Articles | Volume 10, issue 2
https://doi.org/10.5194/esd-10-233-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-10-233-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system
Department of Biosciences, Arctic Research Center, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
Jean-François Exbrayat
School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
National Centre for Earth Observation, University of Edinburgh, Edinburgh, EH9 3FF, UK
Magnus Lund
Department of Biosciences, Arctic Research Center, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
Torben R. Christensen
Department of Biosciences, Arctic Research Center, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
Mikkel P. Tamstorf
Department of Biosciences, Arctic Research Center, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
Darren Slevin
School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
Gustaf Hugelius
Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Anthony A. Bloom
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
National Centre for Earth Observation, University of Edinburgh, Edinburgh, EH9 3FF, UK
Related authors
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Xiankun Li, Marleen Pallandt, Dilip Naidu, Johannes Rousk, Gustaf Hugelius, and Stefano Manzoni
Biogeosciences, 22, 2691–2705, https://doi.org/10.5194/bg-22-2691-2025, https://doi.org/10.5194/bg-22-2691-2025, 2025
Short summary
Short summary
While laboratory studies have identified many drivers and their effects on the carbon emission pulse after rewetting of dry soils, a validation with field data is still missing. Here, we show that the carbon emission pulse in the laboratory and in the field increases with soil organic carbon and temperature, but their trends with pre-rewetting dryness and moisture increment at rewetting differ. We conclude that the laboratory findings can be partially validated.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Raphaël Savelli, Dustin Carroll, Dimitris Menemenlis, Jonathan Lauderdale, Clément Bertin, Stephanie Dutkiewicz, Manfredi Manizza, Anthony Bloom, Karel Castro-Morales, Charles E. Miller, Marc Simard, Kevin W. Bowman, and Hong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1707, https://doi.org/10.5194/egusphere-2025-1707, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Accounting for carbon and nutrients in rivers is essential for resolving carbon dioxide (CO2) exchanges between the ocean and the atmosphere. In this study, we add the effect of present-day rivers to a pioneering global-ocean biogeochemistry model. This study highlights the challenge for global ocean numerical models to cover the complexity of the flow of water and carbon across the Land-to-Ocean Aquatic Continuum.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Mathew Williams, David T. Milodowski, T. Luke Smallman, Kyle G. Dexter, Gabi C. Hegerl, Iain M. McNicol, Michael O'Sullivan, Carla M. Roesch, Casey M. Ryan, Stephen Sitch, and Aude Valade
Biogeosciences, 22, 1597–1614, https://doi.org/10.5194/bg-22-1597-2025, https://doi.org/10.5194/bg-22-1597-2025, 2025
Short summary
Short summary
Southern African woodlands are important in both regional and global carbon cycles. A new carbon analysis created by combining satellite data with ecosystem modelling shows that the region has a neutral C balance overall but with important spatial variations. Patterns of biomass and C balance across the region are the outcome of climate controls on production and vegetation–fire interactions, which determine the mortality of vegetation and spatial variations in vegetation function.
Marcos B. Sanches, Manoel Cardoso, Celso von Randow, Chris Jones, and Mathew Williams
EGUsphere, https://doi.org/10.5194/egusphere-2025-942, https://doi.org/10.5194/egusphere-2025-942, 2025
Preprint archived
Short summary
Short summary
This study examines South America's role in the global carbon cycle using flux and stock analyses from CMIP6 Earth System Models. We discuss the continent’s relevance, model-observation agreement, and the impacts of dry and wet years on major biomes. Additionally, we assess model results indicating that parts of South America could shift from carbon sinks to emitters, significantly affecting the global carbon balance.
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2025-1052, https://doi.org/10.5194/egusphere-2025-1052, 2025
Short summary
Short summary
Permafrost soils store vast amounts of organic carbon, key to understanding climate change. This study uses machine learning and combines existing data with new field data to create detailed regional maps of soil carbon and nitrogen stocks for the Yukon coastal plain. The results show how soil properties vary across the landscape highlighting the importance of data selection for accurate predictions. These findings improve carbon storage estimates and may aid regional carbon budget assessments.
Daniela Guasconi, Sara A. O. Cousins, Stefano Manzoni, Nina Roth, and Gustaf Hugelius
SOIL, 11, 233–246, https://doi.org/10.5194/soil-11-233-2025, https://doi.org/10.5194/soil-11-233-2025, 2025
Short summary
Short summary
This study assesses the effects of experimental drought and soil amendment on soil and vegetation carbon pools at different soil depths. Drought consistently reduced soil moisture and aboveground biomass, while compost increased total soil carbon content and aboveground biomass, and effects were more pronounced in the topsoil. Root biomass was not significantly affected by the treatments. The contrasting response of roots and shoots improves our understanding of ecosystem carbon dynamics.
Yi Xi, Philippe Ciais, Dan Zhu, Chunjing Qiu, Yuan Zhang, Shushi Peng, Gustaf Hugelius, Simon P. K. Bowring, Daniel S. Goll, and Ying-Ping Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-206, https://doi.org/10.5194/gmd-2024-206, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Including high-latitude deep carbon is critical for projecting future soil carbon emissions, yet it’s absent in most land surface models. Here we propose a new carbon accumulation protocol by integrating deep carbon from Yedoma deposits and representing the observed history of peat carbon formation in ORCHIDEE-MICT. Our results show an additional 157 PgC in present-day Yedoma deposits and a 1–5 m shallower peat depth, 43 % less passive soil carbon in peatlands against the convention protocol.
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024, https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary
Short summary
The Arctic tundra is experiencing widespread physical and biological changes, largely in response to warming, yet scientific understanding of tundra ecology and change remains limited due to relatively limited accessibility and studies compared to other terrestrial biomes. To support synthesis research and inform future studies, we created the Synthesized Alaskan Tundra Field Dataset (SATFiD), which brings together field datasets and includes vegetation, active-layer, and fire properties.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Hannah Nesser, Daniel J. Jacob, Joannes D. Maasakkers, Alba Lorente, Zichong Chen, Xiao Lu, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Margaux Winter, Shuang Ma, A. Anthony Bloom, John R. Worden, Robert N. Stavins, and Cynthia A. Randles
Atmos. Chem. Phys., 24, 5069–5091, https://doi.org/10.5194/acp-24-5069-2024, https://doi.org/10.5194/acp-24-5069-2024, 2024
Short summary
Short summary
We quantify 2019 methane emissions in the contiguous US (CONUS) at a ≈ 25 km × 25 km resolution using satellite methane observations. We find a 13 % upward correction to the 2023 US Environmental Protection Agency (EPA) Greenhouse Gas Emissions Inventory (GHGI) for 2019, with large corrections to individual states, urban areas, and landfills. This may present a challenge for US climate policies and goals, many of which target significant reductions in methane emissions.
