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Abstract. There is a significant knowledge gap in the current state of the terrestrial carbon (C) budget. Re-
cent studies have highlighted a poor understanding particularly of C pool transit times and of whether pro-
ductivity or biomass dominate these biases. The Arctic, accounting for approximately 50 % of the global
soil organic C stocks, has an important role in the global C cycle. Here, we use the CARbon DAta MOdel
(CARDAMOM) data-assimilation system to produce pan-Arctic terrestrial C cycle analyses for 2000–2015.
This approach avoids using traditional plant functional type or steady-state assumptions. We integrate a
range of data (soil organic C, leaf area index, biomass, and climate) to determine the most likely state of
the high-latitude C cycle at a 1◦× 1◦ resolution and also to provide general guidance about the control-
ling biases in transit times. On average, CARDAMOM estimates regional mean rates of photosynthesis of
565 g C m−2 yr−1 (90 % confidence interval between the 5th and 95th percentiles: 428, 741), autotrophic res-
piration of 270 g C m−2 yr−1 (182, 397) and heterotrophic respiration of 219 g C m−2 yr−1 (31, 1458), suggest-
ing a pan-Arctic sink of −67 (−287, 1160) g Cm−2 yr−1, weaker in tundra and stronger in taiga. However, our
confidence intervals remain large (and so the region could be a source of C), reflecting uncertainty assigned to
the regional data products. We show a clear spatial and temporal agreement between CARDAMOM analyses
and different sources of assimilated and independent data at both pan-Arctic and local scales but also identify
consistent biases between CARDAMOM and validation data. The assimilation process requires clearer error
quantification for leaf area index (LAI) and biomass products to resolve these biases. Mapping of vegetation C
stocks and change over time and soil C ages linked to soil C stocks is required for better analytical constraint.
Comparing CARDAMOM analyses to global vegetation models (GVMs) for the same period, we conclude that
transit times of vegetation C are inconsistently simulated in GVMs due to a combination of uncertainties from
productivity and biomass calculations. Our findings highlight that GVMs need to focus on constraining both
current vegetation C stocks and net primary production to improve a process-based understanding of C cycle
dynamics in the Arctic.

Published by Copernicus Publications on behalf of the European Geosciences Union.



234 E. López-Blanco et al.: Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system

1 Introduction

Arctic ecosystems play a significant role in the global car-
bon (C) cycle (Hobbie et al., 2000; McGuire et al., 2012).
Slow organic matter decomposition rates due to cold and
poorly drained soils in combination with cryogenic soil pro-
cesses have led to an accumulation of large stocks of C stored
in the soils, much of which is currently held in permafrost
(Tarnocai et al., 2009). The permafrost region soil organic
C (SOC) stock is more than twice the size of the atmospheric
C stock and accounts for approximately half of the global
SOC stock (Hugelius et al., 2014; Jackson et al., 2017). High-
latitude ecosystems are experiencing a temperature increase
that is nearly twice the global average (AMAP, 2017). The
expected future increase in temperature (IPCC, 2013) and
precipitation (Bintanja and Andry, 2017) will likely have
consequences for the Arctic net C balance. As high lati-
tudes warm, C cycle dynamics may lead to an increase in
carbon dioxide (CO2) emissions through ecosystem respira-
tion (Reco) driven by, for example, larger heterotrophic res-
piration (Commane et al., 2017; Schuur et al., 2015; Zona et
al., 2016), drought stress on plant productivity (Goetz et al.,
2005), and episodic disturbances (Lund et al., 2017; Mack
et al., 2011). Alternatively, temperature-induced vegetation
changes (Forkel et al., 2016; Graven et al., 2013; Lucht et al.,
2002) may increase gross primary productivity (GPP) due to
extended growing seasons (Zeng et al., 2011), CO2 fertili-
sation (Zhuang et al., 2006), and shifts in vegetation cover
such as greening (Myneni et al., 1997; Zhu et al., 2016) and
shrub expansion (Myers-Smith et al., 2011). Consequently,
ecosystem responses may feed back on climate with unclear
magnitude and sign (Anav et al., 2013; Murray-Tortarolo et
al., 2013; Peñuelas et al., 2009). As a result of the significant
changes that are already affecting the structure and function
of Arctic ecosystems, it is critical to understand and quantify
the historical C dynamics of the terrestrial tundra and taiga
and their sensitivity to climate (McGuire et al., 2012).

Although the land surface is estimated to offset ∼ 30 %
of anthropogenic emissions of CO2 (Canadell et al., 2007;
Le Quéré et al., 2018), the terrestrial C cycle is currently
the least constrained component of the global C budget and
large uncertainties remain (Bloom et al., 2016). Despite the
importance of Arctic tundra and taiga biomes in the global
land C cycle, our understanding of interactions between the
allocation of C from net primary productivity (NPP), C
stocks (Cstock), and transit times (TTs) is deficient (Carval-
hais et al., 2014; Friend et al., 2014; Hobbie et al., 2000).
The TT is a concept that represents the time it takes for a
particle of C to persist in a specific C stock, and it is de-
fined by the C stock and its outgoing flux, here addressed as
TT=Cstock/NPP. According to a recent study by Sierra et
al. (2017), TT is an important diagnostic metric of the C cy-
cle and a concept that is independent of model-internal struc-
ture and theoretical assumptions for its calculation. Terms
such as residence time (Bloom et al., 2016; Friend et al.,

2014), turnover time (Carvalhais et al., 2014), and turnover
rate (Thurner et al., 2016; TT= 1/turnover rate) are used in
the literature to represent the concept of TT (Sierra et al.,
2017). Studies have focused more on the spatial variability
with climate of ecosystem productivity rather than C tran-
sit times (Friend et al., 2014; Nishina et al., 2015; Thurner
et al., 2016, 2017). Friend et al. (2014) detailed that transit
time dominates uncertainty in terrestrial vegetation responses
to future climate and atmospheric CO2. They found a 30 %
larger variation in modelled vegetation C change than re-
sponse of NPP. Nishina et al. (2015) also suggested that long-
term C dynamics within ecosystems (vegetation turnover and
soil decomposition) are more critical factors than photosyn-
thetic processes (i.e. GPP or NPP). The respective contribu-
tion of bias from biomass and NPP to biases in transit times
remains unquantified. Without an appropriate understanding
of the current state and dynamics of the C cycle, its feed-
backs to climate change remains highly uncertain (Hobbie et
al., 2000; Koven et al., 2015).

There are currently efforts to incorporate both in situ and
satellite-based datasets to assess C cycle retrievals and to re-
duce their uncertainties. At a local scale, the net ecosystem
exchange (NEE) of CO2 between the land surface and the
atmosphere is usually measured using eddy covariance (EC)
techniques (Baldocchi, 2003). International efforts have led
to the creation of global networks such as FLUXNET
(http://fluxnet.fluxdata.org/, last access: 9 April 2019) and
ICOS (https://www.icos-ri.eu/, last access: 9 April 2019), to
harmonise data and support the reduction of uncertainties
around the C cycle and its driving mechanisms. However, up-
scaling field observations to estimate the regional to global
C budget presents important challenges due to insufficient
spatial coverage of measurements and heterogeneous land-
scape mosaics (McGuire et al., 2012). Furthermore, harsh en-
vironmental conditions in high-latitude ecosystems and their
remoteness complicates the collection of high-quality data
(Lafleur et al., 2012). Given the lack of continuous, spatially
distributed in situ observations of NEE in the Arctic, it re-
mains a challenging task to calculate with certainty whether
or not the Arctic is a net C sink or a net C source and
how the net C balance will evolve in the future (Fisher et
al., 2014). Over the past decade, regional to global prod-
ucts generated from in situ networks and/or satellite ob-
servations have improved our understanding of the terres-
trial C dynamics. These range from machine-learning-based
upscaling of FLUXNET data (Jung et al., 2017), remotely
sensed biomass products (Carvalhais et al., 2014; Thurner
et al., 2014), and the creation of a global soil database
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Due to a reliance
on interpolation and upscaling with other spatial data, it is
challenging to evaluate these products for inherent biases.

