Articles | Volume 8, issue 3
Earth Syst. Dynam., 8, 849–864, 2017
Earth Syst. Dynam., 8, 849–864, 2017
Research article
 | Highlight paper
25 Sep 2017
Research article  | Highlight paper | 25 Sep 2017

An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

Axel Kleidon and Maik Renner

Related authors

Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446,,, 2022
Short summary
Working at the limit: A review of thermodynamics and optimality of the Earth system
Axel Kleidon
Earth Syst. Dynam. Discuss.,,, 2022
Preprint under review for ESD
Short summary
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150,,, 2022
Short summary
Hortonian Overland Flow, Hillslope Morphology and Stream Power I: Spatial Energy Distributions and Steady-state Power Maxima
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss.,,, 2021
Manuscript not accepted for further review
Short summary
The Kinetic Energy Budget of the Atmosphere (KEBA) model 1.0: a simple yet physical approach for estimating regional wind energy resource potentials that includes the kinetic energy removal effect by wind turbines
Axel Kleidon and Lee M. Miller
Geosci. Model Dev., 13, 4993–5005,,, 2020
Short summary

Related subject area

Dynamics of the Earth system: concepts
The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196,,, 2022
Short summary
ESD Ideas: planetary antifragility: a new dimension in the definition of the safe operating space for humanity
Oliver López-Corona, Melanie Kolb, Elvia Ramírez-Carrillo, and Jon Lovett
Earth Syst. Dynam., 13, 1145–1155,,, 2022
Short summary
Glacial runoff buffers droughts through the 21st century
Lizz Ultee, Sloan Coats, and Jonathan Mackay
Earth Syst. Dynam., 13, 935–959,,, 2022
Short summary
Inarticulate past: similarity properties of the ice–climate system and their implications for paleo-record attribution
Mikhail Y. Verbitsky
Earth Syst. Dynam., 13, 879–884,,, 2022
Short summary
Extreme weather and societal impacts in the eastern Mediterranean
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777,,, 2022
Short summary

Cited articles

Bennett, W. B., Wang, J., and Bras, R. L.: Estimation of Global Ground Heat Flux, J. Hydrometeorol., 9, 744–759, 2008.
Boer, G. J.: The ratio of land to ocean temperature change under global warming, Clim. Dyn., 37, 2253–2270,, 2011.
Bristow, K. L. and Campbell, G. S.: On the relationship between incoming solar radiation and daily maximum and minimum temperature, Agric. For. Meteor., 31, 159–166, 1984.
Budyko, M. I.: The Effect of Solar Radiation Variations on the Climate of the Earth, Tellus, 21, 611–619, 1969.
Byrne, M. P. and O'Gorman, P. A.: Land–Ocean Warming Contrast over a Wide Range of Climates: Convective Quasi-Equilibrium Theory and Idealized Simulations, J. Climate, 26, 4000–4016,, 2013.
Short summary
We provide an explanation why land temperatures respond more strongly to global warming than ocean temperatures, a robust finding in observations and models that has so far not been understood well. We explain it by the different ways by which ocean and land surfaces buffer the strong variation in solar radiation and demonstrate this with a simple, physically based model. Our explanation also illustrates why nighttime temperatures warm more strongly, another robust finding of global warming.
Final-revised paper