Luana S. Basso, Chris Wilson, Martyn P. Chipperfield, Graciela Tejada, Henrique L. G. Cassol, Egídio Arai, Mathew Williams, T. Luke Smallman, Wouter Peters, Stijn Naus, John B. Miller, and Manuel Gloor
Atmos. Chem. Phys., 23, 9685–9723, https://doi.org/10.5194/acp-23-9685-2023, https://doi.org/10.5194/acp-23-9685-2023, 2023
Short summary
Short summary
The Amazon’s carbon balance may have changed due to forest degradation, deforestation and warmer climate. We used an atmospheric model and atmospheric CO2 observations to quantify Amazonian carbon emissions (2010–2018). The region was a small carbon source to the atmosphere, mostly due to fire emissions. Forest uptake compensated for ~ 50 % of the fire emissions, meaning that the remaining forest is still a small carbon sink. We found no clear evidence of weakening carbon uptake over the period.
David T. Milodowski, T. Luke Smallman, and Mathew Williams
Biogeosciences, 20, 3301–3327, https://doi.org/10.5194/bg-20-3301-2023, https://doi.org/10.5194/bg-20-3301-2023, 2023
Short summary
Short summary
Model–data fusion (MDF) allows us to combine ecosystem models with Earth observation data. Fragmented landscapes, with a mosaic of contrasting ecosystems, pose a challenge for MDF. We develop a novel MDF framework to estimate the carbon balance of fragmented landscapes and show the importance of accounting for ecosystem heterogeneity to prevent scale-dependent bias in estimated carbon fluxes, disturbance fluxes in particular, and to improve ecological fidelity of the calibrated models.
Lukas Rimondini, Thomas Gumbricht, Anders Ahlström, and Gustaf Hugelius
Earth Syst. Sci. Data, 15, 3473–3482, https://doi.org/10.5194/essd-15-3473-2023, https://doi.org/10.5194/essd-15-3473-2023, 2023
Short summary
Short summary
Peatlands have historically sequestrated large amounts of carbon and contributed to atmospheric cooling. However, human activities and climate change may instead turn them into considerable carbon emitters. In this study, we produced high-quality maps showing the extent of peatlands in the forests of Sweden, one of the most peatland-dense countries in the world. The maps are publicly available and may be used to support work promoting sustainable peatland management and combat their degradation.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and T. Luke Smallman
Biogeosciences, 20, 2455–2484, https://doi.org/10.5194/bg-20-2455-2023, https://doi.org/10.5194/bg-20-2455-2023, 2023
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
Xueying Yu, Dylan B. Millet, Daven K. Henze, Alexander J. Turner, Alba Lorente Delgado, A. Anthony Bloom, and Jianxiong Sheng
Atmos. Chem. Phys., 23, 3325–3346, https://doi.org/10.5194/acp-23-3325-2023, https://doi.org/10.5194/acp-23-3325-2023, 2023
Short summary
Short summary
We combine satellite measurements with a novel downscaling method to map global methane emissions at 0.1°×0.1° resolution. These fine-scale emission estimates reveal unreported emission hotspots and shed light on the roles of agriculture, wetlands, and fossil fuels for regional methane budgets. The satellite-derived emissions point in particular to missing fossil fuel emissions in the Middle East and to a large emission underestimate in South Asia that appears to be tied to monsoon rainfall.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022, https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
John R. Worden, Daniel H. Cusworth, Zhen Qu, Yi Yin, Yuzhong Zhang, A. Anthony Bloom, Shuang Ma, Brendan K. Byrne, Tia Scarpelli, Joannes D. Maasakkers, David Crisp, Riley Duren, and Daniel J. Jacob
Atmos. Chem. Phys., 22, 6811–6841, https://doi.org/10.5194/acp-22-6811-2022, https://doi.org/10.5194/acp-22-6811-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: 1) describe a new algorithm by which remotely sensed measurements of methane or other tracers can be used to not just quantify methane fluxes, but also attribute these fluxes to specific sources and regions and characterize their uncertainties, and 2) use this new algorithm to provide methane emissions by sector and country in support of the global stock take.
Elias C. Massoud, A. Anthony Bloom, Marcos Longo, John T. Reager, Paul A. Levine, and John R. Worden
Hydrol. Earth Syst. Sci., 26, 1407–1423, https://doi.org/10.5194/hess-26-1407-2022, https://doi.org/10.5194/hess-26-1407-2022, 2022
Short summary
Short summary
The water balance on river basin scales depends on a number of soil physical processes. Gaining information on these quantities using observations is a key step toward improving the skill of land surface hydrology models. In this study, we use data from the Gravity Recovery and Climate Experiment (NASA-GRACE) to inform and constrain these hydrologic processes. We show that our model is able to simulate the land hydrologic cycle for a watershed in the Amazon from January 2003 to December 2012.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev., 15, 1789–1802, https://doi.org/10.5194/gmd-15-1789-2022, https://doi.org/10.5194/gmd-15-1789-2022, 2022
Short summary
Short summary
Global carbon and water have large uncertainties that are hard to quantify in current regional and global models. Field observations provide opportunities for better calibration and validation of current modeling of carbon and water. With the unique structure of CARDAMOM, we have utilized the data assimilation capability and designed the benchmarking framework by using field observations in modeling. Results show that data assimilation improves model performance in different aspects.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Xiao Lu, Daniel J. Jacob, Haolin Wang, Joannes D. Maasakkers, Yuzhong Zhang, Tia R. Scarpelli, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Hannah Nesser, A. Anthony Bloom, Shuang Ma, John R. Worden, Shaojia Fan, Robert J. Parker, Hartmut Boesch, Ritesh Gautam, Deborah Gordon, Michael D. Moran, Frances Reuland, Claudia A. Octaviano Villasana, and Arlyn Andrews
Atmos. Chem. Phys., 22, 395–418, https://doi.org/10.5194/acp-22-395-2022, https://doi.org/10.5194/acp-22-395-2022, 2022
Short summary
Short summary
We evaluate methane emissions and trends for 2010–2017 in the gridded national emission inventories for the United States, Canada, and Mexico by inversion of in situ and satellite methane observations. We find that anthropogenic methane emissions for all three countries are underestimated in the national inventories, largely driven by oil emissions. Anthropogenic methane emissions in the US peak in 2014, in contrast to the report of a steadily decreasing trend over 2010–2017 from the US EPA.
