Articles | Volume 13, issue 1
https://doi.org/10.5194/esd-13-633-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-13-633-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeochemical functioning of the Baltic Sea
Department of Marine Chemistry and Biochemistry, Institute of
Oceanology of the Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
Gregor Rehder
Department of Marine Chemistry, Leibniz Institute for Baltic Sea
Research Warnemünde, 18119 Rostock, Germany
Eero Asmala
Environmental Solutions, Geological Survey of Finland GTK,
Vuorimiehentie 5, 02151 Espoo, Finland
Alena Bartosova
Research and Development Department, Swedish Meteorological and
Hydrological Institute, 601 76 Norrköping, Sweden
Jacob Carstensen
Department of Ecoscience, Aarhus University, Frederiksborgvej 399,
4000 Roskilde, Denmark
Bo Gustafsson
Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 106 91 Stockholm, Sweden
Per O. J. Hall
Department of Marine Sciences, University of Gothenburg, P.O. Box 461, 405 30 Gothenburg, Sweden
Christoph Humborg
Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 106 91 Stockholm, Sweden
Tom Jilbert
Department of Geosciences and Geography, Faculty of Science, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
Klaus Jürgens
Department of Biological Oceanography, Leibniz Institute for Baltic
Sea Research Warnemünde, 18119 Rostock, Germany
H. E. Markus Meier
Department of Physical Oceanography and Instrumentation, Leibniz
Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
Research and Development Department, Swedish Meteorological and
Hydrological Institute, 601 76 Norrköping, Sweden
Bärbel Müller-Karulis
Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 106 91 Stockholm, Sweden
Michael Naumann
Department of Physical Oceanography and Instrumentation, Leibniz
Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
Jørgen E. Olesen
Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
Oleg Savchuk
Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 106 91 Stockholm, Sweden
Andreas Schramm
Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
Caroline P. Slomp
Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB, Utrecht, the Netherlands
Mikhail Sofiev
Finnish Meteorological Institute, Erik Palmenin Aukio, 1 00560,
Helsinki, Finland
Anna Sobek
Department of Environmental Science, Stockholm University, 10691
Stockholm, Sweden
Beata Szymczycha
Department of Marine Chemistry and Biochemistry, Institute of
Oceanology of the Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
Emma Undeman
Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 106 91 Stockholm, Sweden
Related authors
Seyed Reza Saghravani, Michael Ernst Böttcher, Wei-Li Hong, Karol Kuliński, Aivo Lepland, Arunima Sen, and Beata Szymczycha
Earth Syst. Sci. Data, 16, 3419–3431, https://doi.org/10.5194/essd-16-3419-2024, https://doi.org/10.5194/essd-16-3419-2024, 2024
Short summary
Short summary
A comprehensive study conducted in 2021 examined the distributions of dissolved nutrients and carbon in the western Spitsbergen fjords during the high-melting season. Significant spatial variability was observed in the water column and pore water concentrations of constituents, highlighting the unique biogeochemical characteristics of each fjord and their potential impact on ecosystem functioning and oceanographic processes.
This article is included in the Encyclopedia of Geosciences
Karin E. Limburg, Yvette Heimbrand, and Karol Kuliński
Biogeosciences, 20, 4751–4760, https://doi.org/10.5194/bg-20-4751-2023, https://doi.org/10.5194/bg-20-4751-2023, 2023
Short summary
Short summary
We found a 3-to-5-fold decline in boron in Baltic cod otoliths between the late 1990s and 2021. The trend correlates with declines in oxygen and pH but not with increased salinity. Otolith B : Ca correlated with phosphorus in a healthy out-group (Icelandic cod) but not in Baltic cod. The otolith biomarkers Mn : Mg (hypoxia proxy) and B : Ca in cod otoliths suggest a general increase in both hypoxia and acidification within Baltic intermediate and deep waters in the last decade.
This article is included in the Encyclopedia of Geosciences
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
This article is included in the Encyclopedia of Geosciences
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
This article is included in the Encyclopedia of Geosciences
Marc Jürgen Silberberger, Katarzyna Koziorowska-Makuch, Karol Kuliński, and Monika Kędra
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-199, https://doi.org/10.5194/bg-2020-199, 2020
Revised manuscript not accepted
Short summary
Short summary
The use of stable isotope ratios to study food webs, requires multiple decisions about sample preservation and pre-treatments. In this study we demonstrate how different preservation and pre-treatment methods affect the interpretation of stable isotope data and highlight that today's guidelines are not applicable when data are used in Bayesian mixing models. Particularly the identified effects of freezing demonstrate that our understanding of the utilization of organic matter might be biased.
This article is included in the Encyclopedia of Geosciences
Karol Kuliński, Bernd Schneider, Beata Szymczycha, and Marcin Stokowski
Earth Syst. Dynam., 8, 1107–1120, https://doi.org/10.5194/esd-8-1107-2017, https://doi.org/10.5194/esd-8-1107-2017, 2017
Short summary
Short summary
This review describes the general knowledge of the marine acid–base system as well as the peculiarities identified and reported for the Baltic Sea specifically. We discuss issues such as dissociation constants in the brackish water, the structure of the total alkalinity in the Baltic Sea, long-term changes in total alkalinity, and the acid–base effects of biomass production and mineralization. We identify research gaps and specify bottlenecks concerning the Baltic Sea acid–base system.
This article is included in the Encyclopedia of Geosciences
Daniel Pönisch, Henry C. Bittig, Martin Kolbe, Ingo Schuffenhauer, Stefan Otto, Peter Holtermann, Kusala Premaratne, and Gregor Rehder
EGUsphere, https://doi.org/10.5194/egusphere-2024-3246, https://doi.org/10.5194/egusphere-2024-3246, 2024
Short summary
Short summary
Rewetted peatlands exhibit natural spatial and temporal biogeochemical heterogeneity, influenced by water level and vegetation. This study investigated the variability of the distribution of GHGs in a brackish-rewetted peatland. Two innovative sensor-equipped landers were used to measure a wide range of marine physicochemical variables at high temporal resolution. The measurements revealed strong fluctuations in CO2 and CH4, expressed as multi-day, diurnal and event-based variability.
This article is included in the Encyclopedia of Geosciences
José A. Jiménez, Gundula Winter, Antonio Bonaduce, Michael Depuydt, Giulia Galluccio, Bart van den Hurk, H. E. Markus Meier, Nadia Pinardi, Lavinia G. Pomarico, and Natalia Vazquez Riveiros
State Planet, 3-slre1, 3, https://doi.org/10.5194/sp-3-slre1-3-2024, https://doi.org/10.5194/sp-3-slre1-3-2024, 2024
Short summary
Short summary
The Knowledge Hub on Sea Level Rise (SLR) has done a scoping study involving stakeholders from government and academia to identify gaps and needs in SLR information, impacts, and policies across Europe. Gaps in regional SLR projections and uncertainties were found, while concerns were raised about shoreline erosion and emerging problems like saltwater intrusion and ineffective adaptation plans. The need for improved communication to make better decisions on SLR adaptation was highlighted.
This article is included in the Encyclopedia of Geosciences
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
This article is included in the Encyclopedia of Geosciences
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
This article is included in the Encyclopedia of Geosciences
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
This article is included in the Encyclopedia of Geosciences
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
This article is included in the Encyclopedia of Geosciences
Branko Sikoparija, Predrag Matavulj, Isidora Simovic, Predrag Radisic, Sanja Brdar, Vladan Minic, Danijela Tesendic, Evgeny Kadantsev, Julia Palamarchuk, and Mikhail Sofiev
Atmos. Meas. Tech., 17, 5051–5070, https://doi.org/10.5194/amt-17-5051-2024, https://doi.org/10.5194/amt-17-5051-2024, 2024
Short summary
Short summary
We assess the suitability of a Rapid-E+ particle counter for use in pollen monitoring networks. The criterion was the ability of different devices to provide the same signal for the same pollen type, which would allow for unified reference libraries and recognition algorithms for Rapid-E+. We tested three devices and found notable differences between their fluorescence measurements. Each one showed potential for pollen identification, but the large variability between them needs to be addressed.
This article is included in the Encyclopedia of Geosciences
Taavi Liblik, Daniel Rak, Enriko Siht, Germo Väli, Johannes Karstensen, Laura Tuomi, Louise C. Biddle, Madis-Jaak Lilover, Māris Skudra, Michael Naumann, Urmas Lips, and Volker Mohrholz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2272, https://doi.org/10.5194/egusphere-2024-2272, 2024
Short summary
Short summary
Eight current meters were deployed to the seafloor across the Baltic to enhance knowledge about circulation and currents. The experiment was complemented by autonomous vehicles. Stable circulation patterns were observed at the sea when weather was steady. Strong and quite persistent currents were observed at the key passage for the deep-water renewal of the Northern Baltic Sea. Deep water renewal mostly occurs during spring and summer periods in the northern Baltic Sea.
This article is included in the Encyclopedia of Geosciences
Seyed Reza Saghravani, Michael Ernst Böttcher, Wei-Li Hong, Karol Kuliński, Aivo Lepland, Arunima Sen, and Beata Szymczycha
Earth Syst. Sci. Data, 16, 3419–3431, https://doi.org/10.5194/essd-16-3419-2024, https://doi.org/10.5194/essd-16-3419-2024, 2024
Short summary
Short summary
A comprehensive study conducted in 2021 examined the distributions of dissolved nutrients and carbon in the western Spitsbergen fjords during the high-melting season. Significant spatial variability was observed in the water column and pore water concentrations of constituents, highlighting the unique biogeochemical characteristics of each fjord and their potential impact on ecosystem functioning and oceanographic processes.
This article is included in the Encyclopedia of Geosciences
Robin Klomp, Olga M. Żygadłowska, Mike S. M. Jetten, Véronique E. Oldham, Niels A. G. M. van Helmond, Caroline P. Slomp, and Wytze K. Lenstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-1706, https://doi.org/10.5194/egusphere-2024-1706, 2024
Short summary
Short summary
In marine sediments, dissolved Mn is present as either Mn(III) or Mn(II). We apply a reactive transport model to geochemical data for a seasonally anoxic and sulfidic coastal basin to determine the pathways of formation and removal of dissolved Mn(III) in the sediment. We demonstrate a critical role for reactions with Fe(II) and show evidence for substantial benthic release of dissolved Mn(III). Given the mobility of Mn(III), these findings have important implications for marine Mn cycling.
This article is included in the Encyclopedia of Geosciences
Rostislav Kouznetsov, Risto Hänninen, Andreas Uppstu, Evgeny Kadantsev, Yalda Fatahi, Marje Prank, Dmitrii Kouznetsov, Steffen Manfred Noe, Heikki Junninen, and Mikhail Sofiev
Atmos. Chem. Phys., 24, 4675–4691, https://doi.org/10.5194/acp-24-4675-2024, https://doi.org/10.5194/acp-24-4675-2024, 2024
Short summary
Short summary
By relying solely on publicly available media reports, we were able to infer the temporal evolution and the injection height for the Nord Stream gas leaks in September 2022. The inventory specifies locations, vertical distributions, and temporal evolution of the methane sources. The inventory can be used to simulate the event with atmospheric transport models. The inventory is supplemented with a set of observational data tailored to evaluate the results of the simulated atmospheric dispersion.
This article is included in the Encyclopedia of Geosciences
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
This article is included in the Encyclopedia of Geosciences
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
This article is included in the Encyclopedia of Geosciences
Leena Kangas, Jaakko Kukkonen, Mari Kauhaniemi, Kari Riikonen, Mikhail Sofiev, Anu Kousa, Jarkko V. Niemi, and Ari Karppinen
Atmos. Chem. Phys., 24, 1489–1507, https://doi.org/10.5194/acp-24-1489-2024, https://doi.org/10.5194/acp-24-1489-2024, 2024
Short summary
Short summary
Residential wood combustion is a major source of fine particulate matter. This study has evaluated the contribution of residential wood combustion to fine particle concentrations and its year-to-year and seasonal variation in te Helsinki metropolitan area. The average concentrations attributed to wood combustion in winter were up to 10- or 15-fold compared to summer. Wood combustion caused 12 % to 14 % of annual fine particle concentrations. In winter, the contribution ranged from 16 % to 21 %.
This article is included in the Encyclopedia of Geosciences
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
This article is included in the Encyclopedia of Geosciences
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
This article is included in the Encyclopedia of Geosciences
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
This article is included in the Encyclopedia of Geosciences
Karin E. Limburg, Yvette Heimbrand, and Karol Kuliński
Biogeosciences, 20, 4751–4760, https://doi.org/10.5194/bg-20-4751-2023, https://doi.org/10.5194/bg-20-4751-2023, 2023
Short summary
Short summary
We found a 3-to-5-fold decline in boron in Baltic cod otoliths between the late 1990s and 2021. The trend correlates with declines in oxygen and pH but not with increased salinity. Otolith B : Ca correlated with phosphorus in a healthy out-group (Icelandic cod) but not in Baltic cod. The otolith biomarkers Mn : Mg (hypoxia proxy) and B : Ca in cod otoliths suggest a general increase in both hypoxia and acidification within Baltic intermediate and deep waters in the last decade.
This article is included in the Encyclopedia of Geosciences
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023, https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
Short summary
The Baltic Earth Assessment Reports summarise the current state of knowledge on Earth system science in the Baltic Sea region. The 10 review articles focus on the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Some highlights of the results are presented here.
This article is included in the Encyclopedia of Geosciences
Risto Matias Hänninen, Rostislav Kouznetsov, and Mikhail Sofiev
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-3, https://doi.org/10.5194/gmd-2023-3, 2023
Preprint withdrawn
Short summary
Short summary
Chemistry transport models describe the motion of particles and gases in atmosphere, containing chemistry equations that allow reaction between different species. The widely used carbon-bond chemistry schemes are originally written in a numerically problematic form that drives some concentrations to unphysical negative values. Here the chemistry equations are re-written in a form where this problem is absent, allowing an easier integration of the equations into any chemistry transport model.
This article is included in the Encyclopedia of Geosciences
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
This article is included in the Encyclopedia of Geosciences
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
This article is included in the Encyclopedia of Geosciences
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
This article is included in the Encyclopedia of Geosciences
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
This article is included in the Encyclopedia of Geosciences
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
This article is included in the Encyclopedia of Geosciences
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
This article is included in the Encyclopedia of Geosciences
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022, https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
Short summary
A new bubble-generating glass chamber design with an extensive set of aerosol production experiments is presented to re-evaluate bubble-bursting-mediated aerosol production as a function of water parameters: bubbling air flow, water salinity, and temperature. Our main findings suggest modest dependence of aerosol production on the water salinity and a strong dependence on temperature below ~ 10 °C.
This article is included in the Encyclopedia of Geosciences
Jaap S. Sinninghe Damsté, Lisa A. Warden, Carlo Berg, Klaus Jürgens, and Matthias Moros
Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, https://doi.org/10.5194/cp-18-2271-2022, 2022
Short summary
Short summary
Reconstruction of past climate conditions is important for understanding current climate change. These reconstructions are derived from proxies, enabling reconstructions of, e.g., past temperature, precipitation, vegetation, and sea surface temperature (SST). Here we investigate a recently developed SST proxy based on membrane lipids of ammonium-oxidizing archaea in the ocean. We show that low salinities substantially affect the proxy calibration by examining Holocene Baltic Sea sediments.
This article is included in the Encyclopedia of Geosciences
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
This article is included in the Encyclopedia of Geosciences
Eva Ehrnsten, Oleg Pavlovitch Savchuk, and Bo Gustav Gustafsson
Biogeosciences, 19, 3337–3367, https://doi.org/10.5194/bg-19-3337-2022, https://doi.org/10.5194/bg-19-3337-2022, 2022
Short summary
Short summary
We studied the effects of benthic fauna, animals living on or in the seafloor, on the biogeochemical cycles of carbon, nitrogen and phosphorus using a model of the Baltic Sea ecosystem. By eating and excreting, the animals transform a large part of organic matter sinking to the seafloor into inorganic forms, which fuel plankton blooms. Simultaneously, when they move around (bioturbate), phosphorus is bound in the sediments. This reduces nitrogen-fixing plankton blooms and oxygen depletion.
This article is included in the Encyclopedia of Geosciences
Viktoria F. Sofieva, Risto Hänninen, Mikhail Sofiev, Monika Szeląg, Hei Shing Lee, Johanna Tamminen, and Christian Retscher
Atmos. Meas. Tech., 15, 3193–3212, https://doi.org/10.5194/amt-15-3193-2022, https://doi.org/10.5194/amt-15-3193-2022, 2022
Short summary
Short summary
We present tropospheric ozone column datasets that have been created using combinations of total ozone column from OMI and TROPOMI with stratospheric ozone column datasets from several available limb-viewing instruments (MLS, OSIRIS, MIPAS, SCIAMACHY, OMPS-LP, GOMOS). The main results are (i) several methodological developments, (ii) new tropospheric ozone column datasets from OMI and TROPOMI, and (iii) a new high-resolution dataset of ozone profiles from limb satellite instruments.
This article is included in the Encyclopedia of Geosciences
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
This article is included in the Encyclopedia of Geosciences
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
This article is included in the Encyclopedia of Geosciences
Tero M. Partanen and Mikhail Sofiev
Nat. Hazards Earth Syst. Sci., 22, 1335–1346, https://doi.org/10.5194/nhess-22-1335-2022, https://doi.org/10.5194/nhess-22-1335-2022, 2022
Short summary
Short summary
The presented method aims to forecast regional wildfire-emitted radiative power in a time-dependent manner several days in advance. The temporal fire radiative power can be converted to an emission production rate, which can be implemented in air quality forecasting simulations. It is shown that in areas with a high incidence of wildfires, the fire radiative power is quite predictable, but otherwise it is not.
This article is included in the Encyclopedia of Geosciences
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
This article is included in the Encyclopedia of Geosciences
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
This article is included in the Encyclopedia of Geosciences
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
This article is included in the Encyclopedia of Geosciences
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
This article is included in the Encyclopedia of Geosciences
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
This article is included in the Encyclopedia of Geosciences
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
This article is included in the Encyclopedia of Geosciences
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
This article is included in the Encyclopedia of Geosciences
Samu Elovaara, Eeva Eronen-Rasimus, Eero Asmala, Tobias Tamelander, and Hermanni Kaartokallio
Biogeosciences, 18, 6589–6616, https://doi.org/10.5194/bg-18-6589-2021, https://doi.org/10.5194/bg-18-6589-2021, 2021
Short summary
Short summary
Dissolved organic matter (DOM) is a significant carbon pool in the marine environment. The composition of the DOM pool, as well as its interaction with microbes, is complex, yet understanding it is important for understanding global carbon cycling. This study shows that two phytoplankton species have different effects on the composition of the DOM pool and, through the DOM they produce, on the ensuing microbial community. These communities in turn have different effects on DOM composition.
This article is included in the Encyclopedia of Geosciences
Yalda Fatahi, Rostislav Kouznetsov, and Mikhail Sofiev
Geosci. Model Dev., 14, 7459–7475, https://doi.org/10.5194/gmd-14-7459-2021, https://doi.org/10.5194/gmd-14-7459-2021, 2021
Short summary
Short summary
Incorporating information on public holidays into anthropogenic sector emissions results in substantial short-term improvement of the chemistry transport model SILAM scores. The largest impact was found for NOx, which is controlled by the changes in the traffic intensity. Certain improvements were also found for other species, but the signal was weaker than that for NOx.
This article is included in the Encyclopedia of Geosciences
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021, https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
Short summary
Dense blooms of cyanobacteria occur every summer in the Baltic Proper and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important role in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
This article is included in the Encyclopedia of Geosciences
Martti Honkanen, Jens Daniel Müller, Jukka Seppälä, Gregor Rehder, Sami Kielosto, Pasi Ylöstalo, Timo Mäkelä, Juha Hatakka, and Lauri Laakso
Ocean Sci., 17, 1657–1675, https://doi.org/10.5194/os-17-1657-2021, https://doi.org/10.5194/os-17-1657-2021, 2021
Short summary
Short summary
The exchange of carbon dioxide (CO2) between the sea and the atmosphere is regulated by the gradient of CO2 partial pressure (pCO2) between the sea and the air. The daily variation of the seawater pCO2 recorded at the fixed station Utö in the Baltic Sea was found to be mainly biologically driven. Calculation of the annual net exchange of CO2 between the sea and atmosphere based on daily measurements of pCO2 carried out using the same sampling time every day could introduce a bias of up to 12 %.