Global vegetation models (GVMs) have been developed
to determine global terrestrial C cycling, through represent-
ing vegetation and soil processes, including vegetation dy-
namics (i.e. growth, competition, and turnover) and bio-
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geochemical (i.e. water, carbon, and nutrients cycling) re-
sponses to climate variability (Koven et al., 2011; Sitch et
al., 2003; Woodward et al., 1995). The advantage of using
process-based models to characterise C dynamics is that pro-
cesses which drive ecosystem–atmosphere interactions can
be simulated and reconstructed when data are scarce. How-
ever, C cycle modelling in GVMs typically relies on pa-
rameters retrieved from literature, prescribed plant functional
type (PFT), and a spin-up process ensuring C stocks (biomass
and SOC) reach steady state. Further, inherent differences
of model structure contribute more significantly to GVM
uncertainties (Exbrayat et al., 2018; Nishina et al., 2014)
than do differences in climate projections (Ahlström et al.,
2012). Many model inter-comparison projects have demon-
strated a lack of coherence in future projections of terres-
trial C cycling (Ahlström et al., 2012; Friedlingstein et al.,
2014). Recent studies have used simulations from the first
phase of the Inter-Sectoral Impact Model Inter-comparison
Project (ISI-MIP) (Warszawski et al., 2014) to evaluate the
importance of key elements regulating vegetation C dynam-
ics but also the estimated magnitude of their associated un-
certainties (Exbrayat et al., 2018; Friend et al., 2014; Nishina
et al., 2015; Thurner et al., 2017). An important insight is that
TTs in GVMs are a key uncertain feature of the global C cy-
cle simulation. Further, GVMs tend not to report uncertain-
ties in their estimates of stocks and fluxes, which weakens
their analytical value.

To address these issues we integrate model and data more
formally. We apply data assimilation (DA), defined as a
Bayesian calibration process for a model of a dynamic sys-
tem. DA, through probabilistic parameterisation, supports ro-
bust model estimates of C stocks and fluxes consistent with
multiple observations and their errors (Fox et al., 2009; Luo
et al., 2009; Williams et al., 2005). By following Bayesian
methods, the uncertainty in observations weights the degree
of data constraint, and the outcome is a set of acceptable pa-
rameterisations for a given model structure linked to like-
lihoods. Overall, this approach determines whether model
structure, observations, and forcing are (in)consistent and
thus assesses the validity of model structure. By assimilat-
ing co-located climatic, ecological, and biogeochemical data
from remote-sensing observations at a specific grid scale
across landscapes and regions, DA can map parameter es-
timation and uncertainties.

Here, we use the CARbon DAta MOdel framework (CAR-
DAMOM) (Bloom et al., 2016; Bloom and Williams, 2015;
Smallman et al., 2017) to analyse the pan-Arctic terrestrial
carbon cycle at 1◦ resolution for the 2000–2015 period. We
assimilate gridded observations of leaf area index (LAI),
biomass, and SOC stocks at these spatio-temporal scales
into an intermediate-complexity C model (DALEC2, which
is less complex than GVMs). We compare analyses of C
dynamics of Arctic tundra and taiga with (a) global prod-
ucts of GPP (Jung et al., 2017) and heterotrophic respira-
tion (Rh) (Hashimoto et al., 2015); (b) NEE, GPP, and Reco

field observations from eight high-latitude sites included in
the FLUXNET2015 dataset; and (c) six GVMs from the ISI-
MIP2a comparison project (Akihiko et al., 2017). Our ob-
jectives are to (1) present and evaluate the analyses and un-
certainties of the current state of the pan-Arctic terrestrial
C cycling using a DA system, (2) quantify the degree of
agreement between the CARDAMOM product with local-
to global-scale sources of available data to assess analytical
bias, and (3) use CARDAMOM as a benchmarking tool for
the ISI-MIP2a models to provide general guidance towards
GVM improvements in transit time simulation. Finally, we
suggest future work to be done in the context of advancing
pan-Arctic C cycle modelling.

2 Data and methods

2.1 Pan-Arctic region

The spatial domain we considered in this study (Fig. S1 in
the Supplement) corresponds to the extent of the Northern
Circumpolar Soil Carbon Database version 2 (NCSCDv2)
dataset (Hugelius et al., 2013a, b), bounded by 42–80◦ N
and 180◦W–180◦ E and at a spatial resolution of 1◦× 1◦.
This area of study totals 18 000 000 km2 of land area. We
used the GlobCover vegetation map product developed by
the European Space Agency (Bontemps et al., 2011) to
separate regions dominated by non-forested (tundra) and
forested (taiga) land cover types. A complete description of
the classes included in each domain can be found in Fig. S1
and caption. The differentiation between tundra and taiga
grid cells is in agreement with the tree line delimitated by
Brown et al. (1997) together with the tundra domain defined
from the Regional Carbon Cycle Assessment and Processes
Activity reported by McGuire et al. (2012). The extensive
grasslands without presence of trees in some areas such as
in south Russia, Mongolia, and Kazakhstan were neglected
to focus on higher latitudes. This classification of tundra and
taiga totals 8 100 000 and 9 900 000 km2 of land area, respec-
tively.

2.2 The CARbon DAta MOdel framework

Here we use CARDAMOM (Bloom et al., 2016) (list
of acronyms can be found in Table S1 in the Supple-
ment) to retrieve terrestrial C cycle dynamics, including ex-
plicit confidence intervals, in the pan-Arctic region. CAR-
DAMOM consist of two key components: (1) an ecosys-
tem model, the Data Assimilation Linked Ecosystem Carbon
version 2 (DALEC2) (Bloom and Williams, 2015; Williams
et al., 2005), constrained by observations, and (2) a data-
assimilation system (Bloom et al., 2016). This framework
reconciles observational datasets as part of a representation
of the terrestrial C cycle in agreement with ecological theory.
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2.2.1 DALEC2

The DALEC2 ecosystem model simulates monthly land–
atmosphere C fluxes and the evolution of six C stocks (fo-
liage, labile, wood, roots, soil organic matter – SOM – and
surface litter) and corresponding fluxes. DALEC2 includes
17 parameters controlling the processes of plant phenology,
photosynthesis (GPP), allocation of primary production to
respiration and vegetation carbon stocks and plant and or-
ganic matter turnover rates, all established within specific
prior ranges based on ecologically viable limits (Table S2;
most priors are uniform with broad ranges). DALEC2 sim-
ulates canopy-level GPP via the Aggregated Canopy Model
(ACM; Williams et al., 1997), and the most sensitive ACM
parameter, related to canopy photosynthetic efficiency, is in-
cluded in the CARDAMOM calibration. DALEC allocates
net primary production to the four plant stocks (foliage, la-
bile, wood, and roots) and autotrophic respiration (Ra) as
time-invariant fractions of GPP. Plant C decays into litter and
soil stocks where microbial decomposition generates het-
erotrophic respiration (Rh). Turnover of litter and soil stocks
is simulated using temperature-dependent first-order kinet-
ics. For practical purposes we aggregated the different C
stocks into photosynthetic (Cphoto; leaf and labile), vegeta-
tion (Cveg; leaf, labile, wood, and roots), soil (Cdom; litter
and SOM), and total (Ctot = Cphoto+Cveg+Cdom) C stocks.
The NEE is calculated as the difference between GPP and the
sum of the respiration fluxes (Reco = Ra+Rh), while NPP is
the difference between GPP and Ra. Only NEE follows the
standard micrometeorological sign convection presenting the
uptake of C as negative (sink) and the release of C as positive
(source); both GPP and Reco are reported as positive fluxes.
In this study, we addressed C turnover rates and decomposi-
tion processes as their inverse rates; this is the C transit time
(TTphoto, TTveg and TTdom), represented as the ratio between
the mean C stock and the mean C input into that stock during
the simulation period.