Thomas Luke Smallman, David Thomas Milodowski, Eráclito Sousa Neto, Gerbrand Koren, Jean Ometto, and Mathew Williams
Earth Syst. Dynam., 12, 1191–1237, https://doi.org/10.5194/esd-12-1191-2021, https://doi.org/10.5194/esd-12-1191-2021, 2021
Short summary
Short summary
Our study provides a novel assessment of model parameter, structure and climate change scenario uncertainty contribution to future predictions of the Brazilian terrestrial carbon stocks to 2100. We calibrated (2001–2017) five models of the terrestrial C cycle of varied structure. The calibrated models were then projected to 2100 under multiple climate change scenarios. Parameter uncertainty dominates overall uncertainty, being ~ 40 times that of either model structure or climate change scenario.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Zhen Qu, Daniel J. Jacob, Lu Shen, Xiao Lu, Yuzhong Zhang, Tia R. Scarpelli, Hannah Nesser, Melissa P. Sulprizio, Joannes D. Maasakkers, A. Anthony Bloom, John R. Worden, Robert J. Parker, and Alba L. Delgado
Atmos. Chem. Phys., 21, 14159–14175, https://doi.org/10.5194/acp-21-14159-2021, https://doi.org/10.5194/acp-21-14159-2021, 2021
Short summary
Short summary
The recent launch of TROPOMI offers an unprecedented opportunity to quantify the methane budget from a top-down perspective. We use TROPOMI and the more mature GOSAT methane observations to estimate methane emissions and get consistent global budgets. However, TROPOMI shows biases over regions where surface albedo is small and provides less information for the coarse-resolution inversion due to the larger error correlations and spatial variations in the number of observations.
Yi Yin, Frederic Chevallier, Philippe Ciais, Philippe Bousquet, Marielle Saunois, Bo Zheng, John Worden, A. Anthony Bloom, Robert J. Parker, Daniel J. Jacob, Edward J. Dlugokencky, and Christian Frankenberg
Atmos. Chem. Phys., 21, 12631–12647, https://doi.org/10.5194/acp-21-12631-2021, https://doi.org/10.5194/acp-21-12631-2021, 2021
Short summary
Short summary
The growth of methane, the second-most important anthropogenic greenhouse gas after carbon dioxide, has been accelerating in recent years. Using an ensemble of multi-tracer atmospheric inversions constrained by surface or satellite observations, we show that global methane emissions increased by nearly 1 % per year from 2010–2017, with leading contributions from the tropics and East Asia.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Xiao Lu, Daniel J. Jacob, Yuzhong Zhang, Joannes D. Maasakkers, Melissa P. Sulprizio, Lu Shen, Zhen Qu, Tia R. Scarpelli, Hannah Nesser, Robert M. Yantosca, Jianxiong Sheng, Arlyn Andrews, Robert J. Parker, Hartmut Boesch, A. Anthony Bloom, and Shuang Ma
Atmos. Chem. Phys., 21, 4637–4657, https://doi.org/10.5194/acp-21-4637-2021, https://doi.org/10.5194/acp-21-4637-2021, 2021
Short summary
Short summary
We use an analytical solution to the Bayesian inverse problem to quantitatively compare and combine the information from satellite and in situ observations, and to estimate global methane budget and their trends over the 2010–2017 period. We find that satellite and in situ observations are to a large extent complementary in the inversion for estimating global methane budget, and reveal consistent corrections of regional anthropogenic and wetland methane emissions relative to the prior inventory.
Joannes D. Maasakkers, Daniel J. Jacob, Melissa P. Sulprizio, Tia R. Scarpelli, Hannah Nesser, Jianxiong Sheng, Yuzhong Zhang, Xiao Lu, A. Anthony Bloom, Kevin W. Bowman, John R. Worden, and Robert J. Parker
Atmos. Chem. Phys., 21, 4339–4356, https://doi.org/10.5194/acp-21-4339-2021, https://doi.org/10.5194/acp-21-4339-2021, 2021
Short summary
Short summary
We use 2010–2015 GOSAT satellite observations of atmospheric methane over North America in a high-resolution inversion to estimate methane emissions. We find general consistency with the gridded EPA inventory but higher oil and gas production emissions, with oil production emissions twice as large as in the latest EPA Greenhouse Gas Inventory. We find lower wetland emissions than predicted by WetCHARTs and a small increasing trend in the eastern US, apparently related to unconventional oil/gas.
Yuzhong Zhang, Daniel J. Jacob, Xiao Lu, Joannes D. Maasakkers, Tia R. Scarpelli, Jian-Xiong Sheng, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Jinfeng Chang, A. Anthony Bloom, Shuang Ma, John Worden, Robert J. Parker, and Hartmut Boesch
Atmos. Chem. Phys., 21, 3643–3666, https://doi.org/10.5194/acp-21-3643-2021, https://doi.org/10.5194/acp-21-3643-2021, 2021
Short summary
Short summary
We use 2010–2018 satellite observations of atmospheric methane to interpret the factors controlling atmospheric methane and its accelerating increase during the period. The 2010–2018 increase in global methane emissions is driven by tropical and boreal wetlands and tropical livestock (South Asia, Africa, Brazil), with an insignificant positive trend in emissions from the fossil fuel sector. The peak methane growth rates in 2014–2015 are also contributed by low OH and high fire emissions.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Xueying Yu, Dylan B. Millet, Kelley C. Wells, Daven K. Henze, Hansen Cao, Timothy J. Griffis, Eric A. Kort, Genevieve Plant, Malte J. Deventer, Randall K. Kolka, D. Tyler Roman, Kenneth J. Davis, Ankur R. Desai, Bianca C. Baier, Kathryn McKain, Alan C. Czarnetzki, and A. Anthony Bloom
Atmos. Chem. Phys., 21, 951–971, https://doi.org/10.5194/acp-21-951-2021, https://doi.org/10.5194/acp-21-951-2021, 2021
Short summary
Short summary
Methane concentrations have doubled since 1750. The US Upper Midwest is a key region contributing to such trends, but sources are poorly understood. We collected and analyzed aircraft data to resolve spatial and timing biases in wetland and livestock emission estimates and uncover errors in inventory treatment of manure management. We highlight the importance of intensive agriculture for the regional and US methane budgets and the potential for methane mitigation through improved management.
Sudhanshu Pandey, Sander Houweling, Alba Lorente, Tobias Borsdorff, Maria Tsivlidou, A. Anthony Bloom, Benjamin Poulter, Zhen Zhang, and Ilse Aben
Biogeosciences, 18, 557–572, https://doi.org/10.5194/bg-18-557-2021, https://doi.org/10.5194/bg-18-557-2021, 2021
Short summary
Short summary
We use atmospheric methane observations from the novel TROPOspheric Monitoring Instrument (TROPOMI; Sentinel-5p) to estimate methane emissions from South Sudan's wetlands. Our emission estimates are an order of magnitude larger than the estimate of process-based wetland models. We find that this underestimation by the models is likely due to their misrepresentation of the wetlands' inundation extent and temperature dependences.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020, https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Short summary
Wetlands contribute the largest uncertainty to the atmospheric methane budget. WetCHARTs is a simple, data-driven model that estimates wetland emissions using observations of precipitation and temperature. We perform the first detailed evaluation of WetCHARTs against satellite data and find it performs well in reproducing the observed wetland methane seasonal cycle for the majority of wetland regions. In regions where it performs poorly, we highlight incorrect wetland extent as a key reason.