This article is included in the Encyclopedia of Geosciences
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
This article is included in the Encyclopedia of Geosciences
Oleg P. Savchuk, Alexey V. Isaev, and Nikolay N. Filatov
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-249, https://doi.org/10.5194/bg-2021-249, 2021
Manuscript not accepted for further review
Short summary
Short summary
Empirical information on the nutrient cycles in the second largest European Lake Onego is almost lacking. We covered the deficit by realistic simulation of the lake’s ecosystem dynamics during 1985–2015 with the 3D ecohydrodynamic model. Important results include: a) 3D dynamics of major nutrient variables and fluxes; b) quantification of the spring phytoplankton bloom, previously overlooked; c) coherent nutrient budgets. The model is a useful tool for forecasting with different scenarios.
This article is included in the Encyclopedia of Geosciences
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
This article is included in the Encyclopedia of Geosciences
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
This article is included in the Encyclopedia of Geosciences
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
This article is included in the Encyclopedia of Geosciences
Astrid Hylén, Sebastiaan J. van de Velde, Mikhail Kononets, Mingyue Luo, Elin Almroth-Rosell, and Per O. J. Hall
Biogeosciences, 18, 2981–3004, https://doi.org/10.5194/bg-18-2981-2021, https://doi.org/10.5194/bg-18-2981-2021, 2021
Short summary
Short summary
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that consume oxygen upon degradation, leading to further phosphorus release. Oxygenation is thought to trap phosphorus in the sediment and break this feedback. We studied the sediment phosphorus cycle in a previously anoxic area after an inflow of oxic water. Surprisingly, the sediment phosphorus release increased, showing that feedbacks between phosphorus release and oxygen depletion can be hard to break.
This article is included in the Encyclopedia of Geosciences
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
This article is included in the Encyclopedia of Geosciences
Trystan Sanders, Jörn Thomsen, Jens Daniel Müller, Gregor Rehder, and Frank Melzner
Biogeosciences, 18, 2573–2590, https://doi.org/10.5194/bg-18-2573-2021, https://doi.org/10.5194/bg-18-2573-2021, 2021
Short summary
Short summary
The Baltic Sea is expected to experience a rapid drop in salinity and increases in acidity and warming in the next century. Calcifying mussels dominate Baltic Sea seafloor ecosystems yet are sensitive to changes in seawater chemistry. We combine laboratory experiments and a field study and show that a lack of calcium causes extremely slow growth rates in mussels at low salinities. Subsequently, climate change in the Baltic may have drastic ramifications for Baltic seafloor ecosystems.
This article is included in the Encyclopedia of Geosciences
Anna Rose Canning, Peer Fietzek, Gregor Rehder, and Arne Körtzinger
Biogeosciences, 18, 1351–1373, https://doi.org/10.5194/bg-18-1351-2021, https://doi.org/10.5194/bg-18-1351-2021, 2021
Short summary
Short summary
The paper describes a novel, fully autonomous, multi-gas flow-through set-up for multiple gases that combines established, high-quality oceanographic sensors in a small and robust system designed for use across all salinities and all types of platforms. We describe the system and its performance in all relevant detail, including the corrections which improve the accuracy of these sensors, and illustrate how simultaneous multi-gas set-ups can provide an extremely high spatiotemporal resolution.
This article is included in the Encyclopedia of Geosciences
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
This article is included in the Encyclopedia of Geosciences
Martijn Hermans, Nils Risgaard-Petersen, Filip J. R. Meysman, and Caroline P. Slomp
Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, https://doi.org/10.5194/bg-17-5919-2020, 2020
Short summary
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
This article is included in the Encyclopedia of Geosciences
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
This article is included in the Encyclopedia of Geosciences
Hagen Radtke, Sandra-Esther Brunnabend, Ulf Gräwe, and H. E. Markus Meier
Clim. Past, 16, 1617–1642, https://doi.org/10.5194/cp-16-1617-2020, https://doi.org/10.5194/cp-16-1617-2020, 2020
Short summary
Short summary
During the last century, salinity in the Baltic Sea showed a multidecadal oscillation with a period of 30 years. Using a numerical circulation model and wavelet coherence analysis, we demonstrate that this variation has at least two possible causes. One driver is river runoff which shows a 30-year variation. The second one is a variation in the frequency of strong inflows of saline water across Darss Sill which also contains a pronounced 30-year period.
This article is included in the Encyclopedia of Geosciences
Jaakko Kukkonen, Mikko Savolahti, Yuliia Palamarchuk, Timo Lanki, Väinö Nurmi, Ville-Veikko Paunu, Leena Kangas, Mikhail Sofiev, Ari Karppinen, Androniki Maragkidou, Pekka Tiittanen, and Niko Karvosenoja
Atmos. Chem. Phys., 20, 9371–9391, https://doi.org/10.5194/acp-20-9371-2020, https://doi.org/10.5194/acp-20-9371-2020, 2020
Short summary
Short summary
We have developed a mathematical model that can be used to analyse the benefits that could be achieved by implementing alternative air quality abatement measures, policies or strategies. The model was applied to determine pollution sources in the whole of Finland in 2015. Clearly the most economically effective measures were the reduction in emissions from low-level sources in urban areas. Such sources include road transport, non-road vehicles and machinery, and residential wood combustion.
This article is included in the Encyclopedia of Geosciences
Marcus Hirtl, Delia Arnold, Rocio Baro, Hugues Brenot, Mauro Coltelli, Kurt Eschbacher, Helmut Hard-Stremayer, Florian Lipok, Christian Maurer, Dieter Meinhard, Lucia Mona, Marie D. Mulder, Nikolaos Papagiannopoulos, Michael Pernsteiner, Matthieu Plu, Lennart Robertson, Carl-Herbert Rokitansky, Barbara Scherllin-Pirscher, Klaus Sievers, Mikhail Sofiev, Wim Som de Cerff, Martin Steinheimer, Martin Stuefer, Nicolas Theys, Andreas Uppstu, Saskia Wagenaar, Roland Winkler, Gerhard Wotawa, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020, https://doi.org/10.5194/nhess-20-1719-2020, 2020
Short summary
Short summary
The paper summarizes the set-up and outcome of a volcanic-hazard demonstration exercise, with the goals of assessing and mitigating the impacts of volcanic ash clouds on civil and military aviation. Experts in the field simulated the sequence of procedures for an artificial eruption of the Etna volcano in Italy. The scope of the exercise ranged from the detection of the assumed event to the issuance of early warnings and optimized rerouting of flights.
This article is included in the Encyclopedia of Geosciences
Marc Jürgen Silberberger, Katarzyna Koziorowska-Makuch, Karol Kuliński, and Monika Kędra
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-199, https://doi.org/10.5194/bg-2020-199, 2020
Revised manuscript not accepted
Short summary
Short summary
The use of stable isotope ratios to study food webs, requires multiple decisions about sample preservation and pre-treatments. In this study we demonstrate how different preservation and pre-treatment methods affect the interpretation of stable isotope data and highlight that today's guidelines are not applicable when data are used in Bayesian mixing models. Particularly the identified effects of freezing demonstrate that our understanding of the utilization of organic matter might be biased.
This article is included in the Encyclopedia of Geosciences
Niels A. G. M. van Helmond, Elizabeth K. Robertson, Daniel J. Conley, Martijn Hermans, Christoph Humborg, L. Joëlle Kubeneck, Wytze K. Lenstra, and Caroline P. Slomp
Biogeosciences, 17, 2745–2766, https://doi.org/10.5194/bg-17-2745-2020, https://doi.org/10.5194/bg-17-2745-2020, 2020
Short summary
Short summary
We studied the removal of phosphorus (P) and nitrogen (N) in the eutrophic Stockholm archipelago (SA). High sedimentation rates and sediment P contents lead to high P burial. Benthic denitrification is the primary nitrate-reducing pathway. Together, these mechanisms limit P and N transport to the open Baltic Sea. We expect that further nutrient load reduction will contribute to recovery of the SA from low-oxygen conditions and that the sediments will continue to remove part of the P and N loads.
This article is included in the Encyclopedia of Geosciences
Rostislav Kouznetsov, Mikhail Sofiev, Julius Vira, and Gabriele Stiller
Atmos. Chem. Phys., 20, 5837–5859, https://doi.org/10.5194/acp-20-5837-2020, https://doi.org/10.5194/acp-20-5837-2020, 2020
Short summary
Short summary
Estimates of the age of stratospheric air (AoA), its distribution, and trends, obtained by different experimental methods, differ among each other. AoA derived form MIPAS satellite observations, the richest observational dataset on sulfur hexafluoride (SF6) in the stratosphere, are a clear outlier. With multi-decade simulations of AoA and SF6 in the stratosphere, we show that the origin of the discrepancy is in a methodology of deriving AoA from observations rather than in observational data.
This article is included in the Encyclopedia of Geosciences
Jaakko Kukkonen, Susana López-Aparicio, David Segersson, Camilla Geels, Leena Kangas, Mari Kauhaniemi, Androniki Maragkidou, Anne Jensen, Timo Assmuth, Ari Karppinen, Mikhail Sofiev, Heidi Hellén, Kari Riikonen, Juha Nikmo, Anu Kousa, Jarkko V. Niemi, Niko Karvosenoja, Gabriela Sousa Santos, Ingrid Sundvor, Ulas Im, Jesper H. Christensen, Ole-Kenneth Nielsen, Marlene S. Plejdrup, Jacob Klenø Nøjgaard, Gunnar Omstedt, Camilla Andersson, Bertil Forsberg, and Jørgen Brandt
Atmos. Chem. Phys., 20, 4333–4365, https://doi.org/10.5194/acp-20-4333-2020, https://doi.org/10.5194/acp-20-4333-2020, 2020
Short summary
Short summary
Residential wood combustion can cause substantial emissions of fine particulate matter and adverse health effects. This study has, for the first time, evaluated the impacts of residential wood combustion in a harmonised manner in four Nordic cities. Wood combustion caused major shares of fine particle concentrations in Oslo (up to 60 %) and Umeå (up to 30 %) and also notable shares in Copenhagen (up to 20 %) and Helsinki (up to 15 %).
This article is included in the Encyclopedia of Geosciences
Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip J. R. Meysman, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, https://doi.org/10.5194/bg-17-1415-2020, 2020
Short summary
Short summary
The paper presents the response of benthic foraminiferal communities to seasonal absence of oxygen coupled with the presence of hydrogen sulfide, considered very harmful for several living organisms.
Our results suggest that the foraminiferal community mainly responds as a function of the duration of the adverse conditions.
This knowledge is especially useful to better understand the ecology of benthic foraminifera but also in the context of palaeoceanographic interpretations.
This article is included in the Encyclopedia of Geosciences
Anne-Marlene Blechschmidt, Joaquim Arteta, Adriana Coman, Lyana Curier, Henk Eskes, Gilles Foret, Clio Gielen, Francois Hendrick, Virginie Marécal, Frédérik Meleux, Jonathan Parmentier, Enno Peters, Gaia Pinardi, Ankie J. M. Piters, Matthieu Plu, Andreas Richter, Arjo Segers, Mikhail Sofiev, Álvaro M. Valdebenito, Michel Van Roozendael, Julius Vira, Tim Vlemmix, and John P. Burrows
Atmos. Chem. Phys., 20, 2795–2823, https://doi.org/10.5194/acp-20-2795-2020, https://doi.org/10.5194/acp-20-2795-2020, 2020
Short summary
Short summary
MAX-DOAS tropospheric NO2 vertical column retrievals from a set of European measurement stations are compared to regional air quality models which contribute to the operational Copernicus Atmosphere Monitoring Service (CAMS). Correlations are on the order of 35 %–75 %; large differences occur for individual pollution plumes. The results demonstrate that future model development needs to concentrate on improving representation of diurnal cycles and associated temporal scalings.
This article is included in the Encyclopedia of Geosciences
Alexander Kurganskiy, Carsten Ambelas Skjøth, Alexander Baklanov, Mikhail Sofiev, Annika Saarto, Elena Severova, Sergei Smyshlyaev, and Eigil Kaas
Atmos. Chem. Phys., 20, 2099–2121, https://doi.org/10.5194/acp-20-2099-2020, https://doi.org/10.5194/acp-20-2099-2020, 2020
Short summary
Short summary
The aim of the study was to evaluate three birch pollen source maps using a state-of-the-art atmospheric model Enviro-HIRLAM. Enviro-HIRLAM is a so-called online model where both weather and air pollution are calculated at all time steps.
The evaluation has been performed for 12 pollen observation sites located in Denmark, Finland, and Russia.
This article is included in the Encyclopedia of Geosciences
Mikhail Sofiev, Rostislav Kouznetsov, Risto Hänninen, and Viktoria F. Sofieva
Atmos. Chem. Phys., 20, 1839–1847, https://doi.org/10.5194/acp-20-1839-2020, https://doi.org/10.5194/acp-20-1839-2020, 2020
Short summary
Short summary
An episode of anomalously low ozone concentrations in the stratosphere over northern Europe occurred on 3–5 November 2018. The 30 % reduction of the ozone layer was predicted by the global chemistry-transport model of the Finnish Meteorological Institute driven by weather forecasts of ECMWF. The reduction was subsequently observed by ozone monitoring satellites. The episode was caused by a storm in the northern Atlantic, which uplifted air from the troposphere to stratosphere.
This article is included in the Encyclopedia of Geosciences
Thomas Holding, Ian G. Ashton, Jamie D. Shutler, Peter E. Land, Philip D. Nightingale, Andrew P. Rees, Ian Brown, Jean-Francois Piolle, Annette Kock, Hermann W. Bange, David K. Woolf, Lonneke Goddijn-Murphy, Ryan Pereira, Frederic Paul, Fanny Girard-Ardhuin, Bertrand Chapron, Gregor Rehder, Fabrice Ardhuin, and Craig J. Donlon
Ocean Sci., 15, 1707–1728, https://doi.org/10.5194/os-15-1707-2019, https://doi.org/10.5194/os-15-1707-2019, 2019
Short summary
Short summary
FluxEngine is an open-source software toolbox designed to allow for the easy and accurate calculation of air–sea gas fluxes. This article describes new functionality and capabilities, which include the ability to calculate fluxes for nitrous oxide and methane, optimisation for running FluxEngine on a stand-alone desktop computer, and extensive new features to support the in situ measurement community. Four research case studies are used to demonstrate these new features.
This article is included in the Encyclopedia of Geosciences
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
This article is included in the Encyclopedia of Geosciences
Sissel Hansen, Randi Berland Frøseth, Maria Stenberg, Jarosław Stalenga, Jørgen E. Olesen, Maike Krauss, Paweł Radzikowski, Jordi Doltra, Shahid Nadeem, Torfinn Torp, Valentini Pappa, and Christine A. Watson
Biogeosciences, 16, 2795–2819, https://doi.org/10.5194/bg-16-2795-2019, https://doi.org/10.5194/bg-16-2795-2019, 2019
Short summary
Short summary
We discuss nitrous oxide (N2O) emissions and nitrate leaching in organic arable farming, and potential mitigation strategies. The losses are low under growing crops, but crop residues may induce larger losses. The correlation between yearly total N-input and N2O emissions is weak. Cover crops, except sole legumes, have the potential to reduce nitrate leaching but may enhance N2O emissions. Optimised synchrony of mineralisation with crop N uptake will enhance crop productivity and reduce losses.
This article is included in the Encyclopedia of Geosciences
Martin Jakobsson, Christian Stranne, Matt O'Regan, Sarah L. Greenwood, Bo Gustafsson, Christoph Humborg, and Elizabeth Weidner
Ocean Sci., 15, 905–924, https://doi.org/10.5194/os-15-905-2019, https://doi.org/10.5194/os-15-905-2019, 2019
Short summary
Short summary
The bottom topography of the Baltic Sea is analysed using the digital depth model from the European Marine Observation and Data Network (EMODnet) published in 2018. Analyses include depth distribution vs. area and seafloor depth variation on a kilometre scale. The limits for the Baltic Sea and analysed sub-basins are from HELCOM. EMODnet is compared with the previously most widely used depth model and the area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper.
This article is included in the Encyclopedia of Geosciences
Ingrida Šaulienė, Laura Šukienė, Gintautas Daunys, Gediminas Valiulis, Lukas Vaitkevičius, Predrag Matavulj, Sanja Brdar, Marko Panic, Branko Sikoparija, Bernard Clot, Benoît Crouzy, and Mikhail Sofiev
Atmos. Meas. Tech., 12, 3435–3452, https://doi.org/10.5194/amt-12-3435-2019, https://doi.org/10.5194/amt-12-3435-2019, 2019
Short summary
Short summary
The goal is to evaluate the capabilities of the new Rapid-E monitor and to construct a first-level pollen recognition algorithm. The output data were treated with ANN aiming at classification of the injected pollen. Algorithms based on scattering and fluorescence data alone fall short of acceptable quality. The combinations of these exceeded 80 % accuracy for 5 out of 11 pollen species. Constructing multistep algorithms with sequential discrimination of pollen can be a possible way forward.
This article is included in the Encyclopedia of Geosciences
Matthias Karl, Jan Eiof Jonson, Andreas Uppstu, Armin Aulinger, Marje Prank, Mikhail Sofiev, Jukka-Pekka Jalkanen, Lasse Johansson, Markus Quante, and Volker Matthias
Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, https://doi.org/10.5194/acp-19-7019-2019, 2019
Short summary
Short summary
The effect of ship emissions on the regional air quality in the Baltic Sea region was investigated with three regional chemistry transport model systems. The ship influence on air quality is shown to depend on the boundary conditions, meteorological data and aerosol formation and deposition schemes that are used in these models. The study provides a reliable approach for the evaluation of policy options regarding emission regulations for ship traffic in the Baltic Sea.
This article is included in the Encyclopedia of Geosciences
Anna Katinka Petersen, Guy P. Brasseur, Idir Bouarar, Johannes Flemming, Michael Gauss, Fei Jiang, Rostislav Kouznetsov, Richard Kranenburg, Bas Mijling, Vincent-Henri Peuch, Matthieu Pommier, Arjo Segers, Mikhail Sofiev, Renske Timmermans, Ronald van der A, Stacy Walters, Ying Xie, Jianming Xu, and Guangqiang Zhou
Geosci. Model Dev., 12, 1241–1266, https://doi.org/10.5194/gmd-12-1241-2019, https://doi.org/10.5194/gmd-12-1241-2019, 2019
Short summary
Short summary
An operational multi-model forecasting system for air quality is providing daily forecasts of ozone, nitrogen oxides, and particulate matter for 37 urban areas of China. The paper presents the evaluation of the different forecasts performed during the first year of operation.
This article is included in the Encyclopedia of Geosciences
Filippa Fransner, Agneta Fransson, Christoph Humborg, Erik Gustafsson, Letizia Tedesco, Robinson Hordoir, and Jonas Nycander
Biogeosciences, 16, 863–879, https://doi.org/10.5194/bg-16-863-2019, https://doi.org/10.5194/bg-16-863-2019, 2019
Short summary
Short summary
Although rivers carry large amounts of organic material to the oceans, little is known about what fate it meets when it reaches the sea. In this study we are investigating the fate of the carbon in this organic matter by the use of a numerical model in combination with ship measurements from the northern Baltic Sea. Our results suggests that there is substantial remineralization taking place, transforming the organic carbon into CO2, which is released to the atmosphere.
This article is included in the Encyclopedia of Geosciences
Erik Gustafsson, Mathilde Hagens, Xiaole Sun, Daniel C. Reed, Christoph Humborg, Caroline P. Slomp, and Bo G. Gustafsson
Biogeosciences, 16, 437–456, https://doi.org/10.5194/bg-16-437-2019, https://doi.org/10.5194/bg-16-437-2019, 2019
Short summary
Short summary
This work highlights that iron (Fe) dynamics plays a key role in the release of alkalinity from sediments, as exemplified for the Baltic Sea. It furthermore demonstrates that burial of Fe sulfides should be included in alkalinity budgets of low-oxygen basins. The sedimentary alkalinity generation may undergo large changes depending on both organic matter loads and oxygen conditions. Enhanced release of alkalinity from the seafloor can increase the CO2 storage capacity of seawater.