2.2.2 Data-assimilation system

The intermediate complexity of the DALEC2 model com-
pared to typical GVMs facilitates computationally intense
Monte Carlo (MC) data-assimilation to optimise the initial
stock conditions and the 17 process parameters that shape C
dynamics. CARDAMOM is forced with climate data from
the European Centre for Medium-Range Weather Forecast
Reanalysis interim (ERA-interim) dataset (Dee et al., 2011)
monthly for the 2000–2015 period. A Bayesian Metropolis-
Hastings Markov chain MC (MHMCMC) algorithm is used
to retrieve the posterior distributions of the process param-
eters according to observational constraints and ecological
and dynamic constraints (EDCs; Bloom and Williams, 2015).
EDCs ensure that DALEC2 simulations of the terrestrial car-
bon cycle are realistic and ecologically viable and help to
reduce the uncertainty in the model parameters by rejecting

estimations that do not satisfy different conditions applied to
C allocation and turnover rates as well as trajectories of C
stocks.

Observational constraints include monthly time series of
LAI from the MOD15A2 product (Myneni et al., 2002), es-
timates of vegetation biomass (Carvalhais et al., 2014), and
soil organic carbon content (Hugelius et al., 2013a, b) (Ta-
ble S3). We aggregated ∼ 130000 1 km resolution MODIS
LAI data monthly within each 1◦× 1◦ pixel. Biomass based
on remotely sensed forest biomass (Thurner et al., 2014)
and upscaled GPP (Jung et al., 2011) covering the pan-
Arctic domain was aggregated to 1◦ resolution (Carvalhais
et al., 2014). We used the NCSCD spatially explicit prod-
uct (Hugelius et al., 2013a, b), which was generated from
1778 soil sample locations interpolated to a 1◦ grid.

We apply the set-up described above to 3304 1◦× 1◦ pix-
els (1686 in tundra; 1618 in taiga) using a monthly time step.
Each pixel is treated independently without assuming a prior
land cover or plant functional type, and we assume no spa-
tial correlation between uncertainties in all pixels. In each
1◦× 1◦ pixel, we applied the MHMCMC algorithm to de-
termine the probability distribution of the optimal parameter
set and initial conditions (xi; Table S2) given observational
constraints (Oi; LAI, SOC, and biomass; Table S3) using
the same Bayesian inference approach described in Bloom
et al. (2016):

p (xi|Oi)∝ p (xi)×p (Oi|xi) . (1)

First, in the expression 1, p(xi) represents the prior proba-
bility distribution of each DALEC2 parameter (xi) and is ex-
pressed as

p (xi)= pEDC (xi)× e
−0.5

(
log(fauto)−log(0.5)

log(1.2)

)2

× e
−0.5

(
log(Ceff)−log(17.5)

log(1.2)

)2

, (2)

where pEDC(xi) is the prior parameter probability according
to the EDCs included in Table S2 and described in Bloom and
Williams (2015). In addition, prior values for two parameters
and their uncertainties (canopy efficiency, Ceff, and fraction
of GPP respired, fauto) are imposed with a log-normal dis-
tribution following Bloom et al. (2016) to be consistent with
the global GPP range estimated in Beer et al. (2010) and fauto
ranges specified by DeLucia et al. (2007), respectively.

Second, p(O|xi) from expression 1 represents the likeli-
hood of xi with respect to Oi, and it is calculated based on
the ability of DALEC2 to reproduce (1) biomass (Carval-
hais et al., 2014), (2) SOC (Hugelius et al., 2013a, b), and
(3) MODIS LAI (Myneni et al., 2002). The reported uncer-
tainty in biomass data from Thurner et al. (2014) was±37 %
at pixel scale. Because of undetermined errors related to tree
cover thresholds used in the upscaling and to reflect un-
known model structural error, we slightly inflate the error es-
timate and use a log-transform (1.5) of×/÷1.5 (i.e.×/÷1.5
spans 67 % of the expected error). We use the same propor-
tional error for SOC. For MODIS LAI we inflate the propor-
tional error further to log(2) based on well-reported biases

Earth Syst. Dynam., 10, 233–255, 2019 www.earth-syst-dynam.net/10/233/2019/



E. López-Blanco et al.: Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system 237

in this product for evergreen forests (De Kauwe et al., 2011)
and the estimated measurement and aggregation uncertainty
for boreal forest LAI of 1 m2 m−2 reported by Goulden et
al. (2011). The uncertainty assumptions in expression 3 are
chosen due to a lack of better knowledge about the combined
uncertainties arising from model representation errors and
observation errors:

p(Oi|xi)= e
−0.5

(
log(Obiomass)−log(Mbiomass,0)

log(1.5)

)2

×e
−0.5

(
log(OSOC)−log(MSOC,0)

log(1.5)

)2

× e
−0.5

(
log(OLAI,t )−log(MLAI,t )

log(2)

)2

. (3)

For each 1◦× 1◦ pixel we run three MHMCMC chains with
107 accepted simulations each until convergence of at least
two chains. We use 500 parameter sets sampled from the sec-
ond half of each chain to describe the posterior distribution
of parameter sets. We produce confidence intervals of terres-
trial C fluxes and stocks from the selected parameter sets. In
the following we report the highest confidence results (me-
dian; P50) and the uncertainty represented by the 90 % confi-
dence interval (5th percentile to 95th percentile – P05, P95).
We calculate the transit time for C pools using the approach
for non-steady-state pools described in Bloom et al. (2016),
Sect. S3.

2.3 Model evaluation against independent in situ and
pan-Arctic datasets

At the pan-Arctic scale, we compared CARDAMOM GPP
with the FLUXCOM dataset from Jung et al. (2017). We
also compared our CARDAMOM Rh with the global spatio-
temporal distribution of soil respiration from Hashimoto et
al. (2015) calculated by a climate-driven empirical model. To
assess the degree of statistical agreement we calculated linear
goodness of fit (slope, intercept, R2) between CARDAMOM
and the two independent datasets and determined RMSE and
bias from direct comparison on model–data residuals. The
mapping includes stipples representing locations where the
independent datasets are within CARDAMOM’s 90 % confi-
dence interval.

At a local scale, we compare CARDAMOM NEE and
its partitioned components GPP and Reco estimates with
monthly aggregated values from the FLUXNET2015 sites.
We selected eight sites (Belelli Marchesini et al., 2007;
Bond-Lamberty et al., 2004; Goulden et al., 1996; Ikawa et
al., 2015; Kutzbach et al., 2007; López-Blanco et al., 2017;
Lund et al., 2012; Sari et al., 2017) located across sub- and
high-Arctic latitudes, covering locations with different cli-
matic conditions and dominating ecotypes (Table S4). For
this evaluation, we compared the same years for both obser-
vations and CARDAMOM, and we selected data using the
daytime method (Lasslop et al., 2010) due to the absence
of a true night-time period during Arctic summers in some
locations. Additionally, we selected a variable u∗ threshold
to identify insufficient turbulence wind conditions from year

to year similar to López-Blanco et al. (2017). In this data–
model comparison we included the median (P50)± the 90 %
confidence interval (5th to 95th percentiles, (P05, P95)) in-
cluding both random and u∗ filtering uncertainty following
the method described in Papale et al. (2006). Some of the
sites lack wintertime measurements, and we filtered out data
for months with less than 10 % observations. We performed
a point-to-grid-cell comparison to assess the degree of agree-
ment between each flux magnitude and seasonality calcu-
lating the statistics of linear fit (slope, intercept, R2) per
flux and site between CARDAMOM and FLUXNET2015
datasets and determined RMSE and bias from model–data
residuals comparison.

