://doi.org/10.5194/esd-12-457-2021, 2021
Short summary
Short summary
This paper presents new estimates of future extreme weather in Europe, including extreme heat, extreme rainfall and meteorological drought. These new estimates were achieved by repeating model calculations many times, thereby reducing uncertainties of these rare events at low levels of global warming at 1.5 and 2 °C above
pre-industrial temperature levels. These results are important, as they help to assess which weather extremes could increase at moderate warming levels and where.
Anja Katzenberger, Jacob Schewe, Julia Pongratz, and Anders Levermann
Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, https://doi.org/10.5194/esd-12-367-2021, 2021
Short summary
Short summary
All state-of-the-art global climate models that contributed to the latest Coupled Model Intercomparison Project (CMIP6) show a robust increase in Indian summer monsoon rainfall that is even stronger than in the previous intercomparison (CMIP5). Furthermore, they show an increase in the year-to-year variability of this seasonal rainfall that crucially influences the livelihood of more than 1 billion people in India.
Joost Buitink, Lieke A. Melsen, and Adriaan J. Teuling
Earth Syst. Dynam., 12, 387–400, https://doi.org/10.5194/esd-12-387-2021, https://doi.org/10.5194/esd-12-387-2021, 2021
Short summary
Short summary
Higher temperatures influence both evaporation and snow processes. These two processes have a large effect on discharge but have distinct roles during different seasons. In this study, we study how higher temperatures affect the discharge via changed evaporation and snow dynamics. Higher temperatures lead to enhanced evaporation but increased melt from glaciers, overall lowering the discharge. During the snowmelt season, discharge was reduced further due to the earlier depletion of snow.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Adam Hastie, Ronny Lauerwald, Philippe Ciais, Fabrice Papa, and Pierre Regnier
Earth Syst. Dynam., 12, 37–62, https://doi.org/10.5194/esd-12-37-2021, https://doi.org/10.5194/esd-12-37-2021, 2021
Short summary
Short summary
We used a model of the Congo Basin to investigate the transfer of carbon (C) from land (vegetation and soils) to inland waters. We estimate that leaching of C to inland waters, emissions of CO2 from the water surface, and the export of C to the coast have all increased over the last century, driven by increasing atmospheric CO2 levels and climate change. We predict that these trends may continue through the 21st century and call for long-term monitoring of these fluxes.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Fabian von Trentini, Emma E. Aalbers, Erich M. Fischer, and Ralf Ludwig
Earth Syst. Dynam., 11, 1013–1031, https://doi.org/10.5194/esd-11-1013-2020, https://doi.org/10.5194/esd-11-1013-2020, 2020
Short summary
Short summary
We compare the inter-annual variability of three single-model initial-condition large ensembles (SMILEs), downscaled with three regional climate models over Europe for seasonal temperature and precipitation, the number of heatwaves, and maximum length of dry periods. They all show good consistency with observational data. The magnitude of variability and the future development are similar in many cases. In general, variability increases for summer indicators and decreases for winter indicators.
Marianne T. Lund, Borgar Aamaas, Camilla W. Stjern, Zbigniew Klimont, Terje K. Berntsen, and Bjørn H. Samset
Earth Syst. Dynam., 11, 977–993, https://doi.org/10.5194/esd-11-977-2020, https://doi.org/10.5194/esd-11-977-2020, 2020
Short summary
Short summary
Achieving the Paris Agreement temperature goals requires both near-zero levels of long-lived greenhouse gases and deep cuts in emissions of short-lived climate forcers (SLCFs). Here we quantify the near- and long-term global temperature impacts of emissions of individual SLCFs and CO2 from 7 economic sectors in 13 regions in order to provide the detailed knowledge needed to design efficient mitigation strategies at the sectoral and regional levels.
Kathrin Wehrli, Mathias Hauser, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 855–873, https://doi.org/10.5194/esd-11-855-2020, https://doi.org/10.5194/esd-11-855-2020, 2020
Short summary
Short summary
The 2018 summer was unusually hot for large areas in the Northern Hemisphere, and heatwaves on three continents led to major impacts on agriculture and society. This study investigates storylines for the extreme 2018 summer, given the observed atmospheric circulation but different levels of background global warming. The results reveal a strong contribution by the present-day level of global warming and show a dramatic outlook for similar events in a warmer climate.
