Articles | Volume 8, issue 3
Research article
 | Highlight paper
25 Sep 2017
Research article | Highlight paper |  | 25 Sep 2017

An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

Axel Kleidon and Maik Renner

Related authors

Working at the limit: a review of thermodynamics and optimality of the Earth system
Axel Kleidon
Earth Syst. Dynam., 14, 861–896,,, 2023
Short summary
Understanding variations in downwelling longwave radiation using Brutsaert's equation
Yinglin Tian, Deyu Zhong, Sarosh Alam Ghausi, Guangqian Wang, and Axel Kleidon
EGUsphere,,, 2023
Short summary
Editorial: Global warming is due to an enhanced greenhouse effect, and anthropogenic heat emissions currently play a negligible role at the global scale
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242,,, 2023
Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446,,, 2022
Short summary
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150,,, 2022
Short summary

Related subject area

Dynamics of the Earth system: concepts
Rate-induced tipping in natural and human systems
Paul D. L. Ritchie, Hassan Alkhayuon, Peter M. Cox, and Sebastian Wieczorek
Earth Syst. Dynam., 14, 669–683,,, 2023
Short summary
Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics
Georg Feulner, Mona Bukenberger, and Stefan Petri
Earth Syst. Dynam., 14, 533–547,,, 2023
Short summary
Multi-million-year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes
Gaëlle Leloup and Didier Paillard
Earth Syst. Dynam., 14, 291–307,,, 2023
Short summary
Reliability of resilience estimation based on multi-instrument time series
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183,,, 2023
Short summary
The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196,,, 2022
Short summary

Cited articles

Bennett, W. B., Wang, J., and Bras, R. L.: Estimation of Global Ground Heat Flux, J. Hydrometeorol., 9, 744–759, 2008.
Boer, G. J.: The ratio of land to ocean temperature change under global warming, Clim. Dyn., 37, 2253–2270,, 2011.
Bristow, K. L. and Campbell, G. S.: On the relationship between incoming solar radiation and daily maximum and minimum temperature, Agric. For. Meteor., 31, 159–166, 1984.
Budyko, M. I.: The Effect of Solar Radiation Variations on the Climate of the Earth, Tellus, 21, 611–619, 1969.
Byrne, M. P. and O'Gorman, P. A.: Land–Ocean Warming Contrast over a Wide Range of Climates: Convective Quasi-Equilibrium Theory and Idealized Simulations, J. Climate, 26, 4000–4016,, 2013.
Short summary
We provide an explanation why land temperatures respond more strongly to global warming than ocean temperatures, a robust finding in observations and models that has so far not been understood well. We explain it by the different ways by which ocean and land surfaces buffer the strong variation in solar radiation and demonstrate this with a simple, physically based model. Our explanation also illustrates why nighttime temperatures warm more strongly, another robust finding of global warming.
Final-revised paper