This article is included in the Encyclopedia of Geosciences
Hagen Radtke, Marko Lipka, Dennis Bunke, Claudia Morys, Jana Woelfel, Bronwyn Cahill, Michael E. Böttcher, Stefan Forster, Thomas Leipe, Gregor Rehder, and Thomas Neumann
Geosci. Model Dev., 12, 275–320, https://doi.org/10.5194/gmd-12-275-2019, https://doi.org/10.5194/gmd-12-275-2019, 2019
Short summary
Short summary
This paper describes a coupled benthic–pelagic biogeochemical model, ERGOM-SED. We demonstrate its use in a one-dimensional physical model, which is horizontally integrated and vertically resolved. We describe the application of the model to seven stations in the south-western Baltic Sea. The model was calibrated using pore water profiles from these stations. We compare the model results to these and to measured sediment compositions, benthopelagic fluxes and bioturbation intensities.
This article is included in the Encyclopedia of Geosciences
Beate Stawiarski, Stefan Otto, Volker Thiel, Ulf Gräwe, Natalie Loick-Wilde, Anna K. Wittenborn, Stefan Schloemer, Janine Wäge, Gregor Rehder, Matthias Labrenz, Norbert Wasmund, and Oliver Schmale
Biogeosciences, 16, 1–16, https://doi.org/10.5194/bg-16-1-2019, https://doi.org/10.5194/bg-16-1-2019, 2019
Short summary
Short summary
The understanding of surface water methane production in the world oceans is still poor. By combining field studies and incubation experiments, our investigations suggest that zooplankton contributes to subthermocline methane enrichments in the central Baltic Sea by methane production within the digestive tract of copepods and/or by methane production through release of methane precursor substances into the surrounding water, followed by microbial degradation to methane.
This article is included in the Encyclopedia of Geosciences
Guy P. Brasseur, Ying Xie, Anna Katinka Petersen, Idir Bouarar, Johannes Flemming, Michael Gauss, Fei Jiang, Rostislav Kouznetsov, Richard Kranenburg, Bas Mijling, Vincent-Henri Peuch, Matthieu Pommier, Arjo Segers, Mikhail Sofiev, Renske Timmermans, Ronald van der A, Stacy Walters, Jianming Xu, and Guangqiang Zhou
Geosci. Model Dev., 12, 33–67, https://doi.org/10.5194/gmd-12-33-2019, https://doi.org/10.5194/gmd-12-33-2019, 2019
Short summary
Short summary
An operational multi-model forecasting system for air quality provides daily forecasts of ozone, nitrogen oxides, and particulate matter for 37 urban areas in China. The paper presents an intercomparison of the different forecasts performed during a specific period of time and highlights recurrent differences between the model output. Pathways to improve the forecasts by the multi-model system are suggested.
This article is included in the Encyclopedia of Geosciences
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
This article is included in the Encyclopedia of Geosciences
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018, https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary
Short summary
We show that burial rates of phosphorus (P) in an estuary in the northern Baltic Sea are very high. We demonstrate that at high sedimentation rates, P retention in the sediment is related to the formation of vivianite. With a reactive transport model, we assess the sensitivity of sedimentary vivianite formation. We suggest that enrichments of iron and P in the sediment are linked to periods of enhanced riverine input of Fe, which subsequently strongly enhances P burial in coastal sediments.
This article is included in the Encyclopedia of Geosciences
Xi Wen, Viktoria Unger, Gerald Jurasinski, Franziska Koebsch, Fabian Horn, Gregor Rehder, Torsten Sachs, Dominik Zak, Gunnar Lischeid, Klaus-Holger Knorr, Michael E. Böttcher, Matthias Winkel, Paul L. E. Bodelier, and Susanne Liebner
Biogeosciences, 15, 6519–6536, https://doi.org/10.5194/bg-15-6519-2018, https://doi.org/10.5194/bg-15-6519-2018, 2018
Short summary
Short summary
Rewetting drained peatlands may lead to prolonged emission of the greenhouse gas methane, but the underlying factors are not well described. In this study, we found two rewetted fens with known high methane fluxes had a high ratio of microbial methane producers to methane consumers and a low abundance of methane consumers compared to pristine wetlands. We therefore suggest abundances of methane-cycling microbes as potential indicators for prolonged high methane emissions in rewetted peatlands.
This article is included in the Encyclopedia of Geosciences
Samuel T. Wilson, Hermann W. Bange, Damian L. Arévalo-Martínez, Jonathan Barnes, Alberto V. Borges, Ian Brown, John L. Bullister, Macarena Burgos, David W. Capelle, Michael Casso, Mercedes de la Paz, Laura Farías, Lindsay Fenwick, Sara Ferrón, Gerardo Garcia, Michael Glockzin, David M. Karl, Annette Kock, Sarah Laperriere, Cliff S. Law, Cara C. Manning, Andrew Marriner, Jukka-Pekka Myllykangas, John W. Pohlman, Andrew P. Rees, Alyson E. Santoro, Philippe D. Tortell, Robert C. Upstill-Goddard, David P. Wisegarver, Gui-Ling Zhang, and Gregor Rehder
Biogeosciences, 15, 5891–5907, https://doi.org/10.5194/bg-15-5891-2018, https://doi.org/10.5194/bg-15-5891-2018, 2018
Short summary
Short summary
To determine the variability between independent measurements of dissolved methane and nitrous oxide, seawater samples were analyzed by multiple laboratories. The results revealed the influences of the different parts of the analytical process, from the initial sample collection to the calculation of the final concentrations. Recommendations are made to improve dissolved methane and nitrous oxide measurements to help preclude future analytical discrepancies between laboratories.
This article is included in the Encyclopedia of Geosciences
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018, https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Short summary
This paper investigates how phytoplankton concentrations in the Baltic Sea co-vary with nutrient concentrations and other key variables on inter-annual timescales in a model integration over the years 1850–2008. The study area is not only affected by climate change; it has also been subjected to greatly increased nutrient loads due to extensive use of agricultural fertilizers. The results indicate the largest inter-annual coherence of phytoplankton with the limiting nutrient.
This article is included in the Encyclopedia of Geosciences
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
This article is included in the Encyclopedia of Geosciences
Jaakko Kukkonen, Leena Kangas, Mari Kauhaniemi, Mikhail Sofiev, Mia Aarnio, Jouni J. K. Jaakkola, Anu Kousa, and Ari Karppinen
Atmos. Chem. Phys., 18, 8041–8064, https://doi.org/10.5194/acp-18-8041-2018, https://doi.org/10.5194/acp-18-8041-2018, 2018
Short summary
Short summary
We have quantified the emissions and concentrations of fine particulate matter in the Helsinki area for an unprecedentedly extensive period, from 1980 to 2014. The modelled concentrations agree well with the measured data. The concentrations of fine particles have decreased drastically since the 1980s, to about a half of the highest values. The results make it possible to evaluate the long-term health impacts of air pollution substantially better.
This article is included in the Encyclopedia of Geosciences
Sofia Saraiva, H. E. Markus Meier, Helén Andersson, Anders Höglund, Christian Dieterich, Robinson Hordoir, and Kari Eilola
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-16, https://doi.org/10.5194/esd-2018-16, 2018
Revised manuscript not accepted
Short summary
Short summary
Uncertainties are estimated in Baltic Sea climate projections by performing scenarios combining 4 Global Climate Models, 2 future gas emissions (RCP4.5, RCP8.5) and 3 nutrient load scenarios. Results on primary production, nitrogen fixation, and hypoxic areas show that uncertainties caused by the nutrients loads are greater than uncertainties due to GCMs and RCPs. In all scenarios, nutrient load abatement strategy, Baltic Sea Action Plan, will lead to an improvement in the environmental state.
This article is included in the Encyclopedia of Geosciences
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
This article is included in the Encyclopedia of Geosciences
Tom Jilbert, Eero Asmala, Christian Schröder, Rosa Tiihonen, Jukka-Pekka Myllykangas, Joonas J. Virtasalo, Aarno Kotilainen, Pasi Peltola, Päivi Ekholm, and Susanna Hietanen
Biogeosciences, 15, 1243–1271, https://doi.org/10.5194/bg-15-1243-2018, https://doi.org/10.5194/bg-15-1243-2018, 2018
Short summary
Short summary
Iron is a common dissolved element in river water, recognizable by its orange-brown colour. Here we show that when rivers reach the ocean much of this iron settles to the sediments by a process known as flocculation. The iron is then used by microbes in coastal sediments, which are important hotspots in the global carbon cycle.
This article is included in the Encyclopedia of Geosciences
Nikki Dijkstra, Mathilde Hagens, Matthias Egger, and Caroline P. Slomp
Biogeosciences, 15, 861–883, https://doi.org/10.5194/bg-15-861-2018, https://doi.org/10.5194/bg-15-861-2018, 2018
Short summary
Short summary
We show that post-depositional formation of iron(II) phosphate as vivianite strongly alters the phosphorus record in sediments of the Bornholm Basin (Baltic Sea). These minerals began to precipitate in the lake sediments just after the last lake–marine transition ~ 7.5 kyr BP, migrated downwards and are now a stable feature. Formation of vivianite may affect sedimentary phosphorus records in other systems as well. This should be considered when using such records to reconstruct past environments.
This article is included in the Encyclopedia of Geosciences
Jassin Petersen, Christine Barras, Antoine Bézos, Carole La, Lennart J. de Nooijer, Filip J. R. Meysman, Aurélia Mouret, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 15, 331–348, https://doi.org/10.5194/bg-15-331-2018, https://doi.org/10.5194/bg-15-331-2018, 2018
Short summary
Short summary
In Lake Grevelingen, a coastal ecosystem, foraminifera experience important temporal variations in oxygen concentration and in pore water manganese. The high resolution of LA-ICP-MS allows us to analyse the chambers of foraminiferal shells separately and to obtain signals from a series of calcification events. We estimate the variability in Mn/Ca observed within single shells due to biomineralization and show that a substantial part of the signal is related to environmental variability.
This article is included in the Encyclopedia of Geosciences
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
This article is included in the Encyclopedia of Geosciences
Karol Kuliński, Bernd Schneider, Beata Szymczycha, and Marcin Stokowski
Earth Syst. Dynam., 8, 1107–1120, https://doi.org/10.5194/esd-8-1107-2017, https://doi.org/10.5194/esd-8-1107-2017, 2017
Short summary
Short summary
This review describes the general knowledge of the marine acid–base system as well as the peculiarities identified and reported for the Baltic Sea specifically. We discuss issues such as dissociation constants in the brackish water, the structure of the total alkalinity in the Baltic Sea, long-term changes in total alkalinity, and the acid–base effects of biomass production and mineralization. We identify research gaps and specify bottlenecks concerning the Baltic Sea acid–base system.
This article is included in the Encyclopedia of Geosciences
Mikhail Sofiev, Olga Ritenberga, Roberto Albertini, Joaquim Arteta, Jordina Belmonte, Carmi Geller Bernstein, Maira Bonini, Sevcan Celenk, Athanasios Damialis, John Douros, Hendrik Elbern, Elmar Friese, Carmen Galan, Gilles Oliver, Ivana Hrga, Rostislav Kouznetsov, Kai Krajsek, Donat Magyar, Jonathan Parmentier, Matthieu Plu, Marje Prank, Lennart Robertson, Birthe Marie Steensen, Michel Thibaudon, Arjo Segers, Barbara Stepanovich, Alvaro M. Valdebenito, Julius Vira, and Despoina Vokou
Atmos. Chem. Phys., 17, 12341–12360, https://doi.org/10.5194/acp-17-12341-2017, https://doi.org/10.5194/acp-17-12341-2017, 2017
Short summary
Short summary
This work presents the features and evaluates the quality of the Copernicus Atmospheric Monitoring Service forecasts of olive pollen distribution in Europe. It is shown that the models can predict the main features of the observed pollen distribution but have more difficulties in capturing the season start and end, which appeared shifted by a few days. We also demonstrated that the combined use of model predictions with up-to-date measurements (data fusion) can strongly improve the results.
This article is included in the Encyclopedia of Geosciences
Tommaso Tesi, Marc C. Geibel, Christof Pearce, Elena Panova, Jorien E. Vonk, Emma Karlsson, Joan A. Salvado, Martin Kruså, Lisa Bröder, Christoph Humborg, Igor Semiletov, and Örjan Gustafsson
Ocean Sci., 13, 735–748, https://doi.org/10.5194/os-13-735-2017, https://doi.org/10.5194/os-13-735-2017, 2017
Short summary
Short summary
Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect the phytoplankton in the Arctic Ocean. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we show that the carbon composition of plankton might change as a function of the enhanced terrestrial organic carbon supply and progressive sea-ice thawing.
This article is included in the Encyclopedia of Geosciences
Jukka-Pekka Myllykangas, Tom Jilbert, Gunnar Jakobs, Gregor Rehder, Jan Werner, and Susanna Hietanen
Earth Syst. Dynam., 8, 817–826, https://doi.org/10.5194/esd-8-817-2017, https://doi.org/10.5194/esd-8-817-2017, 2017
Short summary
Short summary
The deep waters of the Baltic Sea host an expanding
This article is included in the Encyclopedia of Geosciences
dead zone, where low-oxygen conditions favour the natural production of two strong greenhouse gases, methane and nitrous oxide. Oxygen is introduced into the deeps only during rare
salt pulses. We studied the effects of a recent salt pulse on Baltic greenhouse gas production. We found that where oxygen was introduced, methane was largely removed, while nitrous oxide production increased, indicating strong effects on greenhouse gas dynamics.
Julius Vira, Elisa Carboni, Roy G. Grainger, and Mikhail Sofiev
Geosci. Model Dev., 10, 1985–2008, https://doi.org/10.5194/gmd-10-1985-2017, https://doi.org/10.5194/gmd-10-1985-2017, 2017
Short summary
Short summary
The vertical and temporal distributions of sulfur dioxide emissions during the 2010 eruption of Eyjafjallajökull were reconstructed by combining data from the IASI satellite instrument with a dispersion model. Unlike in previous studies, both column density (the total amount above a given point) and the plume height were derived from the satellite data. This resulted in more accurate simulated vertical distributions for the times when the emission was not constrained by the column densities.
This article is included in the Encyclopedia of Geosciences
Ye Liu, H. E. Markus Meier, and Kari Eilola
Biogeosciences, 14, 2113–2131, https://doi.org/10.5194/bg-14-2113-2017, https://doi.org/10.5194/bg-14-2113-2017, 2017
Short summary
Short summary
From the reanalysis, nutrient transports between sub-basins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections, are calculated. Further, the spatial distributions of regions with nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea. For the calculation of sub-basin budgets, the location of the lateral borders of the sub-basins is crucial.
This article is included in the Encyclopedia of Geosciences
Erik Gustafsson, Christoph Humborg, Göran Björk, Christian Stranne, Leif G. Anderson, Marc C. Geibel, Carl-Magnus Mörth, Marcus Sundbom, Igor P. Semiletov, Brett F. Thornton, and Bo G. Gustafsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-115, https://doi.org/10.5194/bg-2017-115, 2017
Preprint withdrawn
Short summary
Short summary
In this study we quantify key carbon cycling processes on the East Siberian Arctic Shelf. A specific aim is to determine the pathways of terrestrial organic carbon (OC) supplied by rivers and coastline erosion – and particularly to what extent degradation of terrestrial OC contributes to air-sea CO2 exchange. We estimate that the shelf is a weak CO2 sink, although this sink is considerably reduced mainly by degradation of eroded OC and to a lesser extent by degradation of riverine OC.
This article is included in the Encyclopedia of Geosciences
Samuel Rémy, Andreas Veira, Ronan Paugam, Mikhail Sofiev, Johannes W. Kaiser, Franco Marenco, Sharon P. Burton, Angela Benedetti, Richard J. Engelen, Richard Ferrare, and Jonathan W. Hair
Atmos. Chem. Phys., 17, 2921–2942, https://doi.org/10.5194/acp-17-2921-2017, https://doi.org/10.5194/acp-17-2921-2017, 2017
Short summary
Short summary
Biomass burning emission injection heights are an important source of uncertainty in global climate and atmospheric composition modelling. This work provides a global daily data set of injection heights computed by two very different algorithms, which coherently complete a global biomass burning emissions database. The two data sets were compared and validated against observations, and their use was found to improve forecasts of carbonaceous aerosols in two case studies.
This article is included in the Encyclopedia of Geosciences
Stefano Bonaglia, Astrid Hylén, Jayne E. Rattray, Mikhail Y. Kononets, Nils Ekeroth, Per Roos, Bo Thamdrup, Volker Brüchert, and Per O. J. Hall
Biogeosciences, 14, 285–300, https://doi.org/10.5194/bg-14-285-2017, https://doi.org/10.5194/bg-14-285-2017, 2017
Short summary
Short summary
Understanding nitrogen (N) cycling mechanisms in the ocean is crucial for improving ecosystem management. Here we study N processes by in situ lander and isotope tracer techniques in – so far overlooked – sediments with low organic loads. Denitrification and anammox are the main N transformation processes. However, we demonstrate high contribution of dissimilatory nitrate reduction to ammonium, which recycles a major portion of fixed N to the water column and sustains primary production.
This article is included in the Encyclopedia of Geosciences
Joana Soares, Mikhail Sofiev, Camilla Geels, Jens H. Christensen, Camilla Andersson, Svetlana Tsyro, and Joakim Langner
Atmos. Chem. Phys., 16, 13081–13104, https://doi.org/10.5194/acp-16-13081-2016, https://doi.org/10.5194/acp-16-13081-2016, 2016
Short summary
Short summary
Multi-model comparison of four offline dispersion models driven by the global climate projection climate show that the major driver for the sea salt flux changes will be the seawater temperature, but there are substantial differences between the model predictions. The impact on regional radiative budget due to sea spray is considerable in the Mediterranean area, due to warmer temperatures and longer days during the winter.
This article is included in the Encyclopedia of Geosciences
Elin Almroth-Rosell, Moa Edman, Kari Eilola, H. E. Markus Meier, and Jörgen Sahlberg
Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016, https://doi.org/10.5194/bg-13-5753-2016, 2016
Short summary
Short summary
Nutrients from land have been discussed to increase eutrophication in the open sea. This model study shows that the coastal zone works as an efficient filter. Water depth and residence time regulate the retention that occurs mostly in the sediment due to processes such as burial and denitrification. On shorter timescales the retention capacity might seem less effective when the land load of nutrients decreases, but with time the coastal zone can import nutrients from the open sea.
This article is included in the Encyclopedia of Geosciences
Matthias Egger, Peter Kraal, Tom Jilbert, Fatimah Sulu-Gambari, Célia J. Sapart, Thomas Röckmann, and Caroline P. Slomp
Biogeosciences, 13, 5333–5355, https://doi.org/10.5194/bg-13-5333-2016, https://doi.org/10.5194/bg-13-5333-2016, 2016
Short summary
Short summary
By combining detailed geochemical analyses with diagenetic modeling, we provide new insights into how methane dynamics may strongly overprint burial records of iron, sulfur and phosphorus in marine systems subject to changes in organic matter loading or water column salinity. A better understanding of these processes will improve our ability to read ancient sediment records and thus to predict the potential consequences of global warming and human-enhanced inputs of nutrients to the ocean.
This article is included in the Encyclopedia of Geosciences
Marje Prank, Mikhail Sofiev, Svetlana Tsyro, Carlijn Hendriks, Valiyaveetil Semeena, Xavier Vazhappilly Francis, Tim Butler, Hugo Denier van der Gon, Rainer Friedrich, Johannes Hendricks, Xin Kong, Mark Lawrence, Mattia Righi, Zissis Samaras, Robert Sausen, Jaakko Kukkonen, and Ranjeet Sokhi
Atmos. Chem. Phys., 16, 6041–6070, https://doi.org/10.5194/acp-16-6041-2016, https://doi.org/10.5194/acp-16-6041-2016, 2016
Short summary
Short summary
Aerosol composition in Europe was simulated by four chemistry transport models and compared to observations to identify the most prominent areas for model improvement. Notable differences were found between the models' predictions, attributable to different treatment or omission of aerosol sources and processes. All models underestimated the observed concentrations by 10–60 %, mostly due to under-predicting the carbonaceous and mineral particles and omitting the aerosol-bound water.
This article is included in the Encyclopedia of Geosciences
Mati Kahru, Ragnar Elmgren, and Oleg P. Savchuk
Biogeosciences, 13, 1009–1018, https://doi.org/10.5194/bg-13-1009-2016, https://doi.org/10.5194/bg-13-1009-2016, 2016
Short summary
Short summary
Using satellite-derived data sets we have found drastic changes in the timing of the annual cycle in physical and ecological variables of the Baltic Sea over the last 30 years. The summer season starts earlier and extends longer. The period with sea-surface temperature of at least 17 ˚C has doubled; the period with high water turbidity has quadrupled. While both the phytoplankton spring and summer blooms have become earlier, the annual maximum has switched to the summer cyanobacteria bloom.