2.4 Benchmark of global vegetation models from
ISI-MIP2a

We compared CARDAMOM analyses of pan-Arctic NPP,
vegetation biomass carbon stocks (Cveg) and vegetation tran-
sit times (TTveg) with six participating GVMs in the ISI-
MIP2a comparison project (Akihiko et al., 2017). In this
study we have considered DLEM (Tian et al., 2015), LPJmL
(Schaphoff et al., 2013; Sitch et al., 2003), LPJ-GUESS
(Smith et al., 2014), ORCHIDEE (Guimberteau et al., 2018),
VEGAS (Zeng et al., 2005), and VISIT (Ito and Inatomi,
2012). The specific properties and degree of complexity of
each ISI-MIP2a model are summarised in Table S5. The
comparisons have been performed under the same spatial res-
olution as the CARDAMOM spatial resolution (1◦× 1◦) for
the 2000–2010 period. Also, the chosen GVMs from the ISI-
MIP2a phase have their forcing based on ERA-Interim cli-
mate data, similar to the forcing used in CARDAMOM. We
estimated the degree of agreement using the statistics of lin-
ear fit (slope, intercept, R2, RMSE, and bias) per variable
and model between CARDAMOM and GVMs but also their
spatial variability including stipples where the GVM datasets
are within CARDAMOM’s 90 % confidence interval.

To understand the sources of errors in TTveg cal-
culations, we used CARDAMOM to calculate two hy-
pothetical TTveg (i.e. EXPERIMENT A TTveg= ISI-
MIP2a Cveg/ CARDAMOM NPP and EXPERIMENT B
TTveg=CARDAMOM Cveg/ ISI-MIP2a NPP) and then as-
sessed the largest difference with CARDAMOM’s CON-
TROL TTveg. We estimated the hypothetical TTveg for each
pixel in each model and derived a pixel-wise measure of the
contribution of biases in NPP and Cveg to biases in TTveg by
overlapping their distribution functions.
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3 Results

3.1 Pan-Arctic retrievals of C cycle

Overall, we found that the pan-Arctic region (Fig. 1
and Table 1) acted as a small sink of C (area-
weighted P50) over the 2000–2015 period with an average
of −67.4 (−286.7, 1159.9) g C m−2 yr−1, P50 (P05, P95),
although the 90 % confidence intervals remain large (and so
the region could be a source of C). Tundra region NEE was
estimated at−14.9 (−163.4, 1116.1) g C m−2 yr−1, a weaker
sink compared to taiga regions, which were established at
−110.4 (−387.7, 1195.8) g C m−2 yr−1. The photosynthetic
inputs exceeded the respiratory outputs (GPP > Reco;
Table 1), although the much larger uncertainties stemming
from Reco, and more specifically from Rh, compared with
GPP complicate the net C sink–source estimate beyond the
median’s average ensembles. In the pan-Arctic region ap-
proximately half of GPP is autotrophically respired, resulting
in an NPP of 290.3 (196.4, 410.7) g C m−2 yr−1. Carbon
use efficiency (NPP/GPP) averages 0.51 (0.46, 0.55),
and varied marginally across tundra 0.51 (0.46, 0.54)
and taiga 0.52 (0.46, 0.56). Despite these appar-
ent small variations, tundra photosynthesised and
respired (respectively, 327.2 (236.8, 463.3) and
310.0 (124.3, 1536.8) g C m−2 yr−1) approximately half
as much as the Taiga region (759.8 (584.1, 967.9) and
635.3 (285.3, 2114.0) g C m−2 yr−1).

The total size of the pan-Arctic soil C stock (Cdom)
averaged 24.4 (10.3, 47.5) kg C m−2, 16-fold greater than
the vegetation C stock (Cveg), 1.5 (0.5, 5.8) kg C m−2.
The soil C stock (fresh litter and SOM) is dominated
by Csom, accounting for the 99 % which also dominates
the total terrestrial C stock in the pan-Arctic. Among
the living C stocks, 93 % of C (88 % in tundra and 90 %
in taiga) is allocated to the structural stocks (wood and
roots; 1.4 (0.4, 5.6) kg C m−2) compared to 7 % (12 %
in tundra and 10 % in taiga) to the photosynthetic stock
(leaves and labile; 0.1 (0.1, 0.2) kg C m−2). On average,
the total ecosystem C stock is 26.3 (11.8, 51.0) kg C m−2

in the pan-Arctic region, with slightly lower stocks
in tundra (24.6 (10.8, 50.6) kg C m−2) than taiga
(27.7 (12.7, 51.2) kg C m−2). In general, the taiga re-
gion holds on average ∼ 100 % more photosynthetic
tissues, ∼ 160 % more structural tissue, and ∼ 9 % more
soil C stocks than tundra. In other words, taiga holds
∼ 12 % more total C than tundra. The greater living
stock of C in taiga (2.1 (0.8, 5.1) kg C m−2) than tundra
(0.8 (0.3, 6.8) kg C m−2) means that the relative size of Ra
and Rh in the two regions differs. Thus in tundra Ra accounts
for 51 % of total ecosystem respiration, while in taiga this
fraction is 57 %. Ra is 4 % larger than Rh in tundra but 24 %
greater in taiga, reflecting the greater rates of C cycling in
taiga. Uncertainties in estimates of soil C stock are notably
higher than for living C stocks, highlighting the lack of
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Figure 1. Schematic diagram of the terrestrial C processes modelled in CARDAMOM for the pan-Arctic (black values), tundra (yellow
values), and taiga (green values) domains. The values characterise the median for the 2000–2015 period and the parentheses delimit the 90 %
confidence interval. C processes represented include flows for C fluxes in white (NEE, net ecosystem exchange; GPP, gross primary produc-
tion; NPP, net primary production; Reco, ecosystem respiration; Ra, autotrophic respiration; Rh, heterotrophic respiration), C allocation in
dark green (to labile, leaf, stem and root), and C turnover in cyan (from leaf, wood, roots, and litter). C stocks are represented in dark blue
boxes (labile, leaf, stem, root, litter, and SOM, soil organic matter) and aggregated into photosynthetic (Cphoto= leaf+ labile), vegetation
(Cveg= leaf+ labile+wood+ roots), soil (Cdom= litter+SOM), and total (Ctot=Cphoto+Cveg+Cdom) C stocks in red boxes. Analogy,
transit times (TT) are also aggregated into photosynthetic (TTphoto= leaf+ labile), vegetation (TTveg= leaf+ labile+wood+ roots), soil
(TTdom= litter+SOM), and total (TTtot=TTphoto+TTveg+TTdom) C transit times.

observational and mechanistic constraint on heterotrophic
respiration.

The global mean C transit time is 1.3 (0.8, 2.1) years in
leaves and labile plant tissue (TTphoto), 4.5 (1.7, 15.7) years
in stems and roots (TTveg), and 120.5 (9.8, 822.6) years in
litter and SOM (TTdom). The total C transit time (TTtot)
(133.1 (11.5, 1013.6) years) is clearly dominated by the soil
C stock, highlighting the very long periods of times that
C persists in Arctic soils. CARDAMOM calculated 62 %
longer TTdom in tundra compared to taiga, likely linked to
lower temperatures, but uncertainties are large due to the lim-
itations of data constraints.