Cited articles
Ahlström, A., Schurgers, G., Arneth, A., and Smith, B.: Robustness and
uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change
projections, Environ. Res. Lett., 7, 044008, https://doi.org/10.1088/1748-9326/7/4/044008, 2012.
Akihiko, I., Kazuya, N., Christopher, P. O. R., Louis, F., Alexandra-Jane, H.,
Guy, M., Ingrid, J., Hanqin, T., Jia, Y., Shufen, P., Catherine, M., Richard,
B., Thomas, H., Jörg, S., Sebastian, O., Sibyll, S., Philippe, C., Jinfeng,
C., Rashid, R., Ning, Z., and Fang, Z.: Photosynthetic productivity and its
efficiencies in ISIMIP2a biome models: benchmarking for impact assessment
studies, Environ. Res. Lett., 12, 085001, https://doi.org/10.1088/1748-9326/aa7a19, 2017.
AMAP: Snow, water, ice and permafrost in the Arctic (SWIPA) 2017, Arctic
Monitoring and Assessment Programme (AMAP) Oslo, Norway, xiv + 269 pp., 2017.
Anav, A., Murray-Tortarolo, G., Friedlingstein, P., Sitch, S., Piao, S., and
Zhu, Z.: Evaluation of Land Surface Models in Reproducing Satellite Derived
Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth
System Models, Remote Sensing, 5, 3637, https://doi.org/10.3390/rs5083637, 2013.
Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE T.
Signal Process., 50, 174-188, https://doi.org/10.1109/78.978374, 2002.
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon
dioxide exchange rates of ecosystems: past, present and future, Global Change
Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N.,
Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A.,
Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H.,
Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward,
F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global
Distribution and Covariation with Climate, Science, 329, 5993, https://doi.org/10.1126/science.1184984, 2010.
Belelli Marchesini, L., Papale, D., Reichstein, M., Vuichard, N., Tchebakova,
N., and Valentini, R.: Carbon balance assessment of a natural steppe of southern
Siberia by multiple constraint approach, Biogeosciences, 4, 581–595,
https://doi.org/10.5194/bg-4-581-2007, 2007.
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nature Clim. Change,
7, 263–267, https://doi.org/10.1038/nclimate3240, 2017.
Bloom, A. A. and Williams, M.: Constraining ecosystem carbon dynamics in a
data-limited world: integrating ecological “common sense” in a model–data
fusion framework, Biogeosciences, 12, 1299–1315, https://doi.org/10.5194/bg-12-1299-2015, 2015.
Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L., and Williams, M.:
The decadal state of the terrestrial carbon cycle: Global retrievals of
terrestrial carbon allocation, pools, and residence times, P. Natl. Acad.
Sci. USA, 113, 1285–1290, https://doi.org/10.1073/pnas.1515160113, 2016.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: Net primary production and net
ecosystem production of a boreal black spruce wildfire chronosequence, Global
Change Biol., 10, 473–487, https://doi.org/10.1111/j.1529-8817.2003.0742.x, 2004.
Bontemps, S., Defourny, P., Bogaert, E., Arino, O., Kalogirou, V., and Perez,
J.: GLOBCOVER 2009 – Products description and validation report, UCLouvain & ESA Team, 2011.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-Arctic map of permafrost and ground-ice conditions, Report 45,
US Geological Survey, 1997.
Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis,
E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., and Marland,
G.: Contributions to accelerating atmospheric CO2 growth from economic
activity, carbon intensity, and efficiency of natural sinks, P. Natl. Acad. Sci.
USA, 104, 18866–18870, https://doi.org/10.1073/pnas.0702737104, 2007.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M.,
Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti,
A., Randerson, J. T., and Reichstein, M.: Global covariation of carbon turnover
times with climate in terrestrial ecosystems, Nature, 514, 213–217,
https://doi.org/10.1038/nature13731, 2014.
Commane, R., Lindaas, J., Benmergui, J., Luus, K. A., Chang, R. Y.-W., Daube,
B. C., Euskirchen, E. S., Henderson, J. M., Karion, A., Miller, J. B., Miller,
S. M., Parazoo, N. C., Randerson, J. T., Sweeney, C., Tans, P., Thoning, K.,
Veraverbeke, S., Miller, C. E., and Wofsy, S. C.: Carbon dioxide sources from
Alaska driven by increasing early winter respiration from Arctic tundra, P.
Natl. Acad. Sci. USA, 114, 5361–5366, https://doi.org/10.1073/pnas.1618567114, 2017.
Cox, P. M.: Description of the “TRIFFID” Dynamic Global Vegetation Model,
Hadley Centre technical note 24, Met Office, UK, 2001.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm,
E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay,
P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
De Kauwe, M. G., Disney, M. I., Quaife, T., Lewis, P., and Williams, M.: An
assessment of the MODIS collection 5 leaf area index product for a region of
mixed coniferous forest, Remote Sens. Environ., 115, 767–780, https://doi.org/10.1016/j.rse.2010.11.004, 2011.
DeLucia, E. H., Drake, J. E., Thomas, R. B., and Gonzalez-Meler, M.: Forest
carbon use efficiency: is respiration a constant fraction of gross primary
production?, Global Change Biol., 13, 1157–1167, https://doi.org/10.1111/j.1365-2486.2007.01365.x, 2007.
Dietze, M. C.: Ecological Forecasting, Princeton University Press, Princeton, 2017.
Exbrayat, J. F. and Williams, M.: CARDAMOM panarctic retrievals 2000–2015,
2000–2015 [Dataset], National Centre for Earth Observation and School of
GeoSciences, University of Edinburgh, https://doi.org/10.7488/ds/2334, 2018.
Exbrayat, J.-F., Pitman, A. J., and Abramowitz, G.: Response of microbial
decomposition to spin-up explains CMIP5 soil carbon range until 2100, Geosci.
Model Dev., 7, 2683–2692, https://doi.org/10.5194/gmd-7-2683-2014, 2014.
Exbrayat, J.-F. and Williams, M.: CARDAMOM panarctic retrievals 2000–2015,
National Centre for Earth Observation and School of GeoSciences, University of
Edinburgh, https://doi.org/10.7488/ds/2334, 2018.