Rowan T. Sutton and Ed Hawkins
Earth Syst. Dynam., 11, 751–754, https://doi.org/10.5194/esd-11-751-2020, https://doi.org/10.5194/esd-11-751-2020, 2020
Short summary
Short summary
Policy making on climate change routinely employs socioeconomic scenarios to sample the uncertainty in future forcing of the climate system, but the Intergovernmental Panel on Climate Change has not employed similar discrete scenarios to sample the uncertainty in the global climate response. Here, we argue that to enable risk assessments and development of robust policies this gap should be addressed, and we propose a simple methodology.
Andreas Geiges, Alexander Nauels, Paola Yanguas Parra, Marina Andrijevic, William Hare, Peter Pfleiderer, Michiel Schaeffer, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 11, 697–708, https://doi.org/10.5194/esd-11-697-2020, https://doi.org/10.5194/esd-11-697-2020, 2020
Short summary
Short summary
Current global mitigation ambition in the National Determined Contributions (NDCs) up to 2030 is insufficient to achieve the 1.5 °C long-term temperature limit. As governments are preparing new and updated NDCs for 2020, we address the question of what level of collective ambition is pivotal regarding the Paris Agreement goals. We provide estimates for global mean temperature increase by 2100 for different incremental NDC update scenarios and illustrate climate impacts under those scenarios.
Simone Tilmes, Douglas G. MacMartin, Jan T. M. Lenaerts, Leo van Kampenhout, Laura Muntjewerf, Lili Xia, Cheryl S. Harrison, Kristen M. Krumhardt, Michael J. Mills, Ben Kravitz, and Alan Robock
Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020, https://doi.org/10.5194/esd-11-579-2020, 2020
Short summary
Short summary
This paper introduces new geoengineering model experiments as part of a larger model intercomparison effort, using reflective particles to block some of the incoming solar radiation to reach surface temperature targets. Outcomes of these applications are contrasted based on a high greenhouse gas emission pathway and a pathway with strong mitigation and negative emissions after 2040. We compare quantities that matter for societal and ecosystem impacts between the different scenarios.
Flavio Lehner, Clara Deser, Nicola Maher, Jochem Marotzke, Erich M. Fischer, Lukas Brunner, Reto Knutti, and Ed Hawkins
Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, https://doi.org/10.5194/esd-11-491-2020, 2020
Short summary
Short summary
Projections of climate change are uncertain because climate models are imperfect, future greenhouse gases emissions are unknown and climate is to some extent chaotic. To partition and understand these sources of uncertainty and make the best use of climate projections, large ensembles with multiple climate models are needed. Such ensembles now exist in a public data archive. We provide several novel applications focused on global and regional temperature and precipitation projections.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, and Joaquim G. Pinto
Earth Syst. Dynam., 11, 469–490, https://doi.org/10.5194/esd-11-469-2020, https://doi.org/10.5194/esd-11-469-2020, 2020
Short summary
Short summary
This study presents a large novel data set of climate model simulations for central Europe covering the years 1900–2028 at a 25 km resolution. The focus is on intensive areal precipitation values. The data set is validated against observations using different statistical approaches. The results reveal an adequate quality in a statistical sense as well as some long-term variability with phases of increased and decreased heavy precipitation. The predictions of the near future show continuity.
Anton Laakso, Peter K. Snyder, Stefan Liess, Antti-Ilari Partanen, and Dylan B. Millet
Earth Syst. Dynam., 11, 415–434, https://doi.org/10.5194/esd-11-415-2020, https://doi.org/10.5194/esd-11-415-2020, 2020
Short summary
Short summary
Geoengineering techniques have been proposed to prevent climate warming in the event of insufficient greenhouse gas emission reductions. Simultaneously, these techniques have an impact on precipitation, which depends on the techniques used, geoengineering magnitude, and background circumstances. We separated the independent and dependent components of precipitation responses to temperature, which were then used to explain the precipitation changes in the studied climate model simulations.