3.2 Data assimilation and uncertainty reduction

The CARDAMOM framework generated an analysis broadly
consistent with the combination of SOC, biomass, and

LAI in each grid cell (Fig. 2) and the errors assigned to
these data products. The agreement for the SOC dataset
by Hugelius et al. (2013a) is a 1 : 1 relationship (R2

=

1.0; RMSE= 0.95 kg C m−2), reflecting a straightforward
model parameterisation. The biomass product from Car-
valhais et al. (2014) was well correlated (R2

= 0.97;
RMSE= 0.46 kg C m−2), but CARDAMOM was consis-
tently biased ∼ 28 % low. MODIS LAI data were also well
correlated (R2

= 0.79; RMSE= 0.42 kg C m−2) but ∼ 28 %
higher than CARDAMOM analyses. These biases (Fig. 2)
likely arise due to a low estimate in the photosynthesis
model (ACM) used in CARDAMOM which propagates
through the C cycle. CARDAMOM balances uncertainty in
data products and the models (ACM photosynthesis model
and DALEC2) to generate a weighted analysis typical of
Bayesian approaches. The CARDAMOM analysis 90 % con-
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Figure 2. Original soil organic carbon (SOC; Hugelius et al., 2013a), biomass (Carvalhais et al., 2014), and leaf area index (LAI; Myneni
et al., 2002) datasets used in the data-assimilation process within the CARDAMOM framework (a–c), assimilated SOC, biomass, and LAI
integrated into CARDAMOM (d–f) and their respective goodness-of-fit statistics between original and assimilated datasets (g–i). The error
bars represent the 90 % confidence interval of the assimilated variable in CARDAMOM.

fidence interval (CI) includes the 1 : 1 line for biomass and
LAI (Fig. 2), indicating that the likelihoods on C cycle anal-
yses include the expected value of the observations.

The degree to which posterior distributions were con-
strained from the prior distributions in each of the 17 model
parameters and 6 initial stock sizes (Table S2) varied con-
siderably depending on the parameters in question and their
related processes (Table 2 and Fig. S2). The 90 % CI poste-
rior range of foliar, wood, labile, and SOM C stocks (Cfoliar,
Cwood, Clabile, and Csom) as well as parameters such as al-
location to foliage (ffol) and lifespan (L) were considerably
reduced (> 80 % uncertainty reduction compared to priors)

most likely controlled by the information on LAI, biomass,
and SOC constraints. Contrarily, parameters that have not
been regulated in any way in the MHMCMC algorithm,
i.e. turnover processes such as litter mineralisation (MRlitter),
root turnover (TORroots), wood turnover (TORwood), decom-
position rates (Drate), and initial C stock such as litter (Clitter)
were found to be poorly constrained (< 20 % uncertainty re-
duction). Overall, the uncertainty reduction classified by pro-
cesses and ranked from most to least constrained estimated
a 71 % reduction for C stocks, a 67 % reduction for C allo-
cation, 59 % for plant phenology, and 31 % for C turnover
related parameters. Although there are no substantial differ-
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Figure 3. Original gross primary productivity (GPP; Jung et al., 2017) and heterotrophic respiration (Rh; Hashimoto et al., 2015) datasets
used in the data validation process (a, b), estimated GPP and Rh by CARDAMOM (c, d), and their respective goodness-of-fit statistics
between original and assimilated datasets (e, f). Stippling indicates locations where the independent datasets are within CARDAMOM’s
5th and 95th percentiles.

ences between tundra and taiga, Croots was better constrained
in tundra regions (42 %), while leaf onset day (Bday), leaf fall
day (Fday), and leaf fall duration (Lf) were better constrained
in taiga regions (> 18 % or more).

3.3 Independent evaluation: from global to local scale

We compared our estimates of GPP and Rh with in-
dependent datasets to evaluate the model performance
(Fig. 3). We found GPP to be well correlated (R2

=

0.81; RMSE= 0.43 kg C m−2) but biased lower (∼ 53 %)
compared to Jung et al.’s (2017) GPP estimates. There
are in general very few pixels where the FLUXCOM
product falls within CARDAMOM’s 90 % confidence in-
terval. Additionally, the Rh product from Hashimoto et
al. (2015) is less consistent with our estimates (R2

=

0.40; RMSE= 0.09 kg C m−2), presenting a tendency to-
wards lower values in tundra pixels and higher values in taiga
pixels. The spatial variability of Rh is considerably smaller in
Hashimoto et al. (2015) compared to our CARDAMOM esti-
mates. Rh falls within the 90 % confidence interval of CAR-
DAMOM in most of the pan-Arctic region due to the fact
that the Rh uncertainties are significant (Fig. 3). This find-
ing confirms the uncertainties previously noted in modelled

respiratory processes (Table 1) where the upper P95 in Rh
dominated NEE’s uncertainties but also the soil C stocks and
transit times.

For comparison with direct ground observations from the
FLUXNET2015 dataset, we report here monthly aggregated
P50±P05−95 estimates of NEE, GPP, and Reco to show timing
and magnitudes but also to diagnose whether CARDAMOM
is in general agreement with flux tower data. Overall, CAR-
DAMOM performed well in simulating observed NEE (R2

=

0.66; RMSE= 0.51 g C m−2 per month; bias= 0.16 g C m−2

per month), GPP (R2
= 0.85; RMSE= 0.89 g C m−2 per

month; bias= 0.5 g C m−2 per month) and Reco (R2
= 0.82;

RMSE= 0.63 g C m−2 per month; bias= 0.35 g C m−2 per
month) across eight sub-Arctic and high-Arctic sites from the
FLUXNET2015 dataset (Fig. 4; Table S6). CARDAMOM
NEE is ∼ 25 % lower than FLUXNET2015, while GPP and
Reco are ∼30 % and ∼ 10 % higher, respectively. This mis-
match is important in the context of the FLUXCOM GPP
upscaling, 50 % higher than CARDAMOM GPP. At some
sites such as Hakasia, Samoylov, Poker Flat, and Manitoba
(NEE R2

= 0.73; GPP R2
= 0.92; Reco R2

= 0.88), CAR-
DAMOM better matches the seasonality and the magnitude
of the C fluxes than the rest, i.e. Tiksi, Kobbefjord, Zacken-
berg, and UCI-1998 (NEE R2

= 0.58; GPP R2
= 0.67; Reco
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Table 2. Parameter uncertainty reduction in percentage ranked from least (red) to most (blue) constrained in the pan-Arctic, tundra, and taiga
domains. The reduction percentage is calculated based on the difference between the 90 % CI prior range and the 90 % CI posterior range.

Figure 4. Monthly aggregated seasonal variability of observed (FLUXNET2015) and modelled (CARDAMOM) C fluxes (NEE, net ecosys-
tem exchange; GPP, gross primary production; Reco, ecosystem respiration) across eight low- and high-Arctic sites (Hakasia, Kobbefjord,
Manitoba, Poker Flat, Samoylov, Tiksi, UCI-1998, and Zackenberg). Each of these sites, located in different countries (RU – Russia; GL
– Greenland; CA – Canada; US – United States) feature different meteorological conditions and vegetation types (Table S4). Uncertainties
represent the 25th and 50th percentiles (darker shade) and the 5th and 95th percentiles (lighter shade) of both field observations and the
CARDAMOM framework.
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R2
= 0.67). In general, CARDAMOM captured the begin-

ning and the end of the growing season well (Fig. 4), al-
though the assimilation system has some bias due to (1) a
difference in timing (e.g. earlier shifts of peak of the grow-
ing season in Manitoba GPP and Reco and earlier end of the
growing season in Poker Flat NEE) and (2) differences in flux
magnitudes (such as in Hakasia GPP and Reco and Kobbe-
fjord NEE).