This article is included in the Encyclopedia of Geosciences
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
This article is included in the Encyclopedia of Geosciences
M. Sofiev, J. Vira, R. Kouznetsov, M. Prank, J. Soares, and E. Genikhovich
Geosci. Model Dev., 8, 3497–3522, https://doi.org/10.5194/gmd-8-3497-2015, https://doi.org/10.5194/gmd-8-3497-2015, 2015
Short summary
Short summary
The paper presents a transport mechanism of SILAM CTM based on an algorithm of M. Galperin. We describe the original scheme and its updates needed for applications to long-living species, complex atmospheric flows, etc. The scheme is connected to vertical diffusion, chemical transformation and deposition algorithms. Quality of the advection routine is evaluated with a large set of tests, which showed performance fully comparable with state-of-the-art algorithms at much lower computational costs.
This article is included in the Encyclopedia of Geosciences
V. Marécal, V.-H. Peuch, C. Andersson, S. Andersson, J. Arteta, M. Beekmann, A. Benedictow, R. Bergström, B. Bessagnet, A. Cansado, F. Chéroux, A. Colette, A. Coman, R. L. Curier, H. A. C. Denier van der Gon, A. Drouin, H. Elbern, E. Emili, R. J. Engelen, H. J. Eskes, G. Foret, E. Friese, M. Gauss, C. Giannaros, J. Guth, M. Joly, E. Jaumouillé, B. Josse, N. Kadygrov, J. W. Kaiser, K. Krajsek, J. Kuenen, U. Kumar, N. Liora, E. Lopez, L. Malherbe, I. Martinez, D. Melas, F. Meleux, L. Menut, P. Moinat, T. Morales, J. Parmentier, A. Piacentini, M. Plu, A. Poupkou, S. Queguiner, L. Robertson, L. Rouïl, M. Schaap, A. Segers, M. Sofiev, L. Tarasson, M. Thomas, R. Timmermans, Á. Valdebenito, P. van Velthoven, R. van Versendaal, J. Vira, and A. Ung
Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-2015, https://doi.org/10.5194/gmd-8-2777-2015, 2015
Short summary
Short summary
This paper describes the air quality forecasting system over Europe put in place in the Monitoring Atmospheric Composition and Climate projects. It provides daily and 4-day forecasts and analyses for the previous day for major gas and particulate pollutants and their main precursors. These products are based on a multi-model approach using seven state-of-the-art models developed in Europe. An evaluation of the performance of the system is discussed in the paper.
This article is included in the Encyclopedia of Geosciences
C. Lenz, T. Jilbert, D.J. Conley, M. Wolthers, and C.P. Slomp
Biogeosciences, 12, 4875–4894, https://doi.org/10.5194/bg-12-4875-2015, https://doi.org/10.5194/bg-12-4875-2015, 2015
M. Sofiev, U. Berger, M. Prank, J. Vira, J. Arteta, J. Belmonte, K.-C. Bergmann, F. Chéroux, H. Elbern, E. Friese, C. Galan, R. Gehrig, D. Khvorostyanov, R. Kranenburg, U. Kumar, V. Marécal, F. Meleux, L. Menut, A.-M. Pessi, L. Robertson, O. Ritenberga, V. Rodinkova, A. Saarto, A. Segers, E. Severova, I. Sauliene, P. Siljamo, B. M. Steensen, E. Teinemaa, M. Thibaudon, and V.-H. Peuch
Atmos. Chem. Phys., 15, 8115–8130, https://doi.org/10.5194/acp-15-8115-2015, https://doi.org/10.5194/acp-15-8115-2015, 2015
Short summary
Short summary
The paper presents the first ensemble modelling experiment for forecasting the atmospheric dispersion of birch pollen in Europe. The study included 7 models of MACC-ENS tested over the season of 2010 and applied for 2013 in forecasting and reanalysis modes. The results were compared with observations in 11 countries, members of European Aeroallergen Network. The models successfully reproduced the timing of the unusually late season of 2013 but had more difficulties with absolute concentration.
This article is included in the Encyclopedia of Geosciences
M. Bocquet, H. Elbern, H. Eskes, M. Hirtl, R. Žabkar, G. R. Carmichael, J. Flemming, A. Inness, M. Pagowski, J. L. Pérez Camaño, P. E. Saide, R. San Jose, M. Sofiev, J. Vira, A. Baklanov, C. Carnevale, G. Grell, and C. Seigneur
Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, https://doi.org/10.5194/acp-15-5325-2015, 2015
Short summary
Short summary
Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of concentrations, and perform inverse modeling. Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. We review here the current status of data assimilation in atmospheric chemistry models, with a particular focus on future prospects for data assimilation in CCMM.
This article is included in the Encyclopedia of Geosciences
M. Hagens, C. P. Slomp, F. J. R. Meysman, D. Seitaj, J. Harlay, A. V. Borges, and J. J. Middelburg
Biogeosciences, 12, 1561–1583, https://doi.org/10.5194/bg-12-1561-2015, https://doi.org/10.5194/bg-12-1561-2015, 2015
Short summary
Short summary
This study looks at the combined impacts of hypoxia and acidification, two major environmental stressors affecting coastal systems, in a seasonally stratified basin. Here, the surface water experiences less seasonality in pH than the bottom water despite higher process rates. This is due to a substantial reduction in the acid-base buffering capacity of the bottom water as it turns hypoxic in summer. This highlights the crucial role of the buffering capacity as a modulating factor in pH dynamics.
This article is included in the Encyclopedia of Geosciences
J. Vira and M. Sofiev
Geosci. Model Dev., 8, 191–203, https://doi.org/10.5194/gmd-8-191-2015, https://doi.org/10.5194/gmd-8-191-2015, 2015
J. Kukkonen, J. Nikmo, M. Sofiev, K. Riikonen, T. Petäjä, A. Virkkula, J. Levula, S. Schobesberger, and D. M. Webber
Geosci. Model Dev., 7, 2663–2681, https://doi.org/10.5194/gmd-7-2663-2014, https://doi.org/10.5194/gmd-7-2663-2014, 2014
A. Sluijs, L. van Roij, G. J. Harrington, S. Schouten, J. A. Sessa, L. J. LeVay, G.-J. Reichart, and C. P. Slomp
Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, https://doi.org/10.5194/cp-10-1421-2014, 2014
D. Simpson, C. Andersson, J.H. Christensen, M. Engardt, C. Geels, A. Nyiri, M. Posch, J. Soares, M. Sofiev, P. Wind, and J. Langner
Atmos. Chem. Phys., 14, 6995–7017, https://doi.org/10.5194/acp-14-6995-2014, https://doi.org/10.5194/acp-14-6995-2014, 2014
J. Friedrich, F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli, and F. Wenzhöfer
Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, https://doi.org/10.5194/bg-11-1215-2014, 2014
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
G. Jakobs, G. Rehder, G. Jost, K. Kießlich, M. Labrenz, and O. Schmale
Biogeosciences, 10, 7863–7875, https://doi.org/10.5194/bg-10-7863-2013, https://doi.org/10.5194/bg-10-7863-2013, 2013
M. Sofiev, R. Vankevich, T. Ermakova, and J. Hakkarainen
Atmos. Chem. Phys., 13, 7039–7052, https://doi.org/10.5194/acp-13-7039-2013, https://doi.org/10.5194/acp-13-7039-2013, 2013
L. Viktorsson, N. Ekeroth, M. Nilsson, M. Kononets, and P. O. J. Hall
Biogeosciences, 10, 3901–3916, https://doi.org/10.5194/bg-10-3901-2013, https://doi.org/10.5194/bg-10-3901-2013, 2013
B. Szymczycha, A. Maciejewska, A. Szczepanska, and J. Pempkowiak
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-2069-2013, https://doi.org/10.5194/bgd-10-2069-2013, 2013
Revised manuscript not accepted
W. Gülzow, G. Rehder, J. Schneider v. Deimling, T. Seifert, and Z. Tóth
Biogeosciences, 10, 81–99, https://doi.org/10.5194/bg-10-81-2013, https://doi.org/10.5194/bg-10-81-2013, 2013
A. F. Bouwman, M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop, and C. P. Slomp
Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, https://doi.org/10.5194/bg-10-1-2013, 2013
K. Mammitzsch, G. Jost, and K. Jürgens
Biogeosciences Discuss., https://doi.org/10.5194/bgd-9-18371-2012, https://doi.org/10.5194/bgd-9-18371-2012, 2012
Revised manuscript not accepted
Related subject area
Earth system interactions with the biosphere: biogeochemical cycles
How does the phytoplankton–light feedback affect the marine N2O inventory?
Time-varying changes and uncertainties in the CMIP6 ocean carbon sink from global to local scale
Interannual global carbon cycle variations linked to atmospheric circulation variability
Contrasting projections of the ENSO-driven CO2 flux variability in the equatorial Pacific under high-warming scenario
Divergent historical GPP trends among state-of-the-art multi-model simulations and satellite-based products
Indian Ocean marine biogeochemical variability and its feedback on simulated South Asia climate
Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios
Process-based analysis of terrestrial carbon flux predictability
Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century
Resolving ecological feedbacks on the ocean carbon sink in Earth system models
Disequilibrium of terrestrial ecosystem CO2 budget caused by disturbance-induced emissions and non-CO2 carbon export flows: a global model assessment
Ocean phosphorus inventory: large uncertainties in future projections on millennial timescales and their consequences for ocean deoxygenation
Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system
Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets
The biomass burning contribution to climate–carbon-cycle feedback
Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions
Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties
Nitrogen leaching from natural ecosystems under global change: a modelling study
Structure and functioning of the acid–base system in the Baltic Sea
The potential of using remote sensing data to estimate air–sea CO2 exchange in the Baltic Sea
Effects of the 2014 major Baltic inflow on methane and nitrous oxide dynamics in the water column of the central Baltic Sea
Evapotranspiration seasonality across the Amazon Basin
Seasonal effects of irrigation on land–atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin
Divergent predictions of carbon storage between two global land models: attribution of the causes through traceability analysis
Effect of various climate databases on the results of dendroclimatic analysis
The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks
Comment on: "Recent revisions of phosphate rock reserves and resources: a critique" by Edixhoven et al. (2014) – clarifying comments and thoughts on key conceptions, conclusions and interpretation to allow for sustainable action
Climate and carbon cycle dynamics in a CESM simulation from 850 to 2100 CE
The ocean carbon sink – impacts, vulnerabilities and challenges
Recent revisions of phosphate rock reserves and resources: a critique
The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes
Comment on "Carbon farming in hot, dry coastal areas: an option for climate change mitigation" by Becker et al. (2013)
Dynamical and biogeochemical control on the decadal variability of ocean carbon fluxes
Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America
Thermodynamic dissipation theory for the origin of life
Sarah Berthet, Julien Jouanno, Roland Séférian, Marion Gehlen, and William Llovel
Earth Syst. Dynam., 14, 399–412, https://doi.org/10.5194/esd-14-399-2023, https://doi.org/10.5194/esd-14-399-2023, 2023
Short summary
Short summary
Phytoplankton absorbs the solar radiation entering the ocean surface and contributes to keeping the associated energy in surface waters. This natural effect is either not represented in the ocean component of climate models or its representation is simplified. An incomplete representation of this biophysical interaction affects the way climate models simulate ocean warming, which leads to uncertainties in projections of oceanic emissions of an important greenhouse gas (nitrous oxide).
This article is included in the Encyclopedia of Geosciences
Parsa Gooya, Neil C. Swart, and Roberta C. Hamme
Earth Syst. Dynam., 14, 383–398, https://doi.org/10.5194/esd-14-383-2023, https://doi.org/10.5194/esd-14-383-2023, 2023
Short summary
Short summary
We report on the ocean carbon sink and sources of uptake uncertainty from the latest version of the Coupled Model Intercomparison Project. We diagnose the highly active regions for the sink and show how knowledge about historical regions of uptake will provide information about future regions of uptake change and uncertainty. We evaluate the dependence of uncertainty on the location and integration scale. Our results help make useful suggestions for both modeling and observational communities.
This article is included in the Encyclopedia of Geosciences
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
This article is included in the Encyclopedia of Geosciences
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
This article is included in the Encyclopedia of Geosciences
Ruqi Yang, Jun Wang, Ning Zeng, Stephen Sitch, Wenhan Tang, Matthew Joseph McGrath, Qixiang Cai, Di Liu, Danica Lombardozzi, Hanqin Tian, Atul K. Jain, and Pengfei Han
Earth Syst. Dynam., 13, 833–849, https://doi.org/10.5194/esd-13-833-2022, https://doi.org/10.5194/esd-13-833-2022, 2022
Short summary
Short summary
We comprehensively investigate historical GPP trends based on five kinds of GPP datasets and analyze the causes for any discrepancies among them. Results show contrasting behaviors between modeled and satellite-based GPP trends, and their inconsistencies are likely caused by the contrasting performance between satellite-derived and modeled leaf area index (LAI). Thus, the uncertainty in satellite-based GPP induced by LAI undermines its role in assessing the performance of DGVM simulations.
This article is included in the Encyclopedia of Geosciences
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
This article is included in the Encyclopedia of Geosciences
Irina Melnikova, Olivier Boucher, Patricia Cadule, Katsumasa Tanaka, Thomas Gasser, Tomohiro Hajima, Yann Quilcaille, Hideo Shiogama, Roland Séférian, Kaoru Tachiiri, Nicolas Vuichard, Tokuta Yokohata, and Philippe Ciais
Earth Syst. Dynam., 13, 779–794, https://doi.org/10.5194/esd-13-779-2022, https://doi.org/10.5194/esd-13-779-2022, 2022
Short summary
Short summary
The deployment of bioenergy crops for capturing carbon from the atmosphere facilitates global warming mitigation via generating negative CO2 emissions. Here, we explored the consequences of large-scale energy crops deployment on the land carbon cycle. The land-use change for energy crops leads to carbon emissions and loss of future potential increase in carbon uptake by natural ecosystems. This impact should be taken into account by the modeling teams and accounted for in mitigation policies.
This article is included in the Encyclopedia of Geosciences
István Dunkl, Aaron Spring, Pierre Friedlingstein, and Victor Brovkin
Earth Syst. Dynam., 12, 1413–1426, https://doi.org/10.5194/esd-12-1413-2021, https://doi.org/10.5194/esd-12-1413-2021, 2021
Short summary
Short summary
The variability in atmospheric CO2 is largely controlled by terrestrial carbon fluxes. These land–atmosphere fluxes are predictable for around 2 years, but the mechanisms providing the predictability are not well understood. By decomposing the predictability of carbon fluxes into individual contributors we were able to explain the spatial and seasonal patterns and the interannual variability of CO2 flux predictability.
This article is included in the Encyclopedia of Geosciences
Thomas Luke Smallman, David Thomas Milodowski, Eráclito Sousa Neto, Gerbrand Koren, Jean Ometto, and Mathew Williams
Earth Syst. Dynam., 12, 1191–1237, https://doi.org/10.5194/esd-12-1191-2021, https://doi.org/10.5194/esd-12-1191-2021, 2021
Short summary
Short summary
Our study provides a novel assessment of model parameter, structure and climate change scenario uncertainty contribution to future predictions of the Brazilian terrestrial carbon stocks to 2100. We calibrated (2001–2017) five models of the terrestrial C cycle of varied structure. The calibrated models were then projected to 2100 under multiple climate change scenarios. Parameter uncertainty dominates overall uncertainty, being ~ 40 times that of either model structure or climate change scenario.
This article is included in the Encyclopedia of Geosciences
David I. Armstrong McKay, Sarah E. Cornell, Katherine Richardson, and Johan Rockström
Earth Syst. Dynam., 12, 797–818, https://doi.org/10.5194/esd-12-797-2021, https://doi.org/10.5194/esd-12-797-2021, 2021
Short summary
Short summary
We use an Earth system model with two new ocean ecosystem features (plankton size traits and temperature-sensitive nutrient recycling) to revaluate the effect of climate change on sinking organic carbon (the
This article is included in the Encyclopedia of Geosciences
biological pump) and the ocean carbon sink. These features lead to contrary pump responses to warming, with a combined effect of a smaller sink despite a more resilient pump. These results show the importance of including ecological dynamics in models for understanding climate feedbacks.
Akihiko Ito
Earth Syst. Dynam., 10, 685–709, https://doi.org/10.5194/esd-10-685-2019, https://doi.org/10.5194/esd-10-685-2019, 2019
Short summary
Short summary
Various minor carbon flows such as trace gas emissions, disturbance-induced emissions, and subsurface exports can affect the carbon budget of terrestrial ecosystems in complicated ways. This study assessed how much these minor flows influence the carbon budget using a process-based model. It was found that the minor flows, though small in magnitude, could significantly affect net carbon budget at as much strengths as major flows, implying their long-term importance in Earth's climate system.
This article is included in the Encyclopedia of Geosciences
Tronje P. Kemena, Angela Landolfi, Andreas Oschlies, Klaus Wallmann, and Andrew W. Dale
Earth Syst. Dynam., 10, 539–553, https://doi.org/10.5194/esd-10-539-2019, https://doi.org/10.5194/esd-10-539-2019, 2019
Short summary
Short summary
Oceanic deoxygenation is driven by climate change in several areas of the global ocean. Measurements indicate that ocean volumes with very low oxygen levels expand, with consequences for marine organisms and fishery. We found climate-change-driven phosphorus (P) input in the ocean is hereby an important driver for deoxygenation on longer timescales with effects in the next millennia.
This article is included in the Encyclopedia of Geosciences
Efrén López-Blanco, Jean-François Exbrayat, Magnus Lund, Torben R. Christensen, Mikkel P. Tamstorf, Darren Slevin, Gustaf Hugelius, Anthony A. Bloom, and Mathew Williams
Earth Syst. Dynam., 10, 233–255, https://doi.org/10.5194/esd-10-233-2019, https://doi.org/10.5194/esd-10-233-2019, 2019
Short summary
Short summary
The terrestrial CO2 exchange in Arctic ecosystems plays an important role in the global carbon cycle and is particularly sensitive to the ongoing warming experienced in recent years. To improve our understanding of the atmosphere–biosphere interplay, we evaluated the state of the terrestrial pan-Arctic carbon cycling using a promising data assimilation system in the first 15 years of the 21st century. This is crucial when it comes to making predictions about the future state of the carbon cycle.
This article is included in the Encyclopedia of Geosciences
Gianna Battaglia and Fortunat Joos
Earth Syst. Dynam., 9, 797–816, https://doi.org/10.5194/esd-9-797-2018, https://doi.org/10.5194/esd-9-797-2018, 2018
Short summary
Short summary
Human-caused, climate change hazards in the ocean continue to aggravate over a very long time. For business as usual, we project the ocean oxygen content to decrease by 40 % over the next thousand years. This would likely have severe consequences for marine life. Global warming and oxygen loss are linked, and meeting the warming target of the Paris Climate Agreement effectively limits related marine hazards. Developments over many thousands of years should be considered to assess marine risks.
This article is included in the Encyclopedia of Geosciences
Sandy P. Harrison, Patrick J. Bartlein, Victor Brovkin, Sander Houweling, Silvia Kloster, and I. Colin Prentice
Earth Syst. Dynam., 9, 663–677, https://doi.org/10.5194/esd-9-663-2018, https://doi.org/10.5194/esd-9-663-2018, 2018
Short summary
Short summary
Temperature affects fire occurrence and severity. Warming will increase fire-related carbon emissions and thus atmospheric CO2. The size of this feedback is not known. We use charcoal records to estimate pre-industrial fire emissions and a simple land–biosphere model to quantify the feedback. We infer a feedback strength of 5.6 3.2 ppm CO2 per degree of warming and a gain of 0.09 ± 0.05 for a climate sensitivity of 2.8 K. Thus, fire feedback is a large part of the climate–carbon-cycle feedback.
This article is included in the Encyclopedia of Geosciences
Markus Adloff, Christian H. Reick, and Martin Claussen
Earth Syst. Dynam., 9, 413–425, https://doi.org/10.5194/esd-9-413-2018, https://doi.org/10.5194/esd-9-413-2018, 2018
Short summary
Short summary
Computer simulations show that during an ice age a strong atmospheric CO2 increase would have resulted in stronger carbon uptake of the continents than today. Causes are the larger potential of glacial vegetation to increase its photosynthetic efficiency under increasing CO2 and the smaller amount of carbon in extratropical soils during an ice age that can be released under greenhouse warming. Hence, for different climates the Earth system is differently sensitive to carbon cycle perturbations.