Exbrayat, J. F., Bloom, A. A., Falloon, P., Ito, A., Smallman, T. L., and
Williams, M.: Reliability ensemble averaging of 21st century projections of
terrestrial net primary productivity reduces global and regional uncertainties,
Earth Syst. Dynam., 9, 153–165, https://doi.org/10.5194/esd-9-153-2018, 2018.
FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database (version 1.21),
FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012.
Fer, I., Kelly, R., Moorcroft, P. R., Richardson, A. D., Cowdery, E. M., and
Dietze, M. C.: Linking big models to big data: efficient ecosystem model
calibration through Bayesian model emulation, Biogeosciences, 15, 5801–5830,
https://doi.org/10.5194/bg-15-5801-2018, 2018.
Fisher, J. B., Sikka, M., Oechel, W. C., Huntzinger, D. N., Melton, J. R.,
Koven, C. D., Ahlström, A., Arain, M. A., Baker, I., Chen, J. M., Ciais,
P., Davidson, C., Dietze, M., El-Masri, B., Hayes, D., Huntingford, C., Jain,
A. K., Levy, P. E., Lomas, M. R., Poulter, B., Price, D., Sahoo, A. K., Schaefer,
K., Tian, H., Tomelleri, E., Verbeeck, H., Viovy, N., Wania, R., Zeng, N., and
Miller, C. E.: Carbon cycle uncertainty in the Alaskan Arctic, Biogeosciences,
11, 4271–4288, https://doi.org/10.5194/bg-11-4271-2014, 2014.
Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M.,
Thonicke, K., Zaehle, S., and Reichstein, M.: Enhanced seasonal CO2
exchange caused by amplified plant productivity in northern ecosystems, Science,
351, 696–699, https://doi.org/10.1126/science.aac4971, 2016.
Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife, T.,
Ricciuto, D., Reichstein, M., Tomelleri, E., Trudinger, C. M., and Van Wijk, M.
T.: The REFLEX project: Comparing different algorithms and implementations for
the inversion of a terrestrial ecosystem model against eddy covariance data,
Agr. Forest Meteorol., 149, 1597–1615, https://doi.org/10.1016/j.agrformet.2009.05.002, 2009.
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 Climate Projections
due to Carbon Cycle Feedbacks, J. Climate, 27, 511–526, https://doi.org/10.1175/jcli-d-12-00579.1, 2014.
Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule,
P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P. D., Ito, A., Kahana, R.,
Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick, R., Peylin, P.,
Schaphoff, S., Vuichard, N., Warszawski, L., Wiltshire, A., and Woodward, F. I.:
Carbon residence time dominates uncertainty in terrestrial vegetation responses
to future climate and atmospheric CO2, P. Natl. Acad. Sci. USA, 111,
3280–3285, https://doi.org/10.1073/pnas.1222477110, 2014.
Goetz, S. J., Bunn, A. G., Fiske, G. J., and Houghton, R. A.: Satellite-observed
photosynthetic trends across boreal North America associated with climate and
fire disturbance, P. Natl. Acad. Sci. USA, 102, 13521–13525, https://doi.org/10.1073/pnas.0506179102, 2005.
Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., and Wofsy, S. C.:
Exchange of Carbon Dioxide by a Deciduous Forest: Response to Interannual
Climate Variability, Science, 271, 1576–1578, https://doi.org/10.1126/science.271.5255.1576, 1996.
Goulden, M. L., McMillan, A. M. S., Winston, G. C., Rocha, A. V., Manies, K. L.,
Harden, J. W., and Bond-Lamberty, B. P.: Patterns of NPP, GPP, respiration, and
NEP during boreal forest succession, Global Change Biol., 17, 855–871,
https://doi.org/10.1111/j.1365-2486.2010.02274.x, 2011.
Graven, H. D., Keeling, R. F., Piper, S. C., Patra, P. K., Stephens, B. B.,
Wofsy, S. C., Welp, L. R., Sweeney, C., Tans, P. P., Kelley, J. J., Daube, B.
C., Kort, E. A., Santoni, G. W., and Bent, J. D.: Enhanced Seasonal Exchange
of CO2 by Northern Ecosystems Since 1960, Science, 341, 1085–1089,
https://doi.org/10.1126/science.1239207, 2013.
Guimberteau, M., Zhu, D., Maignan, F., Huang, Y., Yue, C., Dantec-Nédélec,
S., Ottlé, C., Jornet-Puig, A., Bastos, A., Laurent, P., Goll, D., Bowring,
S., Chang, J., Guenet, B., Tifafi, M., Peng, S., Krinner, G., Ducharne, A.,
Wang, F., Wang, T., Wang, X., Wang, Y., Yin, Z., Lauerwald, R., Joetzjer, E.,
Qiu, C., Kim, H., and Ciais, P.: ORCHIDEE-MICT (v8.4.1), a land surface model
for the high latitudes: model description and validation, Geosci. Model Dev.,
11, 121–163, https://doi.org/10.5194/gmd-11-121-2018, 2018.
Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., and
Reichstein, M.: Global spatiotemporal distribution of soil respiration modeled
using a global database, Biogeosciences, 12, 4121–4132, https://doi.org/10.5194/bg-12-4121-2015, 2015.
He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S., Allison,
S. D., and Randerson, J. T.: Radiocarbon constraints imply reduced carbon uptake
by soils during the 21st century, Science, 353, 1419–1424, https://doi.org/10.1126/science.aad4273, 2016.
Hill, T. C., Ryan, E., and Williams, M.: The use of CO2 flux time
series for parameter and carbon stock estimation in carbon cycle research,
Global Change Biol., 18, 179–193, https://doi.org/10.1111/j.1365-2486.2011.02511.x, 2012.
Hobbie, J. E. and Kling, G. W.: Alaska's changing Arctic: Ecological consequences
for tundra, streams, and lakes, Oxford University Press, Oxford, 2014.
Hobbie, S. E., Schimel, J. P., Trumbore, S. E., and Randerson, J. R.: Controls
over carbon storage and turnover in high-latitude soils, Global Change Biol.,
6, 196–210, https://doi.org/10.1046/j.1365-2486.2000.06021.x, 2000.
Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., Harden,
J. W., Johnson, K., Jorgenson, T., Koven, C. D., Kuhry, P., Michaelson, G.,
Mishra, U., Palmtag, J., Ping, C. L., O'Donnell, J., Schirrmeister, L., Schuur,
E. A. G., Sheng, Y., Smith, L. C., Strauss, J., and Yu, Z.: A new data set for
estimating organic carbon storage to 3 m depth in soils of the northern
circumpolar permafrost region, Earth Syst. Sci. Data, 5, 393–402,
https://doi.org/10.5194/essd-5-393-2013, 2013a.
Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson,
D. K.: The Northern Circumpolar Soil Carbon Database: spatially distributed
datasets of soil coverage and soil carbon storage in the northern permafrost
regions, Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, 2013b.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping,
C. L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell,
J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry,
P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty
ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Ikawa, H., Nakai, T., Busey, R. C., Kim, Y., Kobayashi, H., Nagai, S., Ueyama,
M., Saito, K., Nagano, H., Suzuki, R., and Hinzman, L.: Understory CO2,
sensible heat, and latent heat fluxes in a black spruce forest in interior
Alaska, Agr. Forest Meteorol., 214–215, 80–90, https://doi.org/10.1016/j.agrformet.2015.08.247, 2015.
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Ito, A. and Inatomi, M.: Water-Use Efficiency of the Terrestrial Biosphere: A
Model Analysis Focusing on Interactions between the Global Carbon and Water
Cycles, J. Hydrometeorol., 13, 681–694, https://doi.org/10.1175/jhm-d-10-05034.1, 2012.
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., and
Piñeiro, G.: The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic
and Abiotic Controls, Annu. Rev. Ecol. Evol. Syst., 48, 419–445,
https://doi.org/10.1146/annurev-ecolsys-112414-054234, 2017.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res.-Biogeo., 116,
G00J07, https://doi.org/10.1029/2010JG001566, 2011.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein, P.,
Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B., Raduly, B.,
Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P., Weber, U., Zaehle,
S., and Zeng, N.: Compensatory water effects link yearly global land CO2
sink changes to temperature, Nature, 541, 516–520, https://doi.org/10.1038/nature20780, 2017.
Kimball, J. S., Jones, L. A., Zhang, K., Heinsch, F. A., McDonald, K. C., and
Oechel, W.: A Satellite Approach to Estimate Land CO2 Exchange for
Boreal and Arctic Biomes Using MODIS and AMSR-E, IEEE T. Geosci. Remote, 47,
569–587, https://doi.org/10.1109/TGRS.2008.2003248, 2009.
Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P.,
Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate
feedbacks accelerate global warming, P. Natl. Acad. Sci. USA, 108, 14769–14774,
https://doi.org/10.1073/pnas.1103910108, 2011.
Koven, C. D., Schuur, E. A. G., Schädel, C., Bohn, T. J., Burke, E. J.,
Chen, G., Chen, X., Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius,
G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H.,
Marchenko, S. S., McGuire, A. D., Natali, S. M., Nicolsky, D. J., Olefeldt, D.,
Peng, S., Romanovsky, V. E., Schaefer, K. M., Strauss, J., Treat, C. C., and
Turetsky, M.: A simplified, data-constrained approach to estimate the permafrost
carbon–climate feedback, Philos. T. Roy. Soc. A, 373, 20140423, https://doi.org/10.1098/rsta.2014.0423, 2015.
Koven, C. D., Hugelius, G., Lawrence, D. M., and Wieder, W. R.: Higher
climatological temperature sensitivity of soil carbon in cold than warm climates,
Nat. Clim. Change, 7, 817–822, https://doi.org/10.1038/nclimate3421, 2017.
Kutzbach, L., Wille, C., and Pfeiffer, E.-M.: The exchange of carbon dioxide
between wet arctic tundra and the atmosphere at the Lena River Delta, Northern
Siberia, Biogeosciences, 4, 869–890, https://doi.org/10.5194/bg-4-869-2007, 2007.
Lafleur, P. M., Humphreys, E. R., St. Louis, V. L., Myklebust, M. C.,
Papakyriakou, T., Poissant, L., Barker, J. D., Pilote, M., and Swystun, K. A.:
Variation in Peak Growing Season Net Ecosystem Production Across the Canadian
Arctic, Environ. Sci. Technol., 46, 7971–7977, https://doi.org/10.1021/es300500m, 2012.
Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr,
A., Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem exchange into
assimilation and respiration using a light response curve approach: critical
issues and global evaluation, Global Change Biol., 16, 187–208, https://doi.org/10.1111/j.1365-2486.2009.02041.x, 2010.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C.,
Lawrence, P. J., Zeng, X., Yang, Z. L., Levis, S., Sakaguchi, K., Bonan, G. B.,
and Slater, A. G.: Parameterization improvements and functional and structural
advances in Version 4 of the Community Land Model, J. Adv. Model. Earth Syst.,
3, M03001, https://doi.org/10.1029/2011MS00045, 2011.
Levy, P. E., Friend, A. D., White, A., and Cannell, M. G. R.: The Influence
of Land Use Change On Global-Scale Fluxes of Carbon from Terrestrial Ecosystems,
Climatic Change, 67, 185–209, https://doi.org/10.1007/s10584-004-2849-z, 2004.
López-Blanco, E., Lund, M., Williams, M., Tamstorf, M. P., Westergaard-Nielsen,
A., Exbrayat, J. F., Hansen, B. U., and Christensen, T. R.: Exchange of
CO2 in Arctic tundra: impacts of meteorological variations and
biological disturbance, Biogeosciences, 14, 4467–4483, https://doi.org/10.5194/bg-14-4467-2017, 2017.
López-Blanco, E., Lund, M., Christensen, T. R., Tamstorf, M. P., Smallman,
T. L., Slevin, D., Westergaard-Nielsen, A., Hansen, B. U., Abermann, J., and
Williams, M.: Plant Traits are Key Determinants in Buffering the Meteorological
Sensitivity of Net Carbon Exchanges of Arctic Tundra, J. Geophys. Res.-Biogeo.,
123, 2675–2694, https://doi.org/10.1029/2018JG004386, 2018.
Lucht, W., Prentice, I. C., Myneni, R. B., Sitch, S., Friedlingstein, P.,
Cramer, W., Bousquet, P., Buermann, W., and Smith, B.: Climatic Control of the
High-Latitude Vegetation Greening Trend and Pinatubo Effect, Science, 296,
1687–1689, https://doi.org/10.1126/science.1071828, 2002.
Lund, M., Falk, J. M., Friborg, T., Mbufong, H. N., Sigsgaard, C., Soegaard,
H., and Tamstorf, M. P.: Trends in CO2 exchange in a high Arctic
tundra heath, 2000–2010, J. Geophys. Res.-Biogeo., 117, G02001, https://doi.org/10.1029/2011JG001901, 2012.
Lund, M., Raundrup, K., Westergaard-Nielsen, A., López-Blanco, E., Nymand,
J., and Aastrup, P.: Larval outbreaks in West Greenland: Instant and subsequent
effects on tundra ecosystem productivity and CO2 exchange, Ambio, 46,
26–38, https://doi.org/10.1007/s13280-016-0863-9, 2017.
Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., and Zhang, L.: Parameter
identifiability, constraint, and equifinality in data assimilation with
ecosystem models, Ecol. Appl., 19, 571–574, https://doi.org/10.1890/08-0561.1, 2009.