3.4 Benchmarking ISI-MIP2a models with CARDAMOM

We used our highest confidence retrievals of NPP, Cveg, and
TTveg (i.e. retrievals including assimilated LAI, biomass,
and SOC) to benchmark the performance of the GVMs
from the ISI-MIP2a project. In this assessment we com-
pared not only their spatial variability across the pan-
Arctic, tundra, and taiga region (Fig. 5) but also the
degree of agreement between their mean model en-
semble within the 90 % confidence interval of our as-
similation framework (Fig. 6, Table 3). NPP estimates
(RMSE= 0.1 kg C m−2 yr−1; R2

= 0.44) are in better agree-
ment than Cveg (RMSE= 1.8 kg C m−2; R2

= 0.22) and
TTveg (RMSE= 4.1 years; R2

= 0.12). The assessed GVMs
estimated on average 8 % lower NPP, 16 % higher Cveg,
and 22 % longer TTveg than CARDAMOM across the en-
tire pan-Arctic domain (Figs. 5 and 6) on average. Thus,
at regional aggregation CARDAMOM analyses agreed more
closely with ISI-MIP2a models than with FLUXCOM (51 %
difference) and with the Carvalhais et al. (2014) biomass data
(28 % bias).

The poor spatial agreement regarding TTveg between
CARDAMOM and ISI-MIP2a (Table 3) is indicative of un-
certainties in the internal C dynamics of these models. For
instance, the slopes in Table 3 are steep and the R2 are poor
– so there is substantial disagreement in the spatial pattern,
not just a large bias. For ISI-MIP2a comparison R2 values
ranged from 0.03 to 0.52 for NPP, from 0.00 to 0.31 for Cveg,
and from 0.00 to 0.24 for TTveg. Spatially, the stippling in
Fig. 6 indicates areas where the GVMs are within the 90 % CI
of CARDAMOM; agreement is best over the taiga domain
rather than in tundra for TTveg. The benchmark area of con-
sistency (stippling) is more extensive for Cveg and TTveg than
for NPP. Thus, while there is a stronger spatial correlation for
NPP between CARDAMOM and GVMs (Table 3), this is a
clearer bias for NPP. Some models (LPJ-GUESS and OR-
CHIDEE) systematically calculate lower values in all the as-
sessed variables, while others (LPJmL and VISIT) calculate
higher estimates. The models in closer agreement with CAR-
DAMOM were DLEM (5 % difference) and LPJ-GUESS
(17 %), while VEGAS (44 %) and ORCHIDEE (56 %) were
the models with larger discrepancies (Table 3; Figs. 5 and 6).

The attribution analysis to identify the origin of bias from
ISI-MIP2a models indicated a joint split between NPP and
Cveg for TTveg error simulated in GVMs (Fig. 7). The distri-
bution of the differences relative to CARDAMOM revealed

that the higher error (i.e. the lower overlapped area, and by
extension the largest contributor to TTveg biases) comes from
ISI-MIP2a NPP with a 69 % agreement in the distribution,
while Cveg agrees to 72 %. In fact, the TTveg R2 for each
model (Table 3) is very close to the product of the NPP R2

and Cveg R2 for that model, i.e. the uncertainty in the TTveg
is a direct interaction of NPP and Cveg uncertainty (R2 of the
correlation: 0.71). This finding supports Fig. 6, which shows
TTveg error derives equally from both NPP and Cveg.

4 Discussion

4.1 Pan-Arctic retrievals of C cycle

The CARDAMOM framework has been used to evaluate the
terrestrial pan-Arctic C cycle in tundra and taiga at coarse
spatio-temporal scale (at monthly and annual time steps for
the 2000–2015 period and at 1◦× 1◦ grid cells). Overall, we
found that the pan-Arctic region was most likely a consis-
tent sink of C (weaker in tundra and stronger in taiga), al-
though the large uncertainties derived from respiratory pro-
cesses (Table 1) strongly increase the 90 % confidence in-
terval uncertainty. We estimate that tundra experienced 62 %
longer transit times in litter and SOM C stocks than taiga
ecosystems. Further, the contribution of Ra and Rh to total
ecosystem respiration was similar in tundra (51 %, 49 %) but
dominated by Ra in taiga (57 % compared to 43 %).

CARDAMOM retrievals are consistent with outcomes
from relevant papers such as the (i) C flux observations and
model estimates reported in McGuire et al. (2012), (ii) C
stocks and transit times described by Carvalhais et al. (2014),
and (iii) NPP, C stocks, and turnover rates stated in Thurner
et al. (2017).

i. The CARDAMOM NEE estimates reported in this
study for the tundra domain are inside the vari-
ability comparison of values compiled by McGuire
et al. (2012) considering field observation, regional-
process-based models, global-process-based models,
and inversion models. The authors reported that Arc-
tic tundra was a sink of CO2 of −150 Tg C yr−1

(SD= 45.9) across the 2000–2006 period over an area
of 9.16× 106 m2. Here, CARDAMOM NEE esti-
mated −129 Tg C yr−1 over an area of 8.1× 106 km2

for the same period. This exhaustive assessment of
the C balance in Arctic tundra included approximately
250 estimates using the chamber and eddy covariance
method from 120 published papers (McGuire et al.,
2012; Supplement 1) with an area-weighted mean of
means of−202 Tg C yr−1. The regional models, includ-
ing runs from LPJ-WHyMe (Wania et al., 2009a, b),
ORCHIDEE (Koven et al., 2011), TEM6 (McGuire et
al., 2010), and the TCF model (Kimball et al., 2009),
reported an NEE of −187 Tg C yr−1 and GPP, NPP, Ra,
and Rh of 350, 199, 151, and 182 g C m−2 yr−1, respec-
tively. GVMs applications such as CLM4C (Lawrence
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Figure 5. Central tendency and variability of NPP (net primary production), Cveg (vegetation C stock), TTveg (vegetation transit time)
estimated by CARDAMOM (orange), and ISI-MIP2a models (grey) in the pan-Arctic, tundra, and taiga regions. The box–whisker plots
comprise the estimations between the 5th and 95th percentiles, and the box encompasses the 25th to 75th percentiles. The line in each box
marks the median of studied variables in each region.

et al., 2011), CLM4CN (Thornton et al., 2009), Hyland
(Levy et al., 2004), LPJ (Sitch et al., 2003), LPJ-GUESS
(Smith et al., 2001), O-CN (Zaehle and Friend, 2010),
SDGVM (Woodward et al., 1995), and TRIFFID (Cox,
2001) estimated an NEE of −93 Tg C yr−1 and GPP,
NPP, Ra, and Rh of 272, 162, 83, and 144 g C m−2 yr−1.
For the same period, CARDAMOM has estimated 330,
167, 160, and 154 g C m−2 yr−1, respectively, for the
same gross C fluxes.

ii. Carvalhais et al. (2014) estimated a total ecosystem
carbon (Ctot) of 20.5 (8.0, 52.5) kg C m−2 for tundra

and 24.8 (15.2, 58.0) kg C m−2 for taiga, while values
from CARDAMOM were 24.6 (10.8, 50.6) kg C m−2

for tundra and 27.7 (12.7, 51.2) kg C m−2 in taiga
(Fig. 5; Table 1) for the same area. Thus, Carvalhais
et al.’s (2014) Ctot product stored 20 % and 12 % less
carbon in tundra and taiga, respectively, than CAR-
DAMOM. Overall, CARDAMOM calculated 20 % and
6 % longer transit times for tundra and taiga, respec-
tively, with average values of 80.8 (21.8, 195.2) years
in tundra and 51.2 (22.1, 109.3) years in taiga (Ta-
ble 1) compared to the 64.4 (25.7, 259.8) years in
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Figure 6. NPP (net primary production), Cveg (vegetation C stock), and TTveg (vegetation transit time) ratios between ISI-MIP2a model
ensembles (DLEM, LPJmL, LPJ-GUESS, ORCHIDEE, VEGAS, and VISIT) and CARDAMOM. Stippling indicates locations where the
ISI-MIP2a model mean is within CARDAMOM’s 5th and 95th percentiles.
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Figure 7. Distribution functions derived from the attribution anal-
ysis used to estimate the origin of vegetation transit time (TTveg)
bias from ISI-MIP2a models. The CONTROL TT (grey) includes
both biomass (Cveg) and net primary production (NPP) estimated
by CARDAMOM. EXPERIMENT A TT (dark red) incorporates
Cveg from ISI-MIP2a and NPP from CARDAMOM, while EX-
PERIMENT B TT (dark green) includes NPP from ISI-MIP2a and
Cveg from CARDAMOM. The lower the overlapped area between
control and experimental TT, the larger the contribution for TT bi-
ases. For readability purposes, the scale on the x axis is limited to
20 years.

tundra and 48.2 (111.6, 24.9) years in taiga in Car-
valhais et al. (2014). These numbers have been re-
trieved from the same biome classification and they
include the 90 % confidence interval of the assessed
spatial variability. Also, we applied a correction fac-
tor of TTgpp=TTnpp× (1− fraction of GPP respired)
to be comparable with Carvalhais et al. (2014) TT. Both
datasets agree on the fact that at high (cold) latitudes,
first tundra and secondly taiga have the longest transit
times on the entire globe (Bloom et al., 2016; Carval-
hais et al., 2014).

iii. A recent study from Thurner et al. (2017) assessed tem-
perate and taiga-related TTs, presenting a 5-year av-
erage NPP dataset applying both MODIS (Running et
al., 2004; Zhao et al., 2005) and BETHY/DLR (Tum
et al., 2016) products and an innovative biomass prod-
uct (Thurner et al., 2014) accounting for both forest
and non-forest vegetation. Our estimate of TTveg for
the exact same period is 5.3 (1.9, 18.2) years, com-
pared to Thurner et al.’s (2017) TT, 8.2 (5.5, 11.5)
years using MODIS, and 6.5 (4.2, 8.7) years using
BETHY/DLR. A note of caution here: the number re-
ported by the authors are turnover rates, which are
converted to transit times by just applying the inverse
of turnover rates (TTveg = 1/turnover rates). Addition-
ally, their NPP estimates, 0.35 and 0.45 kg C m−2 yr−1

from both MODIS and BETHY/DLR, are only 5 %
more productive on average than the CARDAMOM
NPP estimate (0.4 (0.3, 0.6) kg C m−2 yr−1). The
biomass derived from Thurner et al. (2014) (3.0±
1.1 kg C m−2) is∼ 30 % lower than CARDAMOM Cveg
(2.2 (1.1, 5.0) kg C m−2), calculated for the same period
and for the same taiga domain.

In general, we found a reasonable agreement between
CARDAMOM and assimilated and independent data at pan-
Arctic scale. CARDAMOM retrievals of assimilated data are
in good agreement with the SOC (Fig. 2). The simulation of
TTdom is weakly constrained (Table 1) – our analysis adjusts
TT to match mapped stocks, hence the strong match of mod-
elled to mapped SOC. So, independent data on TTdom data
(e.g. 14C) are required across the pan-Arctic region to pro-
vide a stronger constraint on process parameters and reduce
the very broad confidence intervals of CARDAMOM anal-
yses. The low bias in mean estimates of LAI and biomass
(Fig. 2) likely relates to the strong prior on photosynthesis
estimates from the ACM model, which lacks a temperature
acclimation for high latitudes in this implementation. How-
ever, the uncertainty in the biomass and LAI analyses spans
the magnitude of the bias. So, CARDAMOM generates some
parameters sets that are consistent with observations. CAR-
DAMOM produces analyses that reproduce the pattern of
LAI, GPP, biomass, and SOC (Figs. 2 and 3) – this demon-
strates that the DALEC model structure can be calibrated
to simulate the links between these variables as a function
of mass balance constraints and realistic process interactions
and climate sensitivities.

There are clear biases in CARDAMOM analyses com-
pared to independent global upscaled GPP (Jung et al., 2017)
and Rh products (Hashimoto et al., 2015) (Fig. 3). However,
CARDAMOM resolves the spatial pattern in GPP effectively,
while the spatial mismatch in Rh estimates is marked (Fig. 3),
echoing the large uncertainty found in NEE (Fig. 1, Table 1).
One difference with Hashimoto et al.’s (2015) Rh model
is the lack of moisture limitation on respiration in CAR-
DAMOM. Conversely, GPP is relatively well-constrained in
space through the assimilation of LAI and a prior for produc-
tivity (Bloom et al., 2016), although an important mismatch
has been found: CARDAMOM GPP is 50 % lower than
FLUXCOM but 30 % higher than FLUXNET2015 EC data.

The agreement between CARDAMOM analyses and EC
data is high given the scale difference. A direct point-to-
grid cell comparison with local observations derived from the
FLUXNET2015 dataset (Fig. 4, Table S6) is challenging and
always difficult. CARDAMOM outputs covers 1◦× 1◦ grid
cells, whereas local eddy covariance flux measurements are
of the order of 1–10 ha. Thus, for observational sites located
in areas with complex terrain, such as Kobbefjord in coastal
Greenland, the agreement can be expected to be low. For
inland forest sites, such as Poker Flat in Alaska, there may
be less differences in vegetation characteristics and local cli-
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matology between the local-scale measurement footprint and
the corresponding CARDAMOM grid cell. This scaling issue
is likely to have a larger impact on flux magnitudes compared
with seasonal dynamics. In general, CARDAMOM captured
the seasonal dynamics in NEE, GPP, and Reco well (Fig. 4,
Table S6), although the monthly model time step does re-
duce skill in shoulder seasons. There was a consistent timing
mismatch in early season flux increase, where CARDAMOM
predicts earlier growing season onset compared with obser-
vations. This is likely due to the impact of snow cover, which
is not explicitly included in the CARDAMOM framework.

For a further independent evaluation of CARDAMOM
outputs, we compare the tundra and boreal estimates to
plot scale flux and stock information. For tundra, Street et
al. (2012) calculate growing season GPP estimates of 263–
380 g C m−2 for Empetrum nigrum communities and 295–
386 g C m−2 for Betula nana communities, which is consis-
tent with the ranges in Fig. 1 for tundra. Biomass stocks
for Arctic tundra recorded in the Arctic LTER (Long Term
Ecological Research) at Toolik Lake range from 105 to
1160 g C m−2 (Hobbie and Kling, 2014), which are consis-
tent with the estimates from CARDAMOM, albeit at the
lower end of the model estimates. For boreal forests, Goulden
et al. (2011) report annual GPP estimates across a chronose-
quence of stands, and thus a variation across canopy den-
sities, which varied from 450 to 720 g C m−2 yr−1. These
data are consistent with the span of GPP in CARDAMOM
(Fig. 1), again best matching the lower end of the model
estimates. For the same study, the vegetation C stock es-
timates varied from 100 to 5000 g C m−2, consistent with
CARDAMOM and with measurements of 10 to 40-year old
boreal stands best matching the CARDAMOM median es-
timate of ∼ 1500 g C m−2. We conclude from comparisons
with site data that CARDAMOM analyses are broadly con-
sistent, with some tendency for CARDAMOM to have a high
bias. This comparison is similar to the FLUXNET2015 eval-
uation of CARDAMOM. But it conflicts with the estima-
tion of low bias from the comparison of CARDAMOM with
FLUXCOM GPP and Carvalhais et al. (2014) biomass stock
maps. It is possible that the scale differences between site-
level products and landscape estimates is confusing these
comparisons, but there is clearly a need to understand these
inconsistencies in C cycle estimates better.

4.2 CARDAMOM as a model benchmarking tool

An ideal benchmarking tool for GVMs would compare
model state variables and fluxes with multiple, indepen-
dent, unbiased, error-characterised measurements collected
repeatedly at the same temporal and spatial resolution. Of
course direct measurements of key C cycle variables like
these are not available. Even at FLUXNET sites GPP and
Reco must be inferred, and NEE data are often gap-filled.
Satellite data can provide continuous fields but do not di-
rectly measure ecological variables like biomass or LAI, so

calibrated models are required to generate ecological prod-
ucts. Atmospheric conditions can introduce biases and data
gaps into optical data that are poorly quantified. Upscaling of
FLUXNET data requires other spatial data, e.g. MODIS LAI,
which challenge the characterisation of error and generates
complex hybrid products. We suggest that CARDAMOM
provides some of the requirements of the ideal benchmark
system – an error-characterised, complete analysis of the
C cycle that is based on a range of observational products.
CARDAMOM includes its own C cycle model; this has the
advantage of evaluating the observational data for consis-
tency (e.g. with mass balance), propagating error across the
C cycle, and generating internal model variables such as TT.
Further, the model is of intermediate complexity and inde-
pendent of the benchmarked models.

Using CARDAMOM as a benchmarking tool for six
GVMs we found disagreements that varied among models
for spatial estimates of NPP, Cveg, and TTveg across the pan-
Arctic (Fig. 6) in comparison with CARDAMOM confidence
intervals. GVM NPP estimates had a higher correlation than
TTveg and Cveg with CARDAMOM analyses (Table 3), but
because CARDAMOM confidence intervals on NPP were
relatively narrow (Fig. 1), the benchmarking scores from
GVM NPP were relatively poor (Fig. 6). Consequently, we
used CARDAMOM to calculate the relative contribution of
productivity and biomass to the transit times bias by apply-
ing a simple attribution analysis (Fig. 7). We concluded that
the largest bias to transit times originated not from a defi-
cient understanding of one single component, but from an
equal combination of both productivity and biomass errors
together. Therefore, this study partially agrees with previous
studies (Friend et al., 2014; Nishina et al., 2014; Thurner et
al., 2017) highlighting the deficient representation of tran-
sit times or turnover dynamics, but we further suggest that
global vegetation and Earth system modellers need to focus
on the productivity and vegetation C stocks dynamics to im-
prove inner C dynamics. A major challenge for GVMs is the
spin-up problem (Exbrayat et al., 2014). GVMs need to find a
way to ensure that the spin-up process produces biomass es-
timates consistent with the growing availability of biomass
maps from Earth observations. CARDAMOM solves this
problem by avoiding spin-up. Its fast run time allows the
biomass maps to act as a constraint on the probability distri-
bution of model parameters. There may be opportunities to
use CARDAMOM-style approaches to assist the GVM com-
munity address this problem.

4.3 Outlook

Although CARDAMOM estimates for pan-Arctic C cycling
are in moderately good agreement with observations and data
constraints, we have not included important components con-
trolling ecosystem processes that could potentially improve
our understanding on C feedbacks, with an emphasis on high-
latitude ecosystems. For example, thaw and the release of
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permafrost C is not represented in CARDAMOM, but the in-
fluence on vegetation dynamics, permafrost degradation, and
soil respiration is critical at high latitudes (Koven et al., 2015;
Parazoo et al., 2018). Also, Koven et al. (2017) have shown
that soil thermal regimes are key to resolving the long-term
vulnerability of soil C. Moreover, we have not characterised
snow dynamics nor the insulating effect of snow affecting
respiratory losses across wintertime periods (López-Blanco
et al., 2018). Further, methane emissions, another important
contributor to total C budget (Mastepanov et al., 2008; Zona
et al., 2016), were neglected from this modelling exercise
since it is not easy to model due to its three complex transport
mechanisms (Walter et al., 2001).

However, our approach to use an intermediate-complexity
model has the strong advantage of allowing very large (107)
model ensembles per pixel and thus a thorough exploration of
model–parameter interactions that is not feasible with typical
GVMs. Other viable options include using emulators (Fer et
al., 2018) and particle filters (Arulampalam et al., 2002), but
MCMC methods provide the most detailed description of er-
ror distributions. There remains a strong argument to utilise
intermediate-complexity models like DALEC2 to evaluate
the minimum level of detail required to represent ecosys-
tem processes consistent with local observations and to al-
low testing of alternate model structures. Assimilating fur-
ther data products, for instance patterns in soil hydrology
and snow states across the pan-Arctic from Earth observa-
tion, could provide useful information on spatio-temporal
controls on soil activity and microbial metabolism to con-
strain below-ground processes. This information would need
to be tied to process-level information on SOM turnover gen-
erated from experimental studies and included in updated
versions of DALEC. Thus, more field observations are cru-
cial across the pan-Arctic, specifically on the decomposition
and TT of SOC (He et al., 2016) and respiratory processes
such as the partitioning of Reco into Ra and Rh (Hobbie et
al., 2000; McGuire et al., 2000) across the growing season
and also during wintertime (Commane et al., 2017; Zona et
al., 2016).

Our approach has used estimated observation error and in-
flated this to include unknown errors associated with model
process representation. We currently lack any better knowl-
edge of the combined uncertainties arising from model rep-
resentation errors and observation errors. We acknowledge
that all models are an imperfect representation of C dynam-
ics, which generates irreconcilable model–data errors due to
the inherent assumptions in model structure. Future analy-
ses should investigate model structural error, using, for ex-
ample, error-explicit Bayesian approaches (Xu et al., 2017),
or comparing the likelihoods of alternate model structures
of varying complexity. Using multiple sources of data, we
have highlighted systematic errors in the model at a land-
scape scale (Figs. 2 and 3) for LAI, GPP, and biomass. How-
ever, these biases are not consistent for site-scale evaluations.
Thus, a next step would be to include explicitly both random

and systematic process errors for C fluxes in the data assim-
ilation. These errors could be determined from field-scale
evaluation of model process representation (Table 2) using,
e.g., FLUXNET2015 data. We also need to understand bet-
ter the error associated with the landscape heterogeneity of C
stocks and fluxes to upscale from flux tower observations or
direct measurements of LAI to landscape pixel. This could
be achieved by constructing robust observation error models
(Dietze, 2017) from field to pixel scale for, e.g., GPP, LAI,
and foliar N. The evaluation of the sensitivity of C cycling
DA analyses to observation error has shown relatively low
sensitivity to data gaps and random error on net ecosystem
flux data (Hill et al., 2012), but further analyses of error sen-
sitivity are required for multiple streams of stock data.

5 Conclusions

The Arctic is experiencing rapid environmental changes,
which will influence the global C cycle. Using a data-
assimilation framework we have evaluated the current state
of key C flux, stocks, and transit times for the pan-Arctic
region for 2000–2015. We found that the pan-Arctic was
a likely sink of C, weaker in tundra and stronger in taiga,
but uncertainties around the respiration losses are still large,
and so the region could be a source of C. Comparisons with
global- and local-scale datasets demonstrate the capabili-
ties of CARDAMOM for analysing the C cycle in the Arc-
tic domain. CARDAMOM is a data-constrained and data-
integrated analysis, evaluated for internal consistency, and
is therefore a good candidate to benchmark performance of
global vegetation models. We conclude that a GVM bias
found in transit time of vegetation C is the result of a joint
combination of uncertainties from productivity processes and
biomass in GVMs, and thus these are a major component of
error in their forecasts. While spatial patterns in GVM pre-
dictions of NPP are reasonable, particularly in taiga, they
have significant biases against the CARDAMOM bench-
mark. Improved mapping of vegetation and soil C stocks
and change over time is required for better analytical con-
straint. Moreover, future work is required on assimilating
data on soil hydrology, permafrost, and snow dynamics to
improve accuracy and decrease uncertainties in belowground
processes. This work establishes the baseline for further
process-based ecological analyses using the CARDAMOM
data-assimilation system as a technique to constrain the pan-
Arctic C cycle.

Code and data availability. CARDAMOM output used in
this study is available from Exbrayat and Williams (2018)
from the University of Edinburgh’s DataShare service at
https://doi.org/10.7488/ds/2334. The DALEC2 code is also avail-
able on Edinburgh DataShare at https://doi.org/10.7488/ds/2504
(Williams, 2019). Contact Mathew Williams for access to the
CARDAMOM software.
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