This article is included in the Encyclopedia of Geosciences
Jean-François Exbrayat, A. Anthony Bloom, Pete Falloon, Akihiko Ito, T. Luke Smallman, and Mathew Williams
Earth Syst. Dynam., 9, 153–165, https://doi.org/10.5194/esd-9-153-2018, https://doi.org/10.5194/esd-9-153-2018, 2018
Short summary
Short summary
We use global observations of current terrestrial net primary productivity (NPP) to constrain the uncertainty in large ensemble 21st century projections of NPP under a "business as usual" scenario using a skill-based multi-model averaging technique. Our results show that this procedure helps greatly reduce the uncertainty in global projections of NPP. We also identify regions where uncertainties in models and observations remain too large to confidently conclude a sign of the change of NPP.
This article is included in the Encyclopedia of Geosciences
Maarten C. Braakhekke, Karin T. Rebel, Stefan C. Dekker, Benjamin Smith, Arthur H. W. Beusen, and Martin J. Wassen
Earth Syst. Dynam., 8, 1121–1139, https://doi.org/10.5194/esd-8-1121-2017, https://doi.org/10.5194/esd-8-1121-2017, 2017
Short summary
Short summary
Nitrogen input in natural ecosystems usually has a positive effect on plant growth. However, too much N causes N leaching, which contributes to water pollution. Using a global model we estimated that N leaching from natural lands has increased by 73 % during the 20th century, mainly due to rising N deposition from the atmosphere caused by emissions from fossil fuels and agriculture. Climate change and increasing CO2 concentration had positive and negative effects (respectively) on N leaching.
This article is included in the Encyclopedia of Geosciences
Karol Kuliński, Bernd Schneider, Beata Szymczycha, and Marcin Stokowski
Earth Syst. Dynam., 8, 1107–1120, https://doi.org/10.5194/esd-8-1107-2017, https://doi.org/10.5194/esd-8-1107-2017, 2017
Short summary
Short summary
This review describes the general knowledge of the marine acid–base system as well as the peculiarities identified and reported for the Baltic Sea specifically. We discuss issues such as dissociation constants in the brackish water, the structure of the total alkalinity in the Baltic Sea, long-term changes in total alkalinity, and the acid–base effects of biomass production and mineralization. We identify research gaps and specify bottlenecks concerning the Baltic Sea acid–base system.
This article is included in the Encyclopedia of Geosciences
Gaëlle Parard, Anna Rutgersson, Sindu Raj Parampil, and Anastase Alexandre Charantonis
Earth Syst. Dynam., 8, 1093–1106, https://doi.org/10.5194/esd-8-1093-2017, https://doi.org/10.5194/esd-8-1093-2017, 2017
Short summary
Short summary
Coastal environments and shelf sea represent 7.6 % of the total oceanic surface area. They are, however, biogeochemically more dynamic and probably more vulnerable to climate change than the open ocean. Whatever the responses of the open ocean to climate change, they will propagate to the coastal ocean. We used the self-organizing multiple linear output (SOMLO) method to estimate the ocean surface pCO2 in the Baltic Sea from remotely sensed measurements and we estimated the air–sea CO2 flux.
This article is included in the Encyclopedia of Geosciences
Jukka-Pekka Myllykangas, Tom Jilbert, Gunnar Jakobs, Gregor Rehder, Jan Werner, and Susanna Hietanen
Earth Syst. Dynam., 8, 817–826, https://doi.org/10.5194/esd-8-817-2017, https://doi.org/10.5194/esd-8-817-2017, 2017
Short summary
Short summary
The deep waters of the Baltic Sea host an expanding
This article is included in the Encyclopedia of Geosciences
dead zone, where low-oxygen conditions favour the natural production of two strong greenhouse gases, methane and nitrous oxide. Oxygen is introduced into the deeps only during rare
salt pulses. We studied the effects of a recent salt pulse on Baltic greenhouse gas production. We found that where oxygen was introduced, methane was largely removed, while nitrous oxide production increased, indicating strong effects on greenhouse gas dynamics.
Eduardo Eiji Maeda, Xuanlong Ma, Fabien Hubert Wagner, Hyungjun Kim, Taikan Oki, Derek Eamus, and Alfredo Huete
Earth Syst. Dynam., 8, 439–454, https://doi.org/10.5194/esd-8-439-2017, https://doi.org/10.5194/esd-8-439-2017, 2017
Short summary
Short summary
The Amazon River basin continuously transfers massive volumes of water from the land surface to the atmosphere, thereby having massive influence on global climate patterns. Nonetheless, the characteristics of ET across the Amazon basin, as well as the relative contribution of the multiple drivers to this process, are still uncertain. This study carries out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers across the Amazon Basin.
This article is included in the Encyclopedia of Geosciences
Yujin Zeng, Zhenghui Xie, and Shuang Liu
Earth Syst. Dynam., 8, 113–127, https://doi.org/10.5194/esd-8-113-2017, https://doi.org/10.5194/esd-8-113-2017, 2017
Short summary
Short summary
Irrigation constitutes 70 % of human water consumption. In this study, using the improved CLM4.5 with an active crop model, two 1 km simulations investigating the effects of irrigation on latent heat, sensible heat, and carbon fluxes in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The results revealed the key role of irrigation in the control of land–atmosphere water, energy, and carbon fluxes in semiarid basin.
This article is included in the Encyclopedia of Geosciences
Rashid Rafique, Jianyang Xia, Oleksandra Hararuk, Ghassem R. Asrar, Guoyong Leng, Yingping Wang, and Yiqi Luo
Earth Syst. Dynam., 7, 649–658, https://doi.org/10.5194/esd-7-649-2016, https://doi.org/10.5194/esd-7-649-2016, 2016
Short summary
Short summary
Traceability analysis was used to diagnose the causes of differences in simulating ecosystem carbon storage capacity between two land models: CLMA-CASA and CABLE. Results showed that the simulated ecosystem carbon storage capacity is largely influenced by the photosynthesis parameterization, residence time and organic matter decomposition.
This article is included in the Encyclopedia of Geosciences
Roman Sitko, Jaroslav Vido, Jaroslav Škvarenina, Viliam Pichler, Ĺubomír Scheer, Jana Škvareninová, and Paulína Nalevanková
Earth Syst. Dynam., 7, 385–395, https://doi.org/10.5194/esd-7-385-2016, https://doi.org/10.5194/esd-7-385-2016, 2016
A. Kessler and J. Tjiputra
Earth Syst. Dynam., 7, 295–312, https://doi.org/10.5194/esd-7-295-2016, https://doi.org/10.5194/esd-7-295-2016, 2016
Short summary
Short summary
The uncertainty of ocean carbon uptake in ESMs is projected to grow 2-fold by the end of the 21st century. We found that models that take up anomalously low (high) CO2 in the Southern Ocean (SO) today project low (high) cumulative CO2 uptake in the 21st century; thus the SO can be used to constrain future global uptake uncertainty. Inter-model spread in the SO carbon sink arises from variations in the pCO2 seasonality, specifically bias in the simulated timing and amplitude of NPP and SST.
This article is included in the Encyclopedia of Geosciences
R. W. Scholz and F.-W. Wellmer
Earth Syst. Dynam., 7, 103–117, https://doi.org/10.5194/esd-7-103-2016, https://doi.org/10.5194/esd-7-103-2016, 2016
Short summary
Short summary
The 2014 USGS data could decrease from 67 Gt phosphate rock (PR) reserves to 58.5 Gt marketable PR (PR-M) if data on PR-ore are transferred to PR-M. The 50 Gt PR-M estimate for Moroccan reserves is reasonable. Geoeconomics suggests that large parts of resources and geopotential become future reserves. As phosphate is essential for food production and reserve data alone are unsufficient for assessing long-run supply security, an international standing committee may assess future PR accessibility.
This article is included in the Encyclopedia of Geosciences
F. Lehner, F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker
Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, https://doi.org/10.5194/esd-6-411-2015, 2015
Short summary
Short summary
We present the first last-millennium simulation with the Community Earth System Model (CESM) including an interactive carbon cycle in both ocean and land component. Volcanic eruptions emerge as the strongest forcing factor for the preindustrial climate and carbon cycle. We estimate the climate-carbon-cycle feedback in CESM to be at the lower bounds of empirical estimates (1.3ppm/°C). The time of emergence for interannual global land and ocean carbon uptake rates are 1947 and 1877, respectively.
This article is included in the Encyclopedia of Geosciences
C. Heinze, S. Meyer, N. Goris, L. Anderson, R. Steinfeldt, N. Chang, C. Le Quéré, and D. C. E. Bakker
Earth Syst. Dynam., 6, 327–358, https://doi.org/10.5194/esd-6-327-2015, https://doi.org/10.5194/esd-6-327-2015, 2015
Short summary
Short summary
Rapidly rising atmospheric CO2 concentrations caused by human actions over the past 250 years have raised cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20,000 years. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems. Major future ocean carbon research challenges are discussed.
This article is included in the Encyclopedia of Geosciences
J. D. Edixhoven, J. Gupta, and H. H. G. Savenije
Earth Syst. Dynam., 5, 491–507, https://doi.org/10.5194/esd-5-491-2014, https://doi.org/10.5194/esd-5-491-2014, 2014
Short summary
Short summary
Phosphate rock is a finite resource required for fertilizer production. Following a debate over the PR depletion timeline, global PR reserves were recently increased 4-fold based mainly on a restatement of Moroccan reserves. We review whether this restatement is methodologically compatible with resource terminology used in major resource classifications, whether resource classification nomenclature is sufficiently understood in the literature, and whether the recent restatements are reliable.
This article is included in the Encyclopedia of Geosciences
B. Foereid, D. S. Ward, N. Mahowald, E. Paterson, and J. Lehmann
Earth Syst. Dynam., 5, 211–221, https://doi.org/10.5194/esd-5-211-2014, https://doi.org/10.5194/esd-5-211-2014, 2014
M. Heimann
Earth Syst. Dynam., 5, 41–42, https://doi.org/10.5194/esd-5-41-2014, https://doi.org/10.5194/esd-5-41-2014, 2014
R. Séférian, L. Bopp, D. Swingedouw, and J. Servonnat
Earth Syst. Dynam., 4, 109–127, https://doi.org/10.5194/esd-4-109-2013, https://doi.org/10.5194/esd-4-109-2013, 2013
D. Wisser, S. Marchenko, J. Talbot, C. Treat, and S. Frolking
Earth Syst. Dynam., 2, 121–138, https://doi.org/10.5194/esd-2-121-2011, https://doi.org/10.5194/esd-2-121-2011, 2011
K. Michaelian
Earth Syst. Dynam., 2, 37–51, https://doi.org/10.5194/esd-2-37-2011, https://doi.org/10.5194/esd-2-37-2011, 2011
Cited articles
Ahlgren, J., Grimvall, A., Omstedt, A., Rolff, C., and Wikner, J.: Temperature, DOC level and basin interactions explain the declining oxygen
concentrations in the Bothnian Sea, J. Mar. Syst., 170, 22–30, https://doi.org/10.1016/j.jmarsys.2016.12.010, 2017.
Aller, R. C.: Sedimentary diagenesis, depositional environments, and benthic
fluxes, in: Treatise on Geochemistry, Second Edition, edited by: Holland, H.
D. and Turekian, K. K., Elsevier, Oxford, 293–334, ISBN 9780080959757,
https://doi.org/10.1016/B978-0-08-095975-7.00611-2, 2014.
Allison, S. D. and Martiny, J. B. H.: Resistance, resilience, and redundancy
in microbial communities, P. Natl. Acad. Sci. USA, 105, 11512–11519, https://doi.org/10.1073/pnas.0801925105, 2008.
Almén, A. K., Glippa, O., Pettersson, H., Alenius, P., and Engström-Öst, J.: Changes in wintertime pH and hydrography of the
Gulf of Finland (Baltic Sea) with focus on depth layers, Environ. Monit.
Assess., 189, 147, https://doi.org/10.1007/s10661-017-5840-7, 2017.
Almroth-Rosell, E., Eilola, K., Hordoir, R., Meier, H. E. M., and Hall, P. O. J.: Transport of fresh and resuspended particulate organic material in the Baltic Sea – a model study, J. Mar. Syst., 87, 1–12, https://doi.org/10.1016/j.jmarsys.2011.02.005, 2011.
Almroth-Rosell, E., Eilola, K., Kuznetsov, I., Hall, P. O. J., and Meier, H.
E. M.: A new approach to model oxygen dependent benthic phosphate fluxes in
the Baltic Sea, J. Mar. Syst., 144, 127–141, https://doi.org/10.1016/j.jmarsys.2014.11.007, 2015.
Almroth-Rosell, E., Edman, M., Eilola, K., Meier, H. E. M., and Sahlberg, J.: Modelling nutrient retention in the coastal zone of an eutrophic sea,
Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016, 2016.
Alneberg, J., Sundh, J., Bennke, C., Beier, S., Lundin, D., Hugerth, L. W.,
Pinhassi, J., Kisand, V., Riemann, L., Jürgens, K., Labrenz, M., and
Andersson, A. F.: BARM and BalticMicrobeDB, a reference metagenome and
interface to meta-omic data for the Baltic Sea, Sci. Data, 5, 180146,
https://doi.org/10.1038/sdata.2018.146, 2018.
Alneberg, J., Bennke, C., Beier, S., Bunse, C., Quince, C., Ininbergs, K., Riemann, L., Ekman, M., Jürgens, K., Labrenz, M., Pinhassi, J., and Andersson, A. F.: Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes, Commun. Biol., 3, 119, https://doi.org/10.1038/s42003-020-0856-x, 2020.
Andersen, H. E., Blicher-Mathiesen, G., Thodsen, H., Andersen, P. M., Larsen, S. E., Stålnacke, P., Humborg, C., Mörth, C.-M., and Smedberg, E.: Identifying hot spots of agricultural nitrogen loss within the Baltic Sea drainage basin, Water. Air. Soil Pollut., 227, 38, https://doi.org/10.1007/s11270-015-2733-7, 2016.
Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fleming-Lehtinen, V., Gustafsson, B. G., Josefson, A. B., Norkko, A., Villnäs, A., and Murray, C.: Long-term temporal and spatial trends in eutrophication status of the Baltic Sea, Biol. Rev., 92, 135–149, https://doi.org/10.1111/brv.12221, 2017.
Andersson, A., Jurgensone, I., Rowe, O. F., Simonelli, P., Bignert, A., Lundberg, E., and Karlsson, J.: Can Humic Water Discharge Counteract Eutrophication in Coastal Waters?, PLoS One, 8, e61293, https://doi.org/10.1371/journal.pone.0061293, 2013.
Andersson, A., Meier, H. E. M., Ripszam, M., Rowe, O., Wikner, J., Haglund,
P., Eilola, K., Legrand, C., Figueroa, D., Paczkowska, J., Lindehoff, E.,
Tysklind, M., and Elmgren, R.: Projected future climate change and Baltic
Sea ecosystem management, Ambio, 44, 345–356, https://doi.org/10.1007/s13280-015-0654-8, 2015.
Andersson, A., Brugel, S., Paczkowska, J., Rowe, O. F., Figueroa, D., Kratzer, S., and Legrand, C.: Influence of allochthonous dissolved organic
matter on pelagic basal production in a northerly estuary, Estuar. Coast.
Shelf S., 204, 225–235, https://doi.org/10.1016/j.ecss.2018.02.032, 2018.
Andersson, A. F., Riemann, L., and Bertilsson, S.: Pyrosequencing reveals
contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton
communities, ISME J., 4, 171–181, https://doi.org/10.1038/ismej.2009.108, 2009.
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R.
D., and Pancost, R.: Quantifying degradation of organic matter in marine
sediments: a review and synthesis, Earth-Sci. Rev., 123, 53–86, https://doi.org/10.1016/j.earscirev.2013.02.008, 2013.
Asmala, E., Autio, R., Kaartokallio, H., Pitkänen, L., Stedmon, C., and
Thomas, D.: Bioavailability of riverine dissolved organic matter in three
Baltic Sea estuaries and the effect of catchment land use, Biogeosciences, 10, 6969–6986, https://doi.org/10.5194/bg-10-6969-2013, 2013.
Asmala, E., Bowers, D. G., Autio, R., Kaartokallio, H., and Thomas, D. N.:
Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation, J. Geophys. Res.-Biogeo., 119, 1919–1933,
https://doi.org/10.1002/2014JG002722, 2014.
Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., and
Voss, M.:. Efficiency of the coastal filter: Nitrogen and phosphorus removal
in the Baltic Sea, Limnol. Oceanogr., 62, S222–S238, https://doi.org/10.1002/lno.10644, 2017.
Asmala, E., Haraguchi, L., Markager, S., Massicotte, P., Riemann, B., Staehr, P. A., and Carstensen, J: Eutrophication leads to accumulation of recalcitrant autochthonous organic matter in coastal environment, Global Biogeochem Cy., 32, 1673–1687, https://doi.org/10.1029/2017GB005848, 2018.
Asmala, E., Carstensen, J., and Räike, A.: Multiple anthropogenic drivers behind upward trends in organic carbon concentrations in boreal rivers, Environ. Res. Lett., 14, 124018, https://doi.org/10.1088/1748-9326/ab4fa9, 2019.
BACC I Author Team (Eds.): Assessment of Climate Change for the Baltic Sea
Basin. Springer-Verlag, Berlin, Heidelberg, 473 pp., https://doi.org/10.1007/978-3-540-72786-6, 2008.
BACC II Author Team (Eds.): Second Assessment of Climate Change for the Baltic Sea Basin, Springer International Publishing, 501 pp., https://doi.org/10.1007/978-3-319-16006-1, 2015.
Bartl, I., Hellemann, D., Rabouille, C., Schulz, K., Tallberg, P., Hietanen,
S., and Voss, M.: Particulate organic matter controls benthic microbial N retention and N removal in contrasting estuaries of the Baltic Sea,
Biogeosciences, 16, 3543–3564, https://doi.org/10.5194/bg-16-3543-2019, 2019.
Bartnicki, J., Semeena, V. S., and Fagerli, H.: Atmospheric deposition of
nitrogen to the Baltic Sea in the period 1995–2006, Atmos. Chem. Phys., 11,
10057–10069, https://doi.org/10.5194/acp-11-10057-2011, 2011.
Bartnicki, J., Gusev, A. V., Aas, W., Gauss, M., and Jonson, J. E.: Atmospheric supply of nitrogen, cadmium, mercury, lead, and PCDD/Fs to the Baltic Sea in 2015 (No. 1/2016), EMEP Centres Joint Report for HELCOM, EMEP/MSC-W Technical Report, Norwegian Meteorological Institute, Oslo, https://emep.int/publ/helcom/2017/index.html (last access: 22 March 2022), 2017.
Bartnicki, J., Semeena, V. S., Mazur, A., and Zwoździak, J.: Contribution of Poland to Atmospheric Nitrogen Deposition to the Baltic Sea, Water. Air. Soil Pollut., 229, 353, https://doi.org/10.1007/s11270-018-4009-5, 2018.
Bartosova, A., Capell, R., Olesen, J. E., Jabloun, M., Refsgaard, J. C., Donnelly, C., Hyytiainen, K., Pihlainen, S., Zandersen, M., and Arheimer, B.: Future socioeconomic conditions may have a larger impact than climate change on nutrient loads to the Baltic Sea, Ambio, 48, 1325–1336,
https://doi.org/10.1007/s13280-019-01243-5, 2019.
Beier, S., Holtermann, P. L., Numberger, D., Schott, T., Umlauf, L., and
Jürgens, K.: A metatranscriptomics-based assessment of small-scale mixing of sulfidic and oxic waters on redoxcline prokaryotic communities, Environ. Microbiol., 21, 548–602, https://doi.org/10.1111/1462-2920.14499, 2019.
Beldowski, J., Löeffler, A., Schneider, B., and Joensuu, L.: Distribution and biogeochemical control of total CO2 and total alkalinity in the Baltic Sea, J. Mar. Syst., 81, 252–259, https://doi.org/10.1016/j.jmarsys.2009.12.020, 2010.