Mack, M. C., Bret-Harte, M. S., Hollingsworth, T. N., Jandt, R. R., Schuur, E.
A. G., Shaver, G. R., and Verbyla, D. L.: Carbon loss from an unprecedented
Arctic tundra wildfire, Nature, 475, 489–492, https://doi.org/10.1038/nature10283, 2011.
Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S., Strom, L.,
Tamstorf, M. P., and Christensen, T. R.: Large tundra methane burst during
onset of freezing, Nature, 456, 628–630, https://doi.org/10.1038/nature07464, 2008.
McGuire, A. D., Melillo, J. M., Randerson, J. T., Parton, W. J., Heimann, M.,
Meier, R. A., Clein, J. S., Kicklighter, D. W., and Sauf, W.: Modeling the
effects of snowpack on heterotrophic respiration across northern temperate and
high latitude regions: Comparison with measurements of atmospheric carbon
dioxide in high latitudes, Biogeochemistry, 48, 91–114, https://doi.org/10.1023/a:1006286804351, 2000.
McGuire, A. D., Hayes, D., Kicklighter, D. W., Manizza, M., Zhuang, Q., Chen,
M., Follows, M. J., Gurney, K. R., Mcclelland, J. W., Melillo, J. M., Peterson,
B. J., and Prinn, R. G.: An analysis of the carbon balance of the Arctic Basin
from 1997 to 2006, Tellus B, 62, 455–474, https://doi.org/10.1111/j.1600-0889.2010.00497.x, 2010.
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E.,
Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P.,
Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic tundra:
comparisons among observations, process models, and atmospheric inversions,
Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012, 2012.
Murray-Tortarolo, G., Anav, A., Friedlingstein, P., Sitch, S., Piao, S., Zhu,
Z., Poulter, B., Zaehle, S., Ahlström, A., Lomas, M., Levis, S., Viovy, N.,
and Zeng, N.: Evaluation of Land Surface Models in Reproducing Satellite-Derived
LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs, Remote
Sensing, 5, 4819, https://doi.org/10.3390/rs5104819, 2013.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok,
D., Tape, K. D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E.,
Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Siegwart, C. L., Weijers,
S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub, G., Wipf, S.,
Rixen, C., Ménard, C. B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf,
S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H. E., and Hik, D. S.:
Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities,
Environ. Res. Lett., 6, 045509, https://doi.org/10.1088/1748-9326/6/4/045509, 2011.
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.:
Increased plant growth in the northern high latitudes from 1981 to 1991, Nature,
386, 698–702, https://doi.org/10.1038/386698a0, 1997.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian,
Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M.,
Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global
products of vegetation leaf area and fraction absorbed PAR from year one of
MODIS data, Remote Sens. Environ., 83, 214–231, https://doi.org/10.1016/S0034-4257(02)00074-3, 2002.
Nishina, K., Ito, A., Beerling, D. J., Cadule, P., Ciais, P., Clark, D. B.,
Falloon, P., Friend, A. D., Kahana, R., Kato, E., Keribin, R., Lucht, W., Lomas,
M., Rademacher, T. T., Pavlick, R., Schaphoff, S., Vuichard, N., Warszawaski,
L., and Yokohata, T.: Quantifying uncertainties in soil carbon responses to
changes in global mean temperature and precipitation, Earth Syst. Dynam., 5,
197–209, https://doi.org/10.5194/esd-5-197-2014, 2014.
Nishina, K., Ito, A., Falloon, P., Friend, A. D., Beerling, D. J., Ciais, P.,
Clark, D. B., Kahana, R., Kato, E., Lucht, W., Lomas, M., Pavlick, R., Schaphoff,
S., Warszawaski, L., and Yokohata, T.: Decomposing uncertainties in the future
terrestrial carbon budget associated with emission scenarios, climate projections,
and ecosystem simulations using the ISI-MIP results, Earth Syst. Dynam., 6,
435–445, https://doi.org/10.5194/esd-6-435-2015, 2015.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W.,
Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a
standardized processing of Net Ecosystem Exchange measured with eddy covariance
technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583,
https://doi.org/10.5194/bg-3-571-2006, 2006.
Parazoo, N. C., Koven, C. D., Lawrence, D. M., Romanovsky, V., and Miller, C.
E.: Detecting the permafrost carbon feedback: talik formation and increased
cold-season respiration as precursors to sink-to-source transitions, The
Cryosphere, 12, 123–144, https://doi.org/10.5194/tc-12-123-2018, 2018.
Peñuelas, J., Rutishauser, T., and Filella, I.: Phenology Feedbacks on
Climate Change, Science, 324, 887–888, https://doi.org/10.1126/science.1173004, 2009.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and
Hashimoto, H.: A Continuous Satellite-Derived Measure of Global Terrestrial
Primary Production, BioScience, 54, 547–560, https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004.
Sari, J., Tarmo, V., Vladimir, K., Tuomas, L., Maiju, L., Juha, M., Johanna,
N., Aleksi, R., Juha-Pekka, T., and Mika, A.: Spatial variation and seasonal
dynamics of leaf-area index in the arctic tundra-implications for linking
ground observations and satellite images, Environ. Res. Lett., 12, 095002,
https://doi.org/10.1088/1748-9326/aa7f85, 2017.
Schaphoff, S., Heyder, U., Ostberg, S., Gerten, D., Heinke, J., and Lucht, W.:
Contribution of permafrost soils to the global carbon budget, Environ. Res.
Lett., 8, 014026, https://doi.org/10.1088/1748-9326/8/1/014026, 2013.
Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes,
D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M.,
Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C.,
and Vonk, J. E.: Climate change and the permafrost carbon feedback, Nature,
520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Sierra, C. A., Müller, M., Metzler, H., Manzoni, S., and Trumbore, S. E.:
The muddle of ages, turnover, transit, and residence times in the carbon cycle,
Global Change Biol., 23, 1763–1773, https://doi.org/10.1111/gcb.13556, 2017.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky,
S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon
cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9,
161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
Smallman, T. L., Exbrayat, J.-F., Mencuccini, M., Bloom, A. A., and Williams,
M.: Assimilation of repeated woody biomass observations constrains decadal
ecosystem carbon cycle uncertainty in aggrading forests, J. Geophys. Res.-Biogeo.,
122, 528–545, https://doi.org/10.1002/2016JG003520, 2017.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation
dynamics in the modelling of terrestrial ecosystems: comparing two contrasting
approaches within European climate space, Global Ecol. Biogeogr., 10, 621–637,
https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J.,
and Zaehle, S.: Implications of incorporating N cycling and N limitations on
primary production in an individual-based dynamic vegetation model, Biogeosciences,
11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Street, L. E., Stoy, P. C., Sommerkorn, M., Fletcher, B. J., Sloan, V. L., Hill,
T. C., and Williams, M.: Seasonal bryophyte productivity in the sub-Arctic: a
comparison with vascular plants, Funct. Ecol., 26, 365–378, https://doi.org/10.1111/j.1365-2435.2011.01954.x, 2012.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and
Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost
region, Global Biogeochem. Cy., 23, GB2023, https://doi.org/10.1029/2008GB003327, 2009.