Monika J. Barcikowska, Sarah B. Kapnick, Lakshmi Krishnamurty, Simone Russo, Annalisa Cherchi, and Chris K. Folland
Earth Syst. Dynam., 11, 161–181, https://doi.org/10.5194/esd-11-161-2020, https://doi.org/10.5194/esd-11-161-2020, 2020
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Sabrina Hempel, Christoph Menz, Severino Pinto, Elena Galán, David Janke, Fernando Estellés, Theresa Müschner-Siemens, Xiaoshuai Wang, Julia Heinicke, Guoqiang Zhang, Barbara Amon, Agustín del Prado, and Thomas Amon
Earth Syst. Dynam., 10, 859–884, https://doi.org/10.5194/esd-10-859-2019, https://doi.org/10.5194/esd-10-859-2019, 2019
Short summary
Short summary
Decreasing humidity and increasing wind speed regionally alleviate the heat load on farm animals, but future temperature rise considerably increases the heat stress risk. Livestock housed in open barns (or on pastures), such as dairy cattle, is particularly vulnerable. Without adaptation, heat waves will considerably reduce the gross margin of a livestock producer. Negative effects on productivity, health and animal welfare as well as increasing methane and ammonia emissions are expected.
Robert J. H. Dunn, Kate M. Willett, and David E. Parker
Earth Syst. Dynam., 10, 765–788, https://doi.org/10.5194/esd-10-765-2019, https://doi.org/10.5194/esd-10-765-2019, 2019
Short summary
Short summary
Using a sub-daily dataset of in situ observations, we have performed a study to see how the distributions of temperatures and wind speeds have changed over the last 45 years. Changes in the location or shape of these distributions show how extreme temperatures or wind speeds have changed. Our results show that cool extremes are warming more rapidly than warm ones in high latitudes but that in other parts of the world the opposite is true.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Lise S. Graff, Trond Iversen, Ingo Bethke, Jens B. Debernard, Øyvind Seland, Mats Bentsen, Alf Kirkevåg, Camille Li, and Dirk J. L. Olivié
Earth Syst. Dynam., 10, 569–598, https://doi.org/10.5194/esd-10-569-2019, https://doi.org/10.5194/esd-10-569-2019, 2019
Short summary
Short summary
Differences between a 1.5 and a 2.0 °C warmer global climate than 1850 conditions are discussed based on a suite of global atmosphere-only, fully coupled, and slab-ocean runs with the Norwegian Earth System Model. Responses, such as the Arctic amplification of global warming, are stronger with the fully coupled and slab-ocean configurations. While ice-free Arctic summers are rare under 1.5 °C warming in the slab-ocean runs, they are estimated to occur 18 % of the time under 2.0 °C warming.
David Gallego, Ricardo García-Herrera, Francisco de Paula Gómez-Delgado, Paulina Ordoñez-Perez, and Pedro Ribera
Earth Syst. Dynam., 10, 319–331, https://doi.org/10.5194/esd-10-319-2019, https://doi.org/10.5194/esd-10-319-2019, 2019
Short summary
Short summary
By analysing old wind direction observations taken aboard sailing ships, it has been possible to build an index quantifying the moisture transport from the equatorial Pacific into large areas of Central America and northern South America starting in the late 19th century. This transport is deeply related to a low-level jet known as the Choco jet. Our results suggest that the seasonal distribution of the precipitation associated with this transport could have changed over the time.
Jens Heinke, Christoph Müller, Mats Lannerstad, Dieter Gerten, and Wolfgang Lucht
Earth Syst. Dynam., 10, 205–217, https://doi.org/10.5194/esd-10-205-2019, https://doi.org/10.5194/esd-10-205-2019, 2019
Filippo Giorgi, Francesca Raffaele, and Erika Coppola
Earth Syst. Dynam., 10, 73–89, https://doi.org/10.5194/esd-10-73-2019, https://doi.org/10.5194/esd-10-73-2019, 2019
Short summary
Short summary
The paper revisits the critical issue of precipitation characteristics in response to global warming through a new analysis of global and regional climate projections and a summary of previous work. Robust responses are identified and the underlying processes investigated. Examples of applications are given, such as the evaluation of risks associated with extremes. The paper, solicited by the EGU executive office, is based on the 2018 EGU Alexander von Humboldt medal lecture by Filippo Giorgi.
Martin Rückamp, Ulrike Falk, Katja Frieler, Stefan Lange, and Angelika Humbert
Earth Syst. Dynam., 9, 1169–1189, https://doi.org/10.5194/esd-9-1169-2018, https://doi.org/10.5194/esd-9-1169-2018, 2018
Short summary
Short summary
Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 °C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change. The projected sea-level rise ranges between 21–38 mm by 2100
and 36–85 mm by 2300. Our results indicate that uncertainties in the projections stem from the underlying climate data.
Rowan T. Sutton
Earth Syst. Dynam., 9, 1155–1158, https://doi.org/10.5194/esd-9-1155-2018, https://doi.org/10.5194/esd-9-1155-2018, 2018
Short summary
Short summary
The purpose of the Intergovernmental Panel on Climate Change (IPCC) is to provide policy-relevant assessments of the scientific evidence about climate change. Policymaking necessarily involves risk assessments, so it is important that IPCC reports are designed accordingly. This paper proposes a specific idea, illustrated with examples, to improve the contribution of IPCC Working Group I to informing climate risk assessments.
Matthias Aengenheyster, Qing Yi Feng, Frederick van der Ploeg, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1085–1095, https://doi.org/10.5194/esd-9-1085-2018, https://doi.org/10.5194/esd-9-1085-2018, 2018
Short summary
Short summary
We determine the point of no return (PNR) for climate change, which is the latest year to take action to reduce greenhouse gases to stay, with a certain probability, within thresholds set by the Paris Agreement. For a 67 % probability and a 2 K threshold, the PNR is the year 2035 when the share of renewable energy rises by 2 % per year. We show the impact on the PNR of the speed by which emissions are cut, the risk tolerance, climate uncertainties and the potential for negative emissions.
Martha M. Vogel, Jakob Zscheischler, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 1107–1125, https://doi.org/10.5194/esd-9-1107-2018, https://doi.org/10.5194/esd-9-1107-2018, 2018
Short summary
Short summary
Climate change projections of temperature extremes are particularly uncertain in central Europe. We demonstrate that varying soil moisture–atmosphere feedbacks in current climate models leads to an enhancement of model differences; thus, they can explain the large uncertainties in extreme temperature projections. Using an observation-based constraint, we show that the strong drying and large increase in temperatures exhibited by models on the hottest day in central Europe are highly unlikely.
Jie Chen, Yujie Liu, Tao Pan, Yanhua Liu, Fubao Sun, and Quansheng Ge
Earth Syst. Dynam., 9, 1097–1106, https://doi.org/10.5194/esd-9-1097-2018, https://doi.org/10.5194/esd-9-1097-2018, 2018
Short summary
Short summary
Results show that an additional 6.97 million people will be exposed to droughts in China under a 1.5 ºC target relative to reference period, mostly in the east of China. Demographic change is the primary contributor to exposure. Moderate droughts contribute the most to exposure among 3 grades of drought. Our simulations suggest that drought impact on people will continue to be a large threat to China under the 1.5 ºC target. It will be helpful in guiding adaptation and mitigation strategies.
Cited articles
Baldwin, J. W., Dessy, J. B., Vecchi, G. A., and Oppenheimer, M.: Temporally
Compound Heat Wave Events and Global Warming: An Emerging Hazard, Earth's
Future, 7, 411–427, https://doi.org/10.1029/2018EF000989, 2019. a
Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the
midlatitude jet-stream: Can it? Has it? Will it?, Wiley Interdisciplin. Rev.: Clim. Change, 6, 277–286, https://doi.org/10.1002/wcc.337, 2015. a
BC Hydro: Not-so well-conditioned: How inefficient A/C use is leaving British
Columbians out of pocket in the cold,
https://www.google.com/url?q=https://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/news-and-features/bch-ac-report-aug-2020.pdf&sa=D&source=editors&ust=1631004798219000&usg=AOvVaw2Tf3ZD61NG2ahqg_dm7a-k
(last access: 6 July 2021), 2020. a, b
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O. Y. B., Bastriko, V.,
Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P.,
Cadule, P., Caubel, A., Cheru, F., Cozic, A., Cugnet, D., D'Andrea, F.,
Davini, P., de Lavergne, C., Denvil, S., Deshayes, J. M. D., Ducharne, A.,
Dufresne, J.-L., Dupont, E., Ethé, C., Fairhead, L., Falletti, L.,
Foujols, M.-A., Gardoll, S., Gastinea, G. J. G., Grandpeix, J.-Y., Guenet,
B., Guez, L., Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F.,
Idelkadi, A., Joussaume, S., Kageyama, M., Khadre-Traoré, A., Khodri, M.,
Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F.,
Lurton, T., Luyssaert, S. G. M., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thieblemont, R., Traoré, A., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and evaluation of the IPSL-CM6A-LR climate model, J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a
Brewer, M. C., Mass, C. F., and Potter, B. E.: The West Coast Thermal Trough:
Climatology and Synoptic Evolution, Mon. Weather Rev., 140, 3820–3843, https://doi.org/10.1175/MWR-D-12-00078.1, 2012. a
Brewer, M. C., Mass, C. F., and Potter, B. E.: The West Coast Thermal Trough:
Mesoscale Evolution and Sensitivity to Terrain and Surface Fluxes, Mon.