Beldowski, J., Szubska, M., Emelyanov, E., Garnaga, G., Drzewińska, A.,
Beldowska, M., Vanninen, P., Ostin, A., and Fabisiak, J.: Arsenic concentrations in Baltic Sea sediments close to chemical munitions
dumpsites, Deep-Sea Res. Pt. II, 128, 114–122, https://doi.org/10.1016/j.dsr2.2015.03.001, 2016.
Benelli, S., Bartoli, M., Zilius, M., Vybernaite-Lubiene, I., Ruginis, T.,
Petkuviene, J., and Fano, E. A.: Microphytobenthos and chironomid larvae
attenuate nutrient recycling in shallow-water sediments, Freshw. Biol., 63,
187–201, https://doi.org/10.1111/fwb.13052, 2018.
Berg, C., Vandieken, V., Thamdrup, B., and Jürgens, K.: Significance of
archaeal nitrification in hypoxic waters of the Baltic Sea, ISME J., 9,
1319–1332, https://doi.org/10.1038/ismej.2014.218, 2015.
Bergen, B., Naumann, M., Herlemann, D. P. R., Gräwe, U., Labrenz, M.,
and Jürgens, K.: Impact of a major inflow event on the composition and
distribution of bacterioplankton communities in the Baltic Sea, Front. Mar.
Sci., 5, 383, https://doi.org/10.3389/fmars.2018.00383, 2018.
Bergknut, M., Meijer, S., Halsall, C., Gren, A., Laudon, H., Köhler, S.,
Jones, K. C., Tysklind, M., and Wiberg, K.: Modelling the fate of hydrophobic
organic contaminants in a boreal forest catchment: A cross disciplinary
approach to assessing diffuse pollution to surface waters, Environ. Pollut.,
158, 2964–2969, https://doi.org/10.1016/j.envpol.2010.05.027, 2010.
Bergknut, M., Wiberg, K., and Klaminder, J.: Vertical and lateral redistribution of POPs in soils developed along a hydrological gradient,
Environ. Sci. Technol., 45, 10378–10384, https://doi.org/10.1021/es200938z, 2011.
Berner, R. A.: Early diagenesis: A theoretical approach, Princeton
University Press, 241 pp., https://doi.org/10.1515/9780691209401, 1980.
Berner, R. A.: A revised model for atmospheric CO2 over phanerozoic
time, Am. J. Sci., 291, 4–9, 1991.
Berrojalbiz, N., Dachs, J., Del Vento, S., Ojeda, M. J., Valle, M. C., Castro-Jiménez, J., Mariani, G., Wollgast, J., and Hanke, G.: Persistent
organic pollutants in Mediterranean seawater and processes affecting their
accumulation in plankton, Environ. Sci. Technol., 45, 4315–4322, https://doi.org/10.1021/es103742w, 2011.
Beulig, F., Røy, H., McGlynn, S. E., and Jørgensen, B. B.: Cryptic
CH4 cycling in the sulfate–methane transition of marine sediments
apparently mediated by ANME-1 archaea, ISME J., 13, 250–262,
https://doi.org/10.1038/s41396-018-0273-z, 2019.
Bianchi, T.S., Engelhaupt, E., Westman, P., Andrén, T., Rolff, C., and
Elmgren, R.: Cyanobacterial blooms in the Baltic Sea: natural or human-induced?, Limnol. Oceanogr. 45, 716–726, https://doi.org/10.4319/lo.2000.45.3.0716, 2000.
Bonaglia, S., Bartoli, M., Gunnarsson, J. S., Rahm, L., Raymond, C., Svensson, O., Yekta, S., and Brüchert, V.: Effect of reoxygenation and
Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism, Mar. Ecol. Prog. Ser., 482, 43–55, https://doi.org/10.3354/meps10232, 2013.
Bonaglia, S., Nascimento, F., Bartoli, M., Klawonn, I., and Brüchert, V.: Meiofauna increases bacterial denitrification in marine sediments, Nat. Commun., 5, 5133, https://doi.org/10.1038/ncomms6133, 2014.
Bonaglia, S., Hylén, A., Rattray, J., Kononets, M., Ekeroth, N., Roos,
P., Thamdrup, B., Brüchert, V., and Hall, P.: The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study, Biogeosciences, 14, 285–300, https://doi.org/10.5194/bg-14-285-2017, 2017.
Brodecka, A., Majewski, P., Bolałek, J., and Klusek, Z.: Geochemical and
acoustic evidence for the occurrence of methane in sediments of the Polish
sector of the southern Baltic Sea, Oceanologia, 55, 951–978, https://doi.org/10.5697/oc.55-4.951, 2013.
Broman, E., Sjöstedt, J., Pinhassi, J., and Dopson, M.: Shifts in
coastal sediment oxygenation cause pronounced changes in microbial community
composition and associated metabolism, Microbiome, 5, 96, https://doi.org/10.1186/s40168-017-0311-5, 2017.
Broman, E., Motwani, N. H., Bonaglia, S., Landberg, T., Nascimento, F. J. A.,
and Sjöling, S.: Denitrification responses to increasing cadmium
exposure in Baltic Sea sediments, Aquat. Toxicol., 217, 105328,
https://doi.org/10.1016/j.aquatox.2019.105328, 2019.
Bruckner, C. G., Mammitzsch, K., Jost, G., Wendt, J., Labrenz, M., and
Jürgens, K.: Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients, Environ.
Microbiol., 15, 1505–1513, https://doi.org/10.1111/j.1462-2920.2012.02880.x, 2013.
Burdige, D. J.: Geochemistry of marine sediments, Princeton University Press, 609 pp., https://doi.org/10.1515/9780691216096, 2006.
Cáceres, E. F., Lewis, W. H., Homa, F., Martin, T., Schramm, A., Kjeldsen, K. U., and Ettema, T. J. G.: Near-complete Lokiarchaeota genomes from complex environmental samples using long and short read metagenomic analyses, bioRxiv, https://doi.org/10.1101/2019.12.17.879148, 2019.
Carman, R. and Cederwall, H.: Sediments and macrofauna in the Baltic Sea –
characteristics, nutrient contents and distribution, in: A systems analysis
of the Baltic Sea, edited by: Wulff, F., Rahm, L., and Larsson, P., Springer,
289-322, https://doi.org/10.1007/978-3-662-04453-7_11, 2001.
Carstensen, J. and Conley, D. J.: Baltic Sea hypoxia takes many shapes and
sizes, Limnol. Oceanogr. Bull., 28, 125–129, https://doi.org/10.1002/lob.10350, 2019.
Carstensen, J. and Duarte, C. M.: Drivers of pH Variability in Coastal
Ecosystems, Environ. Sci. Technol., 53, 4020–4029, https://doi.org/10.1021/acs.est.8b03655, 2019.
Carstensen, J., Conley, D., and Müller-Karulis, B.: Spatial and temporal
resolution of carbon fluxes in a shallow coastal ecosystem, the Kattegat, Mar. Ecol. Prog. Ser., 252, 35–50, https://doi.org/10.3354/meps252035, 2003.
Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.:
Deoxygenation of the Baltic Sea during the last century, P. Natl. Acad. Sci. USA, 111, 5628–5633, https://doi.org/10.1073/pnas.1323156111, 2014a.
Carstensen, J., Conley, D. J., Bonsdorff, E., Gustafsson, B. G., Hietanen,
S., Janas, U., Jilbert, T., Maximov, A., Norkko, A., Norkko, J., Reed, D.,
Slomp, C., Timmermann, K., and Voss, M.: Hypoxia in the Baltic Sea:
biogeochemical cycles, benthic fauna and management, Ambio, 43, 26–36,
https://doi.org/10.1007/s13280-013-0474-7, 2014b.
Carstensen, J., Chierici, M., Gustafsson, B. G., and Gustafsson, E.:
Long-term and seasonal trends in estuarine and coastal carbonate systems,
Global Biogeochem. Cy., 32, 497–513, https://doi.org/10.1002/2017GB005781, 2018.
Cerro-Gálvez, E., Sala, M. M., Marrasé, C., Gasol, J. M., Dachs, J.,
and Vila-Costa, M.: Modulation of microbial growth and enzymatic activities
in the marine environment due to exposure to organic contaminants of
emerging concern and hydrocarbons, Sci. Total Environ., 678, 486–498,
https://doi.org/10.1016/j.scitotenv.2019.04.361, 2019.
Chen, X., Andersen, T. J., Morono, Y., Inagaki, F., Jørgensen, B. B., and
Lever, M. A.: Bioturbation as a key driver behind the dominance of bacteria
over Archaea in near-surface sediment, Sci. Rep., 7, 2400, https://doi.org/10.1038/s41598-017-02295-x, 2017.
Chislock, M. F., Doster, E., Zitomer, R. A., and Wilson, A. E.: Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems,
Nat. Educ. Knowledge, 4, 10, 2013.
Christensen, O. B., Kjellström, E., Dieterich, C., Gröger, M., and Meier, H. E. M.: Atmospheric regional climate projections for the Baltic Sea region until 2100, Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, 2022.
Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P., and Wulff, F.: Hypoxia
in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry,
Environ. Sci. Technol., 36, 5315–5320, https://doi.org/10.1021/es025763w, 2002.
Conley, D. J., Carstensen, J., Ærtebjerg, G., Christensen, P. B., Dalsgaard, T., Hansen, J. L. S., and Josefson, A. B: Long-term changes and
impacts of hypoxia in Danish coastal waters, Ecol. Appl., 17, S165–S184,
https://doi.org/10.1890/05-0766.1, 2007.
Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., Hietanen, S., Kortekaas, M., Kuosa, H., Meier, H. E. M., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. S., Slomp, C. P., Voss, M., Wulff, F., and Zillén, L.: Hypoxia-related processes in the Baltic Sea, Environ. Sci. Technol., 43, 3412–3420, https://doi.org/10.1021/es802762a, 2009.
Conley, D. J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, E., Eremina,
T., Haahti, B.-M., Humborg, C., Jonsson, P., Kotta, J., Lännegren, C.,
Larsson, U., Maximov, A., Medina, M. R., Lysiak-Pastuszak, E., Remeikaitė-Nikienė, N.,Walve, J., Wilhelms, S., and Zillen, L.:
Hypoxia is increasing in the coastal zone of the Baltic Sea, Environ. Sci.
Technol., 45, 6777–6783, https://doi.org/10.1021/es201212r, 2011.
Cybulska, K., Łońska, E., and Fabisiak, J.: Bacterial benthic community composition in the Baltic Sea in selected chemical and conventional weapons dump sites affected by munition corrosion, Sci. Total Environ., 709, 136112, https://doi.org/10.1016/j.scitotenv.2019.136112, 2020.
Dachs, J., Lohmann, R., Ockenden, W., Mejanelle, L., Eisenreich, S. J., and
Jones, K. C.: Oceanic Biogeochemical Controls on Global Dynamics of Persistent Organic Pollutants, Environ. Sci. Technol., 36, 4229–4237,
https://doi.org/10.1021/es025724k, 2002.
Dalsgaard, T., De Brabandere, L., and Hall, P. O.: Denitrification in the
water column of the central Baltic Sea, Geochim. Cosmochim. Ac., 106, 247–260, https://doi.org/10.1016/j.gca.2012.12.038, 2013.
Dellwig, O., Schnetger, B., Meyer, D., Pollehne, F., Häusler, K., and Arz, H. W.: Impact of the Major Baltic Inflow in 2014 on manganese cycling in the Gotland Deep (Baltic Sea), Front. Mar. Sci., 5, 248, https://doi.org/10.3389/fmars.2018.00248, 2018.
Deng, L., Bölsterli, D., Kristensen, E., Meile, C., Su, C.-C., Bernasconi, S. M., Seidenkrantz, M.-S., Glombitza, C., Lagostina, L., Han, X., Jørgensen, B. B., Røy, H., Lever, M. A.: Macrofaunal control of
microbial community structure in continental margin sediments, P. Natl. Acad. Sci. USA, 117, 15911–15922, https://doi.org/10.1073/pnas.1917494117, 2020.
de Wit, C. A., Bossi, R., Dietz, R., Dreyer, A., Faxneld, S., Garbus, S. E.,
Hellström, P., Koschorreck, J., Lohmann, N., Roos, A., Sellström,
U., Sonne, C., Treu, G., Vorkamp, K., Yuana, B., and Eulaers, I.: Organohalogen compounds of emerging concern in Baltic Sea biota: Levels, biomagnification potential and comparisons with legacy contaminants, Environ. Int., 144, 106037, https://doi.org/10.1016/j.envint.2020.106037, 2020.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, PICES Special Publication 3, North Pacific Marine Science Organization, Sidney, British Columbia, 191 pp., https://cdiac.ess-dive.lbl.gov/ftp/oceans/Handbook_2007/Guide_all_in_one.pdf
(last access: 27 March 2022), 2007.
Dijkstra, N., Slomp, C. P., and Behrends, T.: Vivianite is a key sink for
phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep
basin in the Baltic Sea, Chem. Geol., 438, 58–72, https://doi.org/10.1016/j.chemgeo.2016.05.025, 2016.
Djodjic, F. and Markensetn, H.: From single fields to river basins:
Identification of critical source areas for erosion and phosphorus losses at
high resolution, Ambio, 48, 1129–1142, https://doi.org/10.1007/s13280-018-1134-8, 2019.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, A.: Ocean
Acidification: The Other CO2 Problem, Ann. Rev. Mar. Sci., 1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Donnelly, C., Yang, W., and Dahné, J.: River discharge to the Baltic Sea
in a future climate, Climatic Change, 122, 157–170, https://doi.org/10.1007/s10584-013-0941-y, 2014.
Dupont, C. L., Larsson, J., Yooseph, S., Ininbergs, K., Goll, J.,
Asplund-Samuelsson, J., McCrow, J. P., Celepli, N., Allen, L. Z., Ekman, M.,
Lucas, A. J., Hagström, Å., Thiagarajan, M., Brindefalk, B.,
Richter, A. R., Andersson, A. F., Tenney, A., Lundin, D., Tovchigrechko, A.,
Nylander, J. A. A., Brami, D., Badger, J., H., Allen, A. E., Rusch, D. B.,
Hoffman, J., Norrby, E., Friedman, R., Oinhassi, J., Venter, J. C., and
Berman, B.: Functional Tradeoffs Underpin Salinity-Driven Divergence in
Microbial Community Composition, PLoS One, 9, e89549, https://doi.org/10.1371/journal.pone.0089549, 2014.
Ebi, K. L., Hallegatte, S., Kram, T., Arnell, N. W., Carter, T. R., Edmonds,
J., Kriegler, E., Mathur, R., O'Neill, B. C., Riahi, K., Winkler, H., van Vuuren, D. P., and Zwickel, T.: A new scenario framework for climate change research: background, process, and future directions, Climatic Change, 122, 363–372, https://doi.org/10.1007/s10584-013-0912-3, 2014.
Echeveste, P., Galbán-Malagón, C., Dachs, J., Berrojalbiz, N., and
Agustí, S.: Toxicity of natural mixtures of organic pollutants in
temperate and polar marine phytoplankton, Sci. Total Environ., 571, 34–41,
https://doi.org/10.1016/j.scitotenv.2016.07.111, 2016.
Edlund, A., Hårdeman, F., Jansson, J. K., and Sjöling, S.: Active bacterial community structure along vertical redox gradients in Baltic Sea sediment, Environ. Microbiol., 10, 2051–2063, https://doi.org/10.1111/j.1462-2920.2008.01624.x, 2008.
EEA: Climate change, impacts and vulnerability in Europe 2016, An indicator
based report, https://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016
(last access: 27 March 2022), 2017.
Egger, M., Jilbert, T., Behrends, T., Rivard, C., and Slomp, C. P.: Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments, Geochim. Cosmochim. Ac., 169, 217–235, https://doi.org/10.1016/j.gca.2015.09.012, 2015b.
Egger, M., Rasigraf, O., Sapart, C. J., Jilbert, T., Jetten, M. S. M., Rockmann, T., van der Veen, C., Banda, N., Kartal, B., Ettwig, K. F., and
Slomp, C. P.: Iron-mediated anaerobic oxidation of methane in brackish
coastal sediments, Environ. Sci. Technol., 49, 277–283,
https://doi.org/10.1021/es503663z, 2015a.
Ehrnsten, E., Norkko, A., Timmermann, K., and Gustafsson, B. G.: Benthic-pelagic coupling in coastal seas – Modelling macrofaunal biomass
and carbon processing in response to organic matter supply, J. Mar. Syst.,
196, 36-47, https://doi.org/10.1016/j.jmarsys.2019.04.003, 2019.
Ehrnsten, E., Norkko, A., Müller-Karulis, B., Gustafsson, E., and
Gustafsson, B. G.: The meagre future of benthic fauna in a coastal
sea – Benthic responses to recovery from eutrophication in a changing
climate, Global Change Biol., 26, 2235–2250, https://doi.org/10.1111/gcb.15014, 2020.
Elken, J. and Matthäus W.: Baltic Sea Oceanography, in: Assessment of
Climate Change for the Baltic Sea Basin, edited by: The BACC Author Team,
Springer-Verlag, Berlin, 379–386, ISBN 978-3-540-72786-6, 2008.
Emeis, K.-C., Struck, U., Leipe, T., Pollehne, F., Kunzendorf, H., and
Christiansen, C.: Changes in the C, N, P burial rates in some Baltic Sea
sediments over the last 150 years-relevance to P regeneration rates and the
phosphorus cycle, Mar. Geol., 167, 43–59, https://doi.org/10.1016/S0025-3227(00)00015-3, 2000.
Everaert, G., De Laender, F., Goethals, P. L. M., and Janssen, C. R.:
Relative contribution of persistent organic pollutants to marine phytoplankton biomass dynamics in the North Sea and the Kattegat, Chemosphere, 134, 76–83, https://doi.org/10.1016/j.chemosphere.2015.03.084, 2015.
Feistel, R., Nausch, G., Mohrholz, V., Łysiak-Pastuszak, E., Seifert, T.,
Matthäus, W., Krüger, S., and Sehested-Hansen, I.: Warm waters of
summer 2002 in the deep Baltic Proper, Oceanologia, 45, 571–592, 2003.
Filipovic, M., Laudon, H., McLachlan, M. S., and Berger, U.: Mass balance of
perfluorinated alkyl acids in a pristine boreal catchment, Environ. Sci.
Technol., 49, 12127–12135, 2015.
Fleming, V. and Kaitala, S.: Phytoplankton Spring Bloom Intensity Index for
the Baltic Sea Estimated for the years 1992 to 2004, Hydrobiologia, 554,
57–65, https://doi.org/10.1007/s10750-005-1006-7, 2006.
Fransner, F., Nycander, J., Mörth, C.-M., Humborg, C., Meier, H. E. M.,
Hordoir, R., Gustafsson, E., and Deutsch, B.: Tracing terrestrial DOC in the
Baltic SeaA 3-D model study, Global Biogeochem. Cy., 30, 134–148,
https://doi.org/10.1002/2014GB005078, 2016.
Fransner, F., Gustafsson, E., Tedesco, L., Vichi, V., Hordoir, R., Roquet,
F., Spilling, K., Kuznetsov, I., Eilola, K., Magnus-Mörth, M., Humborg,
C., and Nycander, J.: Non-Redfieldian Dynamics Explain Seasonal pCO2 Drawdown in the Gulf of Bothnia, J. Geophys. Res.-Oceans, 123, 166–188, https://doi.org/10.1002/2017JC013019, 2018.
Fransner, F., Fransson, A., Humborg, C., Gustafsson, E., Tedesco, L.,
Hordoir, R., and Nycander, J.: Remineralization rate of terrestrial DOC as
inferred from CO2 supersaturated coastal waters, Biogeosciences, 16, 863–879, https://doi.org/10.5194/bg-16-863-2019, 2019.
Funkey, C. P., Conley, D. J., Reuss, N. S., Humborg, C., Jilbert, T., and
Slomp, C. P.: Hypoxia sustains cyanobacteria blooms in the Baltic Sea,
Environ. Sci. Technol., 48, 2598–2602, https://doi.org/10.1021/es404395a, 2014.
Galbán-Malagón, C., Berrojalbiz, N., Ojeda, M.-J., and Dachs, J.: The
oceanic biological pump modulates the atmospheric transport of persistent
organic pollutants to the Arctic, Nat. Commun., 3, 1–9, 2012.