Thornton, P. E., Doney, S. C., Lindsay, K., Moore, J. K., Mahowald, N.,
Randerson, J. T., Fung, I., Lamarque, J. F., Feddema, J. J., and Lee, Y. H.:
Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results
from an atmosphere-ocean general circulation model, Biogeosciences, 6,
2099–2120, https://doi.org/10.5194/bg-6-2099-2009, 2009.
Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko,
D., Shvidenko, A., Kompter, E., Ahrens, B., Levick, S. R., and Schmullius, C.:
Carbon stock and density of northern boreal and temperate forests, Global Ecol.
Biogeogr., 23, 297–310, https://doi.org/10.1111/geb.12125, 2014.
Thurner, M., Beer, C., Carvalhais, N., Forkel, M., Santoro, M., Tum, M., and
Schmullius, C.: Large-scale variation in boreal and temperate forest carbon
turnover rate related to climate, Geophys. Res. Lett., 43, 4576–4585,
https://doi.org/10.1002/2016GL068794, 2016.
Thurner, M., Beer, C., Ciais, P., Friend, A. D., Ito, A., Kleidon, A., Lomas,
M. R., Quegan, S., Rademacher, T. T., Schaphoff, S., Tum, M., Wiltshire, A.,
and Carvalhais, N.: Evaluation of climate-related carbon turnover processes in
global vegetation models for boreal and temperate forests, Global Change Biol.,
23, 3076–3091, https://doi.org/10.1111/gcb.13660, 2017.
Tian, H., Chen, G., Lu, C., Xu, X., Hayes, D. J., Ren, W., Pan, S., Huntzinger,
D. N., and Wofsy, S. C.: North American terrestrial CO2 uptake largely
offset by CH4 and N2O emissions: toward a full accounting
of the greenhouse gas budget, Climatic Change, 129, 413–426, https://doi.org/10.1007/s10584-014-1072-9, 2015.
Tum, M., Zeidler, J. N., Günther, K. P., and Esch, T.: Global NPP and straw
bioenergy trends for 2000–2014, Biomass Bioenergy, 90, 230–236, https://doi.org/10.1016/j.biombioe.2016.03.040, 2016.
Walter, B. P., Heimann, M., and Matthews, E.: Modeling modern methane emissions
from natural wetlands: 1. Model description and results, J. Geophys. Res., 106,
34189–34206, https://doi.org/10.1029/2001JD900165, 2001.
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical
land surface processes, Global Biogeochem. Cy., 23, GB3014, https://doi.org/10.1029/2008GB003412, 2009a.
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost
into a dynamic global vegetation model: 2. Evaluation and sensitivity of
vegetation and carbon cycle processes, Global Biogeochem. Cy., 23, GB3015,
https://doi.org/10.1029/2008GB003413, 2009b.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe,
J.: The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project
framework, P. Natl. Acad. Sci. USA, 111, 3228–3232, https://doi.org/10.1073/pnas.1312330110, 2014.
Williams, M.: DALEC2, software, University of Edinburgh, https://doi.org/10.7488/ds/2504, 2019.
Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Shaver, G. R.,
and Johnson, L. C.: Predicting Gross Primary Productivity in Terrestrial
Ecosystems, Ecol. Appl., 7, 882–894, https://doi.org/10.2307/2269440, 1997.
Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., and Kurpius, M. R.: An
improved analysis of forest carbon dynamics using data assimilation, Global
Change Biol., 11, 89–105, https://doi.org/10.1111/j.1365-2486.2004.00891.x, 2005.
Woodward, F. I., Smith, T. M., and Emanuel, W. R.: A global land primary
productivity and phytogeography model, Global Biogeochem. Cy., 9, 471–490,
https://doi.org/10.1029/95GB02432, 1995.
Xu, T., Valocchi, A. J., Ye, M., and Liang, F.: Quantifying model structural
error: Efficient Bayesian calibration of a regional groundwater flow model
using surrogates and a data-driven error model, Water Resour. Res., 53,
4084–4105, https://doi.org/10.1002/2016WR019831, 2017.
Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics in the O-CN
land surface model: 1. Model description, site-scale evaluation, and sensitivity
to parameter estimates, Global Biogeochem. Cy., 24, GB1005, https://doi.org/10.1029/2009GB003521, 2010.
Zeng, H., Jia, G., and Epstein, H.: Recent changes in phenology over the
northern high latitudes detected from multi-satellite data, Environ. Res. Lett.,
6, 045508, https://doi.org/10.1088/1748-9326/6/4/045508, 2011.
Zeng, N., Mariotti, A., and Wetzel, P.: Terrestrial mechanisms of interannual
CO2 variability, Global Biogeochem. Cy., 19, GB1016, https://doi.org/10.1029/2004GB002273, 2005.
Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements of
the MODIS terrestrial gross and net primary production global data set, Remote
Sens. Environ., 95, 164–176, https://doi.org/10.1016/j.rse.2004.12.011, 2005.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais,
P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E.,
Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S.,
Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang,
X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the
Earth and its drivers, Nat. Clim. Change, 6, 791–795, https://doi.org/10.1038/nclimate3004, 2016.
Zhuang, Q., Melillo, J. M., Sarofim, M. C., Kicklighter, D. W., McGuire, A. D.,
Felzer, B. S., Sokolov, A., Prinn, R. G., Steudler, P. A., and Hu, S.:
CO2 and CH4 exchanges between land ecosystems and the
atmosphere in northern high latitudes over the 21st century, Geophys. Res. Lett.,
33, L17403, https://doi.org/10.1029/2006GL026972, 2006.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W., Henderson,
J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl, A., Watts, J. D.,
Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold season emissions dominate
the Arctic tundra methane budget, P. Natl. Acad. Sci. USA, 113, 40–45,
https://doi.org/10.1073/pnas.1516017113, 2016.
Short summary
The terrestrial CO2 exchange in Arctic ecosystems plays an important role in the global carbon cycle and is particularly sensitive to the ongoing warming experienced in recent years. To improve our understanding of the atmosphere–biosphere interplay, we evaluated the state of the terrestrial pan-Arctic carbon cycling using a promising data assimilation system in the first 15 years of the 21st century. This is crucial when it comes to making predictions about the future state of the carbon cycle.
The terrestrial CO2 exchange in Arctic ecosystems plays an important role in the global carbon...
Altmetrics
Final-revised paper
Preprint