Weather Rev., 141, 2869–2896, https://doi.org/10.1175/MWR-D-12-00305.1, 2013. a
Bumbaco, K. A., Dello, K. D., and Bond, N. A.: History of Pacific Northwest
Heat Waves: Synoptic Pattern and Trends, J. Appl. Meteorol. Clim., 52, 1618–1631, https://doi.org/10.1175/JAMC-D-12-094.1, 2013. a
Chan, D., Vecchi, G., Yang, W., and Huybers, P.: Improved simulation of
19th-and 20th-century North Atlantic hurricane frequency after correcting
historical sea surface temperatures, Sci. Adv., 7, eabg6931, https://doi.org/10.1126/sciadv.abg6931, 2021. a
Chang, E. K. M., Ma, C.-G., Zheng, C., and Yau, A. M. W.: Observed and
projected decrease in Northern Hemisphere extratropical cyclone activity in
summer and its impacts on maximum temperature, Geophys. Res. Lett., 43, 2200–2208, https://doi.org/10.1002/2016GL068172, 2016. a
Christidis, N. and Stott, P. A.: Changes in the geopotential height at 500 hPa under the influence of external climatic forcings, Geophys. Res. Lett., 42, 10798–10806, https://doi.org/10.1002/2015GL066669, 2015. a
Ciavarella, A., Cotterill, D., Stott, P., Kew, S., Philip, S., van Oldenborgh, G. J., Skålevåg, A., Lorenz, P., Robin, Y., Otto, F., Hauser, M., Seneviratne, S. I., Lehner, F., and Zolina, O.: Prolonged Siberian heat of 2020 almost impossible without human influence, Climatic Change, 166, 9, https://doi.org/10.1007/s10584-021-03052-w, 2021. a, b
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, in: Springer Series in Statistics, Springer, London, UK, ISBN 978-1-4471-3675-0, 2001. a
Coumou, D., Lehmann, J., and Beckmann, J.: Climate change. The weakening summer circulation in the Northern Hemisphere mid-latitudes, Science, 348, 324–327, https://doi.org/10.1126/science.1261768, 2015. a
Cowan, T., Hegerl, G. C., Schurer, A., Tett, S. F. B., Vautard, R., Yiou, P.,
Jézéquel, A., Otto, F. E. L., Harrington, L. J., and Ng, B.: Ocean
and land forcing of the record-breaking Dust Bowl heatwaves across central
United States, Nat. Commun., 11, 2870, https://doi.org/10.1038/s41467-020-16676-w, 2020. a
D'Ippoliti, D., Michelozzi, P., Marino, C., de'Donato, F., Menne, B.,
Katsouyanni, K., Kirchmayer, U., Analitis, A., Medina-Ramón, M., Paldy,
A., Atkinson, R., Kovats, S., Bisanti, L., Schneider, A., Lefranc, A.,
Iñiguez, C., and Perucci, C. A.: The impact of heat waves on mortality
in 9 European cities: results from the EuroHEAT project, Environ. Health, 9, 37, https://doi.org/10.1186/1476-069X-9-37, 2010. a
Donat, M. G., King, A. D., Overpeck, J. T., Alexander, L. V., Durre, I., and
Karoly, D. J.: Extraordinary heat during the 1930s US Dust Bowl and associated large-scale conditions, Clim. Dynam., 46, 413–426,
https://doi.org/10.1007/s00382-015-2590-5, 2016. a
Donat, M. G., Pitman, A. J., and Seneviratne, S. I.: Regional warming of hot
extremes accelerated by surface energy fluxes, Geophys. Res. Lett., 44,
7011–7019, https://doi.org/10.1002/2017GL073733, 2017. a
Ebi, K. L.: Effective heat action plans: research to interventions, Environ. Res. Lett., 14, 122001, https://doi.org/10.1088/1748-9326/ab5ab0, 2019. a
Ebi, K. L., Berry, P., Hayes, K., Boyer, C., Sellers, S., Enright, P. M., and
Hess, J. J.: Stress Testing the Capacity of Health Systems to Manage Climate
Change-Related Shocks and Stresses, Int. J. Environ. Res. Publ. Health, 15, 2370, https://doi.org/10.3390/ijerph15112370, 2018. a
Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G.,
Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L.,
Seneviratne, S. I., Vanos, J., and Jay, O.: Hot weather and heat extremes:
health risks, Lancet, 398, 698–708, https://doi.org/10.1016/S0140-6736(21)01208-3,
2021. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., and Windnagel, A. K.: Sea Ice Index, Version 3. Ice Extent; Sea Ice Concentration, NSIDC, https://doi.org/10.7265/N5K072F8, 2017. a
Haarsma, R. J., Selten, F., and van Oldenborgh, G. J.: Anthropogenic changes of the thermal and zonal flow structure over Western Europe and Eastern North
Atlantic in CMIP3 and CMIP5 models, Clim. Dynam., 41, 2577–2588,
https://doi.org/10.1007/s00382-013-1734-8, 2013. a
Haines, A., Kovats, R. S., Campbell-Lendrum, D., and Corvalan, C.: Climate
change and human health: impacts, vulnerability, and mitigation, Lancet,
367, 2101–2109, https://doi.org/10.1016/S0140-6736(06)68933-2, 2006. a
Hall, A., Qu, X., and Neelin, J. D.: Improving predictions of summer climate
change in the United States, Geophys. Res. Lett., 35, L01702, https://doi.org/10.1029/2007GL032012, 2008. a
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global Surface Temperature Change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010. a
Harvey, B. J., Cook, P., Shaffrey, L. C., and Schiemann, R.: The Response of
the Northern Hemisphere Storm Tracks and Jet Streams to Climate Change in the
CMIP3, CMIP5, and CMIP6 Climate Models, J. Geophys. Res.-Atmos., 125, e2020JD032701, https://doi.org/10.1029/2020JD032701, 2020. a
Hauser, M., Orth, R., and Seneviratne, S. I.: Role of soil moisture versus
recent climate change for the 2010 heat wave in western Russia, Geophys.
Res. Lett., 43, 2819–2826, https://doi.org/10.1002/2016GL068036, 2016. a
Hersbach, H., Bell, W., Berrisford, P., Horányi, A. J. M.-S., Nicolas,
J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.: Global
reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newslett., 159, 17–24, https://doi.org/10.21957/vf291hehd7, 2019. a, b, c, d
Hess, J. J. and Ebi, K. L.: Iterative management of heat early warning systems in a changing climate, Ann. NY Acad. Sci., 1382, 21–30, https://doi.org/10.1111/nyas.13258, 2016. a, b
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472, 1996. a
Kew, S. F., Philip, S. Y., Hauser, M., Hobbins, M., Wanders, N., van Oldenborgh, G. J., van der Wiel, K., Veldkamp, T. I. E., Kimutai, J., Funk, C., and Otto, F. E. L.: Impact of precipitation and increasing temperatures on drought trends in eastern Africa, Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, 2021. a
Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J., and
Anslow, F. S.: Attribution of the Influence of Human-Induced Climate Change
on an Extreme Fire Season, Earth's Future, 7, 2–10, https://doi.org/10.1029/2018EF001050, 2019. a
KNMI: Pacific Northwest heat, https://climexp.knmi.nl/pacificheat_timeseries.cgi, last access: 7 December 2022. a
Kornhuber, K. and Tamarin-Brodsky, T.: Future Changes in Northern Hemisphere
Summer Weather Persistence Linked to Projected Arctic Warming, Geophys. Res. Lett., 48, e2020GL091603, https://doi.org/10.1029/2020GL091603, 2021. a
Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J., Engelbrecht, F., Fischer, E., Fyfe, J., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based Projections and Near-Term Information, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, chap. 4, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 553–672, https://doi.org/10.1017/9781009157896.006, 2021. a
Lehmann, J., Coumou, D., Frieler, K., Eliseev, A. V., and Levermann, A.: Future changes in extratropical storm tracks and baroclinicity under climate change, Environ. Res. Lett., 9, 084002, https://doi.org/10.1088/1748-9326/9/8/084002, 2014. a
Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A.,
Ruedy, R., and Zyss, D.: Improvements in the GISTEMP Uncertainty Model, J. Geophys. Res.-Atmos., 124, 6307–6326, https://doi.org/10.1029/2018JD029522, 2019. a
Lubik, A., McKee, G., Chen, T., and Kosatsky, T.: Municipal Heat Response
Planning in British Columbia, Canada, Tech. rep., Environmental Health Services, British Columbia Center for Disease Control, National Collaborating Centre for Environmental Health, British Comumbia, Canada, http://www.bccdc.ca/resource-gallery/Documents/Guidelines and Forms/Guidelines and Manuals/Health-Environment/BC Municipal Heat Response Planning.pdf (last access: 1 December 2022), 2017. a, b
Mueller, B. and Seneviratne, S. I.: Hot days induced by precipitation deficits at the global scale, P. Natl. Acad. Sci. USA, 109, 12398–12403, https://doi.org/10.1073/pnas.1204330109, 2012. a
Neale, R. B., Gettelman, A., Park, S., Conley, A. J., Kinnison, D., Marsh, D., Smith, A. K., Vitt, F., Morrison, H., Cameron-smith, P., Collins, W. D.,
Iacono, M. J., Easter, R. ., Liu, X., Taylor, M. A., chieh Chen, C.,
Lauritzen, P. H., Williamson, D. L., Garcia, R., Francois Lamarque, J., Mills, M., Tilmes, S., Ghan, S. J., Rasch, P. J., and Meteorology, M.:
Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Tech. Note NCAR/TN-486+STR, NCAR – National Center for Atmospheric Research, Boulder, Colorado, 289 pp., https://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf (last access: 1 December 2022), 2010. a
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9,
3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
Pfleiderer, P., Schleussner, C.-F., Kornhuber, K., and Coumou, D.: Summer
weather becomes more persistent in a 2 ∘C world, Nat. Clim. Change, 9, 666–671, https://doi.org/10.1038/s41558-019-0555-0, 2019. a
Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Otto, F. E. L., Vautard, R., van der Wiel, K., King, A. D., Lott, F. C., Arrighi, J., Singh, R. P., and van Aalst, M. K.: A protocol for probabilistic extreme event attribution
analyses, Adv. Stat. Climatol. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, 2020. a, b
Routson, C. C., McKay, N. P., Kaufman, D. S., Erb, M. P., Goosse, H., Shuman,
B. N., Rodysill, J. R., and Ault, T.: Mid-latitude net precipitation decreased with Arctic warming during the Holocene, Nature, 568, 83–87,
https://doi.org/10.1038/s41586-019-1060-3, 2019. a
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture –
climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010. a
Singh, R., Arrighi, J., Jjemba, E., Strachan, K., Spires, M., and
Kadihasanoglu, A.: Heatwave Guide for Cities, Tech. rep., Red Cross Red
Crescent Climate Centre, https://www.climatecentre.org/downloads/files/IFRCGeneva/RCCC Heatwave Guide 2019 A4 RR ONLINE copy.pdf (last access: 1 December 2022), 2019. a
Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Liu, Z., Berner, J., Wang, W., Powers, G., Duda, G., Barker, D., and Yu Huang, X.: A Description of the Advanced Research WRF Model Version 4.3, NCAR/TN-556+STR, NCAR, https://doi.org/10.5065/1dfh-6p97, 2021. a
Stewart, R. E., Betancourt, D., Davies, J. B., Harford, D., Klein, Y.,
Lannigan, R., Mortsch, L., O'Connell, E., Tang, K., and Whitfield, P. H.: A