Gauss, M., Bartnicki, J., and Klein, H.: Atmospheric Nitrogen Deposition to
the Baltic Sea 1995–2016, Summary Report for HELCOM No. 1/2018, Ann. B,
MSC-W Technical Report, Met Norway, Oslo, https://helcom.fi/media/documents/BSEFS-Atmospheric-nitrogen-deposition-to-the-Baltic-Sea-2018.pdf
(last access: 27 March 2022), 2017.
Gauss, M., Bartnicki, J., Jalkanen, J.-P., Nyiri, A., Klein, H., Fagerli, H., and Klimont, Z.: Airborne nitrogen deposition to the Baltic Sea: Past trends, source allocation and future projections, Atmos. Environ., 253, 118377, https://doi.org/10.1016/j.atmosenv.2021.118377, 2021.
Glaubitz, S., Kießlich, K., Meeske, C., Labrenz, M., and Jürgens, K.: SUP05 dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central Baltic and Black Seas, Appl. Environ.
Microbiol., 79, 2767–2776, https://doi.org/10.1128/AEM.03777-12, 2013.
Groetsch, P. M. M., Simis, S. G. H., Eleveld, M. A., and Peters, S. W. M.:
Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014, Biogeosciences, 13, 4959–4973, https://doi.org/10.5194/bg-13-4959-2016, 2016.
Gröger, M., Dieterich, C., Haapala, J., Ho-Hagemann, H. T. M., Hagemann,
S., Jakacki, J., May, W., Meier, H. E. M., Miller, P. A., Rutgersson, A., and Wu, L.: Coupled regional Earth system modeling in the Baltic Sea region,
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, 2021.
Grote, J., Schott, T., Bruckner, C. G., Glöckner, F. O., Jost, G.,
Teeling, H., Labrenz, M., and Jürgens, K.: Genome and physiology of a
model Epsilonproteobacterium responsible for sulfide detoxification in
marine oxygen depletion zones, P. Natl. Acad. Sci. USA. 109, 506–510, https://doi.org/10.1073/pnas.1111262109, 2012.
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M.,
Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and
Zorita, E.: Reconstructing the Development of Baltic Sea Eutrophication 1850–2006, Ambio, 41, 534–548, https://doi.org/10.1007/s13280-012-0318-x, 2012.
Gustafsson, E. and Gustafsson, B. G.: Future acidification of the Baltic Sea
– A sensitivity study, J. Mar. Syst., 211, 103397, https://doi.org/10.1016/j.jmarsys.2020.103397, 2020.
Gustafsson, Ö., Gelting, J., Andersson, P., Larsson, U., and Roos, P.:
An assessment of upper ocean carbon and nitrogen export fluxes on the boreal
continental shelf: A 3-year study in the open Baltic Sea comparing sediment
traps, 234Th proxy, nutrient, and oxygen budgets, Limnol. Oceanogr.
Meth., 11, 495–510, https://doi.org/10.4319/lom.2013.11.495, 2013.
Gustafsson, E., Deutsch, B., Gustafsson, B. G., Humborg, C., and Mörth,
C.-M.: Carbon cycling in the Baltic Sea - The fate of allochthonous organic
carbon and its impact on air–sea CO2 exchange, J. Mar. Syst., 129,
289–302, https://doi.org/10.1016/j.jmarsys.2013.07.005, 2014a.
Gustafsson, E., Wällstedt, T., Humborg, C., Mörth, C.-M., and
Gustafsson, B. G.: Exterrnal total alkalinity loads versus internal generation: The influence of nonriverine alkalinity sources in the Baltic Sea, Global Biogeochem. Cy., 28, 1358–1370, https://doi.org/10.1002/2014GB004888, 2014b.
Gustafsson, E., Savchuk, O. P., Gustafsson, B. G., and Müller-Karulis, B.: Key processes in the coupled carbon, nitrogen, and phosphorus cycling of
the Baltic Sea, Biogeochemistry, 134, 301–317, https://doi.org/10.1007/s10533-017-0361-6, 2017.
Gustafsson, E., Hagens, M., Sun, X., Reed, D. C., Humborg, C., Slomp, C. P.,
and Gustafsson, B. G.: Sedimentary alkalinity generation and long-term
alkalinity development in the Baltic Sea, Biogeosciences, 16, 437–456,
https://doi.org/10.5194/bg-16-437-2019, 2019.
Hägg, H. E., Humborg, C., Mörth C. M., Medina, M. R., and Wulff, F.:
Scenario analysis on protein consumption and climate change effects on
riverine input to the Baltic Sea, Environ. Sci. Technol., 44, 2379–2385,
https://doi.org/10.1021/es902632p, 2010.
Hägg, H. E., Lyon, S. W., Wällstedt, T., Mörth, C.-M., Claremar,
B., and Humborg, C.: Future Nutrient Load Scenarios for the Baltic Sea Due
to Climate and Lifestyle Changes, Ambio, 43, 337–351,
https://doi.org/10.1007/s13280-013-0416-4, 2014.
Håkanson, L. and Jansson, M.: Principles of lake sedimentology, The
Blackburn Press, 316 pp., https://doi.org/10.1007/978-3-642-69274-1, 1983.
Hammer, K., Schneider, B., Kuliński, K., and Schulz-Bull, D.: Precision
and accuracy of spectrophotometric pH measurements at environmental
conditions in the Baltic Sea, Estuar. Coast. Shelf Sci., 146, 24–32,
https://doi.org/10.1016/j.ecss.2014.05.003, 2014.
Hammer, K., Schneider, B., Kuliński, K., and Schulz-Bull, D.: Acid-base
properties of Baltic Sea dissolved organic matter, J. Mar. Syst., 173,
114–121, https://doi.org/10.1016/j.jmarsys.2017.04.007, 2017.
Hannig, M., Lavik, G., Kuypers, M. M. M., Woebken, D., Martens-Habbena, W.,
and Jürgens, K.: Shift from denitrification to anammox after inflow
events in the central Baltic Sea, Limnol. Oceanogr., 52, 1336–1345,
https://doi.org/10.4319/lo.2007.52.4.1336, 2007.
Hansson, M., Viktorsson, L., and Andersson, L.: Oxygen survey of the Baltic 2019 – Extent of Anoxia and Hypoxia 1960–2019, Report Oceanography No. 67, SMHI, Göteborg, 88 pp., https://www.smhi.se/polopoly_fs/1.158362!/RO_67.pdf (last access: 27 March 2022), 2019.
Happel, E., Bartl, I., Voss, M., and Riemann, L.: Extensive nitrification and active ammonia oxidizers in two contrasting coastal systems of the Baltic Sea, Environ. Microbiol., 20, 2913–2926, https://doi.org/10.1111/1462-2920.14293, 2018.
Harvey, E. T., Kratzer, S., and Andersson, A.: Relationships between colored
dissolved organic matter and dissolved organic carbon in different coastal
gradients of the Baltic Sea, Ambio, 44, 392–401, https://doi.org/10.1007/s13280-015-0658-4, 2015.
Heiskanen, A.-S. and Tallberg, P.: Sedimentation and particulate nutrient
dynamics along a coastal gradient from a fjord-like bay to the open sea,
Hydrobiologia, 393, 127–140, https://doi.org/10.1023/A:1003539230715, 1999.
HELCOM: Toward a Baltic Sea unaffected by eutrophication. Background
document to HELCOM Ministerial Meeting, Kraków, Poland, Tech. rep.,
Helsinki Commission, Finland, http://archive.iwlearn.net/helcom.fi/stc/files/Krakow2007/Eutrophication_MM2007.pdf
(last access: 27 March 2022), 2007.
HELCOM: HELCOM Thematic assessment of eutrophication 2011–2016, Baltic Sea
Environment Proceedings, 102 pp., https://www.helcom.fi/wp-content/uploads/2019/08/HELCOM_Thematic-assessment-of-eutrophication-2011-2016_pre-publication.pdf, (last access: 27 March 2022), 2018a.
HELCOM: State of the Baltic Sea – Second HELCOM holistic assessment 2011–2016, Baltic Sea Environment Proceedings, 155 pp., http://stateofthebalticsea.helcom.fi/ (last access: 27 March 2022), 2018b.
HELCOM: Waterborne nitrogen and phosphorus inputs and water flow to the
Baltic Sea 1995–2017, HELCOM Baltic Sea Environment Fact Sheet,
https://helcom.fi/ (last access: 27 March 2022), 2019.
Hellemann, D., Tallberg, P., Bartl, I., Voss, M., and Hietanen, S.:
Denitrification in an oligotrophic estuary: a delayed sink for riverine
nitrate, Mar. Ecol. Prog. Ser., 583, 63–80, https://doi.org/10.3354/meps12359, 2017.
Henkel, J. V., Dellwig, O., Pollehne, F., Herlemann, D. P. R., Leipe, T., and Schulz-Vogt, H. N.: A bacterial isolate from the Black Sea oxidizes sulfide with manganese(IV) oxide, P Natl. Acad. Sci. USA, 116, 12153–12155, https://doi.org/10.1073/pnas.1906000116, 2019.
Hense, I., Meier, H. E. M., and Sonntag, S.: Projected climate change impact
on Baltic Sea cyanobacteria, Climatic Change, 119, 391–406, https://doi.org/10.1007/s10584-013-0702-y, 2013.
Herlemann, D. P. R., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., and Andersson, A. F.: Transitions in bacterial communities along the
2000 km salinity gradient of the Baltic Sea, ISME J., 5, 1571–1579,
https://doi.org/10.1038/ismej.2011.41, 2011.
Herlemann, D. P. R., Lundin, D., Labrenz, M., Jürgens, K., Zheng, Z.,
Aspeborg, H., and Andersson, A. F.: Metagenomic de novo assembly of an
aquatic representative of the verrucomicrobial class Spartobacteria, mBio 4,
e00569-12, https://doi.org/10.1128/mBio.00569-12, 2013.
Herlemann, D. P. R., Woelk, J., Labrenz, M., and Jürgens, K.: Diversity
and abundance of “Pelagibacterales” (SAR11) in the Baltic Sea salinity
gradient, Syst. Appl. Microbiol., 37, 601–604, https://doi.org/10.1016/j.syapm.2014.09.002, 2014.
Herlemann, D. P. R., Manecki, M., Dittmar, T., and Jürgens, K.:
Differential responses of marine, mesohaline, and oligohaline bacterial
communities to the addition of terrigenous carbon, Environ. Microbiol., 19,
3098–3117, https://doi.org/10.1111/1462-2920.13784, 2017.
Hermans, M., Lenstra, W. K., van Helmond, N. A. G. M., Behrends, T., Egger,
M., Séguret, M. J. M., Gustafsson, E., Gustafsson, B. G., and Slomp, C.
P.: Impact of natural re-oxygenation on the sediment dynamics of manganese,
iron and phosphorus in a euxinic Baltic Sea basin, Geochim. Cosmochim. Ac.,
246, 174–196, https://doi.org/10.1016/j.gca.2018.11.033, 2019a.
Hermans, M., Lenstra, W. K., Hidalgo-Martinez, S., van Helmond, N. A. G. M.,
Witbaard, R., Meysman, F. J. R., Gonzalez, S., and Slomp, C. P.: Abundance
and biogeochemical impact of cable bacteria in Baltic Sea sediments, Environ. Sci. Technol., 53, 7494–7503, https://doi.org/10.1021/acs.est.9b01665, 2019b.
Hesse, C., Krysanova, V., Stefanova, A., Bielecka, M., and Domnin, D. A.:
Assessment of climate change impacts on water quantity and quality of the
multi-river Vistula Lagoon catchment, Hydrolog. Sci. J., 60, 890–911,
https://doi.org/10.1080/02626667.2014.967247, 2015.
Hietanen, S. and Kuparinen, J.: Seasonal and short-term varia-tion in
denitrification and anammox at a coastal station on the Gulf of Finland,
Baltic Sea, Hydrobiologia, 596, 67–77, https://doi.org/10.1007/s10750-007-9058-5, 2008.
Hietanen, S., Jäntti, H., Buizert C., Jürgens, K, Labrenz, M., Voss,
M., and Kuparinen, J.: Hypoxia and nitrogen processing in the Baltic Sea
water column, Limnol. Oceanogr., 57, 325–337, https://doi.org/10.4319/lo.2012.57.1.0325, 2012.
Hirt, U., Mahnkopf, J., Gadegast, M., Czudowski, L., Mischke, U., Heidecke,
C., Schernewski, G., and Venohr, M.: Reference conditions for rivers of the
German Baltic Sea catchment: reconstructing nutrient regimes using the model
MONERIS, Reg. Environ. Change, 14, 1123–1138, https://doi.org/10.1007/s10113-013-0559-7, 2013.
Hjalmarsson, S., Wesslander, K., Anderson, L. G., Omstedt, A., Perttila, M.,
and Mintrop, L.: Distribution, long-term development and mass balance
calculation of total alkalinity in the Baltic Sea, Cont. Shelf Res., 28,
593–601, https://doi.org/10.1016/j.csr.2007.11.010, 2008.
Hoikkala, L., Kortelainen, P., Soinne, H., and Kuosa, H.: Dissolved organic
matter in the Baltic Sea, J. Mar. Syst., 142, 47–61, https://doi.org/10.1016/j.jmarsys.2014.10.005, 2015.
Hongisto, M.: Variability of the marine boundary layer parameters over Baltic Sea sub-basins and their impact on nitrogen deposition, Oceanologia, 53, 391–413, https://doi.org/10.5697/oc.53-1-TI.391, 2011.
Houliez, E., Simis, S., Nenonen, S., Ylöstalo, P., and Seppälä,
J.: Basin-scale spatio-temporal variability and control of phytoplankton
photosynthesis in the Baltic Sea: The first multiwavelength fast repetition
rate fluorescence study operated on a ship-of-opportunity, J. Mar. Syst.,
169, 40–51, https://doi.org/10.1016/j.jmarsys.2017.01.007, 2017.
Hugerth, L. W., Larsson, J., Alneberg, J., Lindh, M. V., Legrand, C., Pinhassi, J., and Andersson, A. F.: Metagenome-assembled genomes uncover a
global brackish microbiome, Genome Biol., 16, 279, https://doi.org/10.1186/s13059-015-0834-7, 2015.
Hughes, D. J., Campbell, D. A., Doblin, M. A., Kromkamp, J. C., Lawrenz, E.,
Moore, C. M., Oxborough, K., Prášil, O., Ralph, P. J., Alvarez, M.
F., and Suggett, D. J.: Roadmaps and Detours: Active Chlorophyll-a Assessments of Primary Productivity Across Marine and Freshwater Systems,
Environ. Sci. Technol., 52, 12039–12054, https://doi.org/10.1021/acs.est.8b03488, 2018.
Hutchinson, G. E.: Eutrophication. The scientific background of a
contemporary problem, Am. Scient., 61, 269–279, 1973.
Huttunen, I., Lehtonen, H., Huttunen, M., Piirainen, V., Korppoo, M., Veijalainen, N., Viitasalo, M., and Vehvilainen, B.: Effects of climate
change and agricultural adaptation on nutrient loading from Finnish
catchments to the Baltic Sea, Sci. Total Environ., 529, 168–181,
https://doi.org/10.1016/j.scitotenv.2015.05.055, 2015.
Hylén, A., Bonaglia, S., Robertson, E., Marzocchi, U., Kononets, M., and Hall, P. O. J.: Enhanced benthic nitrous oxide and ammonium production after natural oxygenation of long-term anoxic sediments, Limnol. Oceanogr., 67, 419–433, https://doi.org/10.1002/lno.12001, 2022.
Iburg, S., Nybom, I., Bonaglia, S., Karlson, A. M. L., Sobek, A., and Nascimento, F. J. A.: Organic contaminant mixture significantly changes
microbenthic community structure and increases the expression of PAH
degradation genes, Front. Environ. Sci., 8, 128, https://doi.org/10.3389/fenvs.2020.00128, 2020.
ICES: International Council for the Exploration of the Sea (ICES), oceanographic database, ICES [data set], https://www.ices.dk/data/data-portals/Pages/ocean.aspx, last access: 27 March 2022.
ICES Working Group on Primary Production: Primary production, Guidelines for
measurement by 14C incorporation (No. 5), Techniques in Marine
Envirionmental Sciences, ICES, Copenhagen, Denmark, 21 pp., https://doi.org/10.25607/OBP-267, 1987.
IOW-DB: Database of the Leibniz Institute for the Baltic Sea Research, https://odin2.io-warnemuende.de/, last access: 27 March 2022.
IPCC: Special Report on the Ocean and Cryosphere in a Changing Climate,
IPCC, https://www.ipcc.ch/srocc/ (last access: 27 March 2022), 2019.
Jaanus, A., Andersson, A., Olenina, I., Toming, K., and Kaljurand, K.:
Changes in phytoplankton communities along a north–south gradient in the
Baltic Sea between 1990 and 2008, Boreal Environ. Res., 16, 191–208, 2011.
Jakobs, G., Rehder, G., Jost, G., Kießlich, K., Labrenz, M., and Schmale, O.: Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea), Biogeosciences, 10, 7863–7875, https://doi.org/10.5194/bg-10-7863-2013, 2013.
Jakobs, G., Holterman, P., Berndmeyer, C., Rehder, G., Blumenberg, M., Jost,
G., Nausch, G., and Schmale, O.: Seasonal and spatial methane dynamics in
the water column of the central Baltic Sea (GotlandSea), Cont. Shelf Res., 91, 12–25, 2014.
Jakobsson, M., O'Regan, M., Mörth, C. M., Stranne, C., Weidner, E.,
Hansson, J., Gyllencreutz, R., Humborg, C., Elfwing, T., Norkko, A., Norkko,
J., Nilsson, B., and Sjöström, A.: Potential links between Baltic
Sea submarine terraces and groundwater seeping, Earth Surf. Dynam., 8, 1–15,
https://doi.org/10.5194/esurf-8-1-2020, 2020.
Jansson, T., Andersen, H. E., Gustafsson, B. G., Hasler, B., Höglind, L., and Choi, H.: Baltic Sea eutrophication status is not improved by the first pillar of the European Union Common Agricultural Policy, Reg. Environ. Change, 19, 2465–2475, https://doi.org/10.1007/s10113-019-01559-8, 2019.
Jäntti, H. and Hietanen, S.: The effects of hypoxia on sediment nitrogen
cycling in the Baltic Sea, Ambio, 41, 161–169, https://doi.org/10.1007/s13280-011-0233-6, 2012.
Jäntti, H., Stange, F., Leskinen, E., and Hietanen, S.: Seasonal variation in nitrification and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea, Aquat. Microb. Ecol., 63, 171–181, https://doi.org/10.3354/ame01492, 2011.
Jilbert, T. and Slomp, C. P.: Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea, Geochim. Cosmochim. Ac., 107, 155–169, https://doi.org/10.1016/j.gca.2013.01.005, 2013.
Jilbert, T., Slomp, C. P., Gustafsson, B. G., and Boer, W.: Beyond the
Fe-P-redox connection: preferential regeneration of phosphorus from organic
matter as a key control on Baltic Sea nutrient cycles, Biogeosciences, 8,
1699–1720, https://doi.org/10.5194/bg-8-1699-2011, 2011.
Jilbert, T., Asmala, E., Schröder, C., Tiihonen, R., Myllykangas, J.-P.,
Virtasalo, J. J., Kotilainen, A., Peltola, P., Ekholm, P., and Hietanen, S.:
Impacts of flocculation on the distribution and diagenesis of iron in boreal
estuarine sediments, Biogeosciences, 15, 1243–1271, https://doi.org/10.5194/bg-15-1243-2018, 2018.
Jokinen, S. A., Jilbert, T., Tiihonen-Filppula, R., and Koho, K.: Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary, Sci. Total Environ., 717, 137047, https://doi.org/10.1016/j.scitotenv.2020.137047, 2020.
Jones, K. D. and Tiller, C. L.: Effect of solution chemistry on the extent
of binding of phenanthrene by a soil humic acid: a comparison of dissolved
and clay bound humic, Environ. Sci. Technol., 33, 580–587, https://doi.org/10.1021/es9803207, 1999.
Jonson, J. E., Jalkanen, J. P., Johansson, L., Gauss, M., and van der Gon,
D. H. A. C.: Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North
Sea, Atmos. Chem. Phys., 15, 783–798, https://doi.org/10.5194/acp-15-783-2015, 2015.
Jørgensen, B. B., Andrén, T., and Marshall, I. P. G.: Sub-seafloor
biogeochemical processes and microbial life in the Baltic Sea, Environ.
Microbiol., 22, 1688–1706, https://doi.org/10.1111/1462-2920.14920, 2020.
Josefsson, S., Karlsson, O. M., Malmaeus, J. M., Cornelissen, G., and Wiberg,
K.: Structure-related distribution of PCDD/Fs, PCBs and HCB in a river–sea
system, Chemosphere, 83, 85–94, https://doi.org/10.1016/j.chemosphere.2011.01.019, 2011.
Josefsson, S., Bergknut, M., Futter, M. N., Jansson, S., Laudon, H., Lundin,
L., and Wiberg, K.: Persistent organic pollutants in streamwater: influence
of hydrological conditions and landscape type, Environ. Sci. Technol., 50,
7416–7424, https://doi.org/10.1021/acs.est.6b00475, 2016.
Jost, G., Zubkov, M. V., Yakushev, E., Labrenz, M., and Jürgens, K.:
High abundance and dark CO2 fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea, Limnol. Oceanogr., 53, 14–22, https://doi.org/10.4319/lo.2008.53.1.0014, 2008.
Jürgens, K. and Taylor, G. T.: Microbial ecology and biogeochemistry of
oxygen-deficient water columns, in: Microbial Ecology of the Oceans, 3rd Edn., edited by: Gasol, J. M. and Kirchman, D. L., John Wiley & Sons, Inc. NJ, USA, 231–288, ISBN 978-1-119-10718-7, 2018.
Kaczmarek, S., Koblentz-Mishke, O. J., Ochocki, S., Nakonieczny, J., and Renk, H.: Primary production in the eastern and southern Baltic Sea, Oceanologia, 39, 117–135, 1997.
Kahru, M. and Elmgren, R.: Multidecadal time series of satellite-detected
accumulations of cyanobacteria in the Baltic Sea, Biogeosciences, 11,
3619–3633, https://doi.org/10.5194/bg-11-3619-2014, 2014.
Kahru, M., Elmgren, R., and Savchuk, O. P.: Changing seasonality of the Baltic Sea, Biogeosciences, 13, 1009–1018, https://doi.org/10.5194/bg-13-1009-2016, 2016.
Kahru, M., Elmgren, R., Di Lorenzo, E., and Savchuk, O.: Unexplained interannual oscillations of cyanobacterial blooms in the Baltic Sea, Sci.
Rep., 8, 6365, https://doi.org/10.1038/s41598-018-24829-7, 2018.
Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., and Savchuk, O.: Cyanobacterial blooms in the Baltic Sea: Correlations with environmental
factors, Harmful Algae, 92, 101739, https://doi.org/10.1016/j.hal.2019.101739, 2020.
Kaiser, J., Wasmund, N., Kahru, M., Wittenborn, A. K., Hansen, R., Häusler, K., Moros, M., Schulz-Bull, D., and Arz, H. W.: Reconstructing
N2-fixing cyanobacterial blooms in the Baltic Sea beyond observations using 6- and 7-methylheptadecane in sediments as specific biomarkers, Biogeosciences, 17, 2579–2591, https://doi.org/10.5194/bg-17-2579-2020, 2020.
Kamp, A., Petro, C., Røy, H., Nielsen, S., Carvalho, P., Stief, P., and
Schramm, A.: Intracellular nitrate in sediments of an oxygen-deficient marine basin is linked to pelagic diatoms, FEMS Microbiol. Ecol., 94, fiy122, https://doi.org/10.1093/femsec/fiy122, 2018.
Kanoshina, I., Lips, U., and Leppänen, J.-M.: The influence of weather
conditions (temperature and wind) on cyanobacterial bloom development in the
Gulf of Finland (Baltic Sea), Harmful Algae, 2, 29–41, https://doi.org/10.1016/S1568-9883(02)00085-9, 2003.
Karl, M., Bieser, J., Geyer, B., Matthias, V., Jalkanen, J.-P., Johansson, L., and Fridell, E.: Impact of a nitrogen emission control area (NECA) on
the future air quality and nitrogen deposition to seawater in the Baltic Sea
region, Atmosp. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, 2019.
Karlson, A. M. L., Duberg, J., Motwani, N. H., Hogfors, H., Klawonn, I., Ploug, H., Barthel Svedén, J., Garbaras, A., Sundelin, B., Hajdu, S.,
Larsson, U., Elmgren, R., and Gorokhova, E.: Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs, Ambio, 44, 413–426, https://doi.org/10.1007/s13280-015-0660-x, 2015.
Karlsson, C. M. G., Cerro-Gálvez, E., Lundin, D., Karlsson, C., Vila-Costa, M., and Pinhassi, J.: Direct effects of organic pollutants on the
growth and gene expression of the Baltic Sea model bacterium Rheinheimera
sp. BAL341, Microb. Biotechnol., 12, 892–906, https://doi.org/10.1111/1751-7915.13441, 2019.
Kisand, V., Andersson, N., and Wikner, J.: Bacterial freshwater species
successfully immigrate to the brackish water environment in the northern
Baltic, Limnol. Oceanogr., 50, 945–956, https://doi.org/10.4319/lo.2005.50.3.0945, 2005.
Klavins, M., Briede, A., and Rodinov, V.: Long term changes in ice and
discharge regime of rivers in the Baltic region in relation to climatic
variability, Climatic Change, 95, 485–498, https://doi.org/10.1007/s10584-009-9567-5, 2009.
Klier, J., Dellwig, O., Leipe, T., Jürgens, K., and Herlemann, D. P. R.:
Benthic bacterial community composition in the oligohaline-marine transition
of surface sediments in the Baltic Sea based on rRNA analysis, Front. Microbiol., 9, 236, https://doi.org/10.3389/fmicb.2018.00236, 2018.
Kniebusch, M., Meier, H. E. M., and Radtke, H.: Changing Salinity Gradients
in the Baltic Sea As a Consequence of Altered Freshwater Budgets, Geophys.
Res. Lett., 46, 9739–9747, https://doi.org/10.1029/2019GL083902, 2019.
Knutti, R. and Sedlacek, J.: Robustness and uncertainties in the new CMIP5
climate model projections, Nat. Clim. Change, 3, 369–373, https://doi.org/10.1038/nclimate1716, 2012.
Kõuts, T. and Omstedt, A.: Deep water exchange in the Baltic Proper,
Tellus A, 45, 311–324, https://doi.org/10.3402/tellusa.v45i4.14895, 1993.
Krall, L., Trezzi, G., Garcia-Orellana, J., Rodellas, V., Mörth, C. M.,
and Andersson, P.: Submarine groundwater discharge at Forsmark, Gulf of
Bothnia, provided by Ra isotopes, Mar. Chem., 196, 162–172, 2017.
Kreus, M., Schartau, M., Engel, A., Nausch, M., and Voss, M.: Variations in
the elemental ratio of organic matter in the central Baltic Sea: Part I – Linking primary production to remineralization, Cont. Shelf Res., 100,
25–45, https://doi.org/10.1016/j.csr.2014.06.015, 2015.
Kristensen, E., Hansen, T., Delefosse, M., Banta, G., and Quintana, C. O.:
Contrasting effects of the polychaetes Marenzelleria viridis and Nereis
diversicolor on benthic metabolism and solute transport in sandy coastal
sediment, Mar. Ecol. Prog. Ser., 425, 125–139, https://doi.org/10.3354/meps09007, 2011.
Kuliński, K. and Pempkowiak, J.: The carbon budget of the Baltic Sea,
Biogeosciences, 8, 3219–3230, https://doi.org/10.5194/bg-8-3219-2011, 2011.
Kuliński, K., Schneider, B., Hammer, K., Machulik, U., and Schulz-Bull,
D.: The influence of dissolved organic matter on the acid-base system of the
Baltic Sea, J. Mar. Syst., 132, 106–115, https://doi.org/10.1016/j.jmarsys.2014.01.011, 2014.
Kuliński, K., Hammer, K., Schneider, B., and Schulz-Bull, D.:
Remineralization of terrestrial dissolved organic carbon in the Baltic Sea,
Mar. Chem. 181, 10–17, https://doi.org/10.1016/j.marchem.2016.03.002, 2016.
Kuliński, K., Schneider, B., Szymczycha, B., and Stokowski, M.: Structure and functioning of the acid–base system in the Baltic Sea, Earth Syst. Dynam., 8, 1107–1120, https://doi.org/10.5194/esd-8-1107-2017, 2017.
Kuliński, K., Szymczycha, B., Koziorowska, K., Hammer, K., and Schneider, B.: Anomaly of total boron concentrations in the brackish waters of the Baltic Sea and its consequence for the CO2 system calculations, Mar. Chem., 204, 11–19, https://doi.org/10.1016/j.marchem.2018.05.007, 2018.
Kuosa, H., Fleming-Lehtinen, V., Lehtinen, S., Lehtiniemi, M., Nygård,
H., Raateoja, M., Raitaniemi, J., Tuimala, J., Uusitalo, L., and Suikkanen,
S.: A retrospective view of the development of the Gulf of Bothnia ecosystem, J. Mar. Syst., 167, 78–92, https://doi.org/10.1016/j.jmarsys.2016.11.020, 2017.
Kuznetsov, I. and Neumann, T.: Simulation of carbon dynamics in the Baltic
Sea with a 3D model, J. Mar. Syst., 111–112, 167–174, 2013.
Laamanen, M. and Kuosa, H.: Annual variability of biomass and heterocysts of
the N2-fixing cyanobacterium Aphanizomenon flos-aquae in the Baltic Sea with reference to Anabaena spp. and Nodularia spumigena, Boreal Environ.
Res., 10, 19–30, 2005.
Labrenz, M., Sintes, E., Toetzke, F., Zumsteg, A., Herndl, G. J., Seidler, M., and Jürgens, K.: Relevance of a crenarchaeotal subcluster related to
Candidatus Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone
of the central Baltic Sea, ISME J., 4, 1496–1508, https://doi.org/10.1038/ismej.2010.78, 2010.
Laine, A. O.: Distribution of soft-bottom macrofauna in the deep open Baltic
Sea in relation to environmental variability, Estuar. Coast. Shelf Sci., 57,
87–97, https://doi.org/10.1016/S0272-7714(02)00333-5, 2003.
Landrum, P. F., Leppänen, M., Robinson, S. D., Gossiaux, D. C., Burton,
G. A., Greenberg, M., Kukkonen, J. V. K., Eadie, B. J., and Lansing, M. B.:
Effect of 3,4,3′,4′-tetrachlorobiphenyl on the reworking behavior of Lumbriculus variegatus exposed to contaminated sediment, Environ. Toxicol. Chem., 23, 178–186, https://doi.org/10.1897/03-104, 2004.
Larsson, U., Nyberg, S., and Andreasson, K.: Växtplanktonproduktion –
mätningar med problem, Havet, 26–29, https://havetstore.blob.core.windows.net/dokument/Havet2010-primarproduktion.pdf (last access: 27 March 2022), 2010.
Laufer, K., Byrne, J. M., Glombitza, C., Schmidt, C., Jørgensen, B. B., and Kappler, A.: Anaerobic microbial Fe(II) oxidation and Fe(III) reduction
in coastal marine sediments controlled by organic carbon content, Environ.
Microbiol., 18, 3159–3174, https://doi.org/10.1111/1462-2920.13387, 2016a.
Laufer, K., Røy, H., Jørgensen, B. B., and Kappler, A.: Evidence for
the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in
marine coastal sediment, Appl. Environ. Microbiol., 82, 6120–6131,
https://doi.org/10.1128/AEM.01570-16, 2016b.
Lawrenz, E., Silsbe, G., Capuzzo, E., Ylöstalo, P., Forster, R. M.,
Simis, S. G. H., Prášil, O., Kromkamp, J. C., Hickman, A. E., Moore,
C. M., Forget, M.-H., Geider, R. J., and Suggett, D. J.: Predicting the
Electron Requirement for Carbon Fixation in Seas and Oceans, PLoS One, 8,
e58137, https://doi.org/10.1371/journal.pone.0058137, 2013.
Lefébure, R., Degerman, R., Andersson, A., Larsson, S., Eriksson, L.-O.,
Båmstedt, U., and Byström, P.: Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production, Global Change Biol., 19, 1358–1372, https://doi.org/10.1111/gcb.12134, 2013.
Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H.-H., Hüssy, K., Liblik, T., Lips, U., Meier, H. E. M., and Bukanova, T.: Salinity dynamics of the Baltic Sea, Earth Syst. Dynam. Discuss. [preprint], https://doi.org/10.5194/esd-2021-15, in review, 2021.
Lehtonen, K. K. and Andersin, A. B.: Population dynamics, response to sedimentation and role in benthic metabolism of the amphipod Monoporeia affinis in an open-sea area of the northern Baltic Sea, Mar. Ecol. Prog. Ser., 168, 71–85, https://doi.org/10.3354/meps168071, 1998.
Lehtoranta, J., Ekholm, P., and Pitkänen, H.: Coastal eutrophication
thresholds: a matter of sediment microbial processes, Ambio, 38, 303–308,
https://doi.org/10.1579/09-a-656.1, 2009.
Leipe, T., Löffler, A., Emeis, K.-C., Jähmlich, S., Bahlo, R., and
Ziervogel, K.: Vertical patterns of suspended matter characteristics along a
coastal-basin transect in the western Baltic Sea, Estuar. Coast. Shelf Sci.,
51, 789–804, https://doi.org/10.1006/ecss.2000.0715, 2000.
Leipe, T., Tauber, F., Vallius, H., Virtasalo, J., Uścinowicz, S.
Kowalski, N., Hille, S., Lindgren, S., and Myllyvirta, T.: Particulate organic carbon (POC) in surface sediments of the Baltic Sea, Geo-Mar. Lett., 31, 175–188, https://doi.org/10.1007/s00367-010-0223-x, 2011.
Lenstra, W. K., Egger, M., van Helmond, N. A. G. M., Kritzberg, E., Conley,
D. J., and Slomp, C. P.: Large variations in iron input to an oligotrophic
Baltic Sea estuary: impact on sedimentary phosphorus burial, Biogeosciences,
15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018, 2018.
Lenz, C., Jilbert, T., Conley, D. J., and Slomp, C. P.: Hypoxia-driven variations in iron and manganese shuttling in the Baltic Sea over the past 8 kyr, Geochem. Geophy. Geosy., 16, 3754–3766, https://doi.org/10.1002/2015GC005960, 2015.
Lewandowski, J., Putschew, A., Schwesig, D., Neumann, C., and Radke, M.: Fate
of organic micropollutants in the hyporheic zone of a eutrophic lowland
stream: Results of a preliminary field study, Sci. Total Environ., 409,
1824–1835, https://doi.org/10.1016/j.scitotenv.2011.01.028, 2011.
Liblik, T. and Lips, U.: Stratification Has Strengthened in the Baltic Sea
– An Analysis of 35 Years of Observational Data, Front. Earth Sci., 7, 174, https://doi.org/10.3389/feart.2019.00174, 2019.
Lipka, M., Woelfel, J., Gogina, M., Kallmeyer, J., Liu, B., Morys, C., Forster, S., and Böttcher, M. E.: Solute reservoirs reflect variability
of early diagenetic processes in temperate brackish surface sediments, Front. Mar. Sci. 5, 413, https://doi.org/10.3389/fmars.2018.00413, 2018.
Lips, I. and Lips, U.: Abiotic factors influencing cyanobacterial bloom
development in the Gulf of Finland (Baltic Sea), Hydrobiologia, 614, 133–140, https://doi.org/10.1007/s10750-008-9449-2, 2008.
Liu, Y., Meier, H. E. M., and Eilola, K.: Nutrient transports in the Baltic
Sea – results from a 30-year physical–biogeochemical reanalysis,
Biogeosciences, 14, 2113–2131, https://doi.org/10.5194/bg-14-2113-2017, 2017.
Lloyd, K. G., Schreiber, L., Petersen, D. G., Kjeldsen, K. U., Lever, M. A.
Steen, A. D., Stepanauskas R., Richter, M., Kleindienst, S., Lenk, S., Schramm, A., and Jørgensen B. B.: Predominant archaea in marine sediments
degrade detrital proteins, Nature, 496, 215–218, https://doi.org/10.1038/nature12033, 2013.
Logue, J. B., Stedmon, C. A., Kellerman, A. M., Nielsen, N. J., Andersson, A. F., Laudon, H., Lindström, E. S., and Kritzberg, E. S.: Experimental insights into the importance of aquatic bacterial community composition to
the degradation of dissolved organic matter, ISME J., 10, 533–545,
https://doi.org/10.1038/ismej.2015.131, 2016.
Luoma, S. N.: Bioavailability of trace-metals to aquatic organisms – a
review, Sci. Total Environ., 28, 1–22, 1983.
Markussen, T., Happel, E. M., Teikari, J. E., Huchaiah, V., Alneberg, J.,
Andersson, A. F., Sivonen, K., Riemann, L., Middelboe, M., and Kisand, V.:
Coupling biogeochemical process rates and metagenomic blueprints of coastal
bacterial assemblages in the context of environmental change, Environ.
Microbiol., 20, 3083–3099, https://doi.org/10.1111/1462-2920.14371, 2018.
Marshall, I. P. G., Starnawski, P., Cupit, C., Cáceres, E. F., Ettema,
T. J. G., Schramm, A., and Kjeldsen, K. U.: The novel bacterial phylum
Calditrichaeota is diverse, widespread and abundant in marine sediments and
has the capacity to degrade detrital proteins, Environ. Microbiol. Rep., 9,
397–403, 2017.
Marshall, I. P. G., Ren, G., Jaussi, M., Lomstein, B. A., Jørgensen, B.
B., Røy, H., and Kjeldsen, K. U.: Environmental filtering determines family-level structure of sulfate-reducing microbial communities in
subsurface marine sediments, ISME J., 13, 1920–1932, https://doi.org/10.1038/s41396-019-0387-y, 2019.
Marzocchi, U., Bonaglia, S., van de Velde, S., Hall, P. O. J., Schramm, A.,
Risgaard-Petersen, N., and Meysman, F. J. R.: Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments
of the Eastern Gotland basin, Environ. Microbiol., 20, 3031–3041,
https://doi.org/10.1111/1462-2920.14349, 2018.
Matthäus, W. and Franck, H.: Characteristics of major Baltic inflows –
statistical analysis, Cont. Shelf Res., 12, 1375–1400, https://doi.org/10.1016/0278-4343(92)90060-W, 1992.
Matthäus, W., Nehring, D., Feistel, R., Nausch, G., Mohrholz, V., and
Lass, H. U.: The inflow of highly saline water into the Baltic Sea, in:
State and Evolution of the Baltic Sea, 1952–2005, edited by: Feistel, R.,
Nausch, G., and Wasmund, N., John Wiley & Sons, Inc. Hoboken, New Jersey,
265–309, https://doi.org/10.1002/9780470283134.ch10, 2008.
Mattila, J., Kankaanpää, H., and Ilus, E.: Estimation of recent
sediment accumulation rates in the Baltic Sea using artificial radionuclides
137Cs and 239,240Pb as time markers, Boreal Environ. Res., 11, 95–107, 2006.
Mattsson, T., Kortelainen, P., and Räike, A.: Export of DOM from boreal
catchments: Impacts of land use cover and climate, Biogeochemistry, 76,
373–394, https://doi.org/10.1007/s10533-005-6897-x, 2005.
Mazur-Marzec, H., Krezel, A., Kobos, J., and Plinski, M.: Toxic Nodularia
spumigena blooms in the coastal waters of the Gulf of Gdańsk: a ten-year
survey, Oceanologia, 48, 255–273, 2006.
McCrackin, M., Gustafsson, B. G., Hong, B., Howarth, R. W., Humborg, C.,
Savchuk, O., Svanbäck, A., and Swaney, D.P.: Opportunities to reduce
nutrient inputs to the Baltic Sea by improving nutrient use efficiency in
agriculture, Reg. Environ. Change, 18, 1843–1854, https://doi.org/10.1007/s10113-018-1308-8, 2018a.
McCrackin, M.-L., Müller-Karulis, B., Gustafsson, B. G., Howarth, R. W.,
Humborg, C., Svanbäck, A., and Swaney, D. P.: A Century of Legacy
Phosphorus Dynamics in a Large Drainage Basin, Global Biogeochem. Cy., 32,
1107–1122, https://doi.org/10.1029/2018GB005914, 2018b.
McGlathery, K. J., Sundbäck, K., and Anderson, I. C.: Eutrophication in
shallow coastal bays and lagoons: The role of plