Articles | Volume 9, issue 2
https://doi.org/10.5194/esd-9-797-2018
https://doi.org/10.5194/esd-9-797-2018
Research article
 | Highlight paper
 | 
13 Jun 2018
Research article | Highlight paper |  | 13 Jun 2018

Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets

Gianna Battaglia and Fortunat Joos

Related authors

Low terrestrial carbon storage at the Last Glacial Maximum: constraints from multi-proxy data
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019,https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean
Gianna Battaglia, Marco Steinacher, and Fortunat Joos
Biogeosciences, 13, 2823–2848, https://doi.org/10.5194/bg-13-2823-2016,https://doi.org/10.5194/bg-13-2823-2016, 2016
Short summary

Related subject area

Earth system interactions with the biosphere: biogeochemical cycles
How does the phytoplankton–light feedback affect the marine N2O inventory?
Sarah Berthet, Julien Jouanno, Roland Séférian, Marion Gehlen, and William Llovel
Earth Syst. Dynam., 14, 399–412, https://doi.org/10.5194/esd-14-399-2023,https://doi.org/10.5194/esd-14-399-2023, 2023
Short summary
Time-varying changes and uncertainties in the CMIP6 ocean carbon sink from global to local scale
Parsa Gooya, Neil C. Swart, and Roberta C. Hamme
Earth Syst. Dynam., 14, 383–398, https://doi.org/10.5194/esd-14-383-2023,https://doi.org/10.5194/esd-14-383-2023, 2023
Short summary
Interannual global carbon cycle variations linked to atmospheric circulation variability
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022,https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Contrasting projections of the ENSO-driven CO2 flux variability in the equatorial Pacific under high-warming scenario
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022,https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Divergent historical GPP trends among state-of-the-art multi-model simulations and satellite-based products
Ruqi Yang, Jun Wang, Ning Zeng, Stephen Sitch, Wenhan Tang, Matthew Joseph McGrath, Qixiang Cai, Di Liu, Danica Lombardozzi, Hanqin Tian, Atul K. Jain, and Pengfei Han
Earth Syst. Dynam., 13, 833–849, https://doi.org/10.5194/esd-13-833-2022,https://doi.org/10.5194/esd-13-833-2022, 2022
Short summary

Cited articles

Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A. Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163, https://doi.org/10.1038/nature08019, 2009. a
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, https://doi.org/10.1016/S0967-0645(01)00101-1, 2001. a
Armstrong, R. A., Peterson, M. L., Lee, C., and Wakeham, S. G.: Settling velocity spectra and the ballast ratio hypothesis, Deep-Sea Res. Pt. II, 56, 1470–1478, https://doi.org/10.1016/j.dsr2.2008.11.032, 2009. a
Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W.-L., Hu, A., Beadling, R. L., Marsland, S. J., Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A., and Yin, J.: Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting, Geophys. Res. Lett., 43, 12,252–12,260, 2016. a
Battaglia, G. and Joos, F.: Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations, Global Biogeochem. Cy., 32, 92–121, https://doi.org/10.1002/2017GB005671, 2018. a, b, c, d, e
Download
Short summary
Human-caused, climate change hazards in the ocean continue to aggravate over a very long time. For business as usual, we project the ocean oxygen content to decrease by 40 % over the next thousand years. This would likely have severe consequences for marine life. Global warming and oxygen loss are linked, and meeting the warming target of the Paris Climate Agreement effectively limits related marine hazards. Developments over many thousands of years should be considered to assess marine risks.
Altmetrics
Final-revised paper
Preprint