multi-perspective examination of heat waves affecting Metro Vancouver: now
into the future, Nat. Hazards, 87, 791–815, https://doi.org/10.1007/s11069-017-2793-7, 2017. a
Stone, D. A., Christidis, N., Folland, C., Perkins-Kirkpatrick, S., Perlwitz,
J., Shiogama, H., Wehner, M. F., Wolski, P., Cholia, S., Krishnan, H.,
Murray, D., Angélil, O., Beyerle, U., Ciavarella, A., Dittus, A., Quan,
X.-W., and Tadross, M.: Experiment design of the International CLIVAR C20C+
Detection and Attribution project, Weather Clim. Extrem., 24, 100206, https://doi.org/10.1016/j.wace.2019.100206, 2019. a
Stringfellow, M. and Wagle, D.: The Economics of Homelessness in Seattle and
King County, McKinsey & Company,
https://www.mckinsey.com/featured-insights/future-of-cities/the-economics-of-homelessness-in-seattle-and-king-county
(last access: 4 July 2021), 2018. a
Tang, Q., Zhang, X., and Francis, J. A.: Extreme summer weather in northern
mid-latitudes linked to a vanishing cryosphere, Nat. Clim. Change, 4, 45–50, https://doi.org/10.1038/nclimate2065, 2014. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2011. a
Thiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L., Hauser, M., and
Seneviratne, S. I.: Present-day irrigation mitigates heat extremes, J. Geophys. Res.-Atmos., 122, 1403–1422, https://doi.org/10.1002/2016JD025740, 2017. a
van Oldenborgh, G. J., van der Wiel, K., Kew, S., Philip, S., Otto, F.,
Vautard, R., King, A., Lott, F., Arrighi, J., Singh, R., and van Aalst, M.:
Pathways and pitfalls in extreme event attribution, Climatic Change, 166, 13, https://doi.org/10.1007/s10584-021-03071-7, 2021. a, b
Vautard, R., van Aalst, M. K., Boucher, O., Drouin, A., Haustein, K.,
Kreienkamp, F., van Oldenborgh, G. J., Otto, F. E. L., Ribes, A., Robin, Y.,
Schneider, M., Soubeyroux, J.-M., Stott, P. A., Seneviratne, S. I., Vogel, M. M., and Wehner, M. F.: Human contribution to the record-breaking June and July 2019 heat waves in Western Europe, Environ. Res. Lett., 15, 094077, https://doi.org/10.1088/1748-9326/aba3d4, 2020.
a, b
Vavrus, S.: The Influence of Arctic Amplification on Mid-latitude Weather and
Climate, Curr. Clim. Change Rep., 4, 238–249, https://doi.org/10.1007/s40641-018-0105-2, 2018. a
Vecchi, G. A., Delworth, T., Gudgel, R., Kapnick, S., Rosati, A., Wittenberg,
A. T., Zeng, F., Anderson, W., Balaji, V., Dixon, K., Jia, L., Kim, H.-S., Krishnamurthy, L., Msadek, R., Stern, W. F., Underwood, S. D., Villarini, G., Yang, X., and Zhang, S.: On the seasonal forecasting of regional tropical cyclone activity, J. Climate, 27, 7994–8016, https://doi.org/10.1175/JCLI-D-14-00158.1, 2014. a
Vincent, L. A., Hartwell, M. M., and Wang, X. L.: A Third Generation of
Homogenized Temperature for Trend Analysis and Monitoring Changes in Canada's
Climate, Atmos.-Ocean, 58, 173–191, https://doi.org/10.1080/07055900.2020.1765728,
2020. a, b
Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., and Seneviratne, S. I.:
Identifying Key Driving Processes of Major Recent Heat Waves, J. Geophys. Res.-Atmos., 124, 11746–11765, https://doi.org/10.1029/2019JD030635, 2019. a
Yang, W., Hsieh, T.-L., and Vecchi, G. A.: Hurricane annual cycle controlled by both seeds and genesis probability, P. Natl. Acad. Sci. USA, 118, e2108397118, https://doi.org/10.1073/pnas.2108397118, 2021. a
Chief editor
A paper of clear broad interest.
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding...
Altmetrics
Final-revised paper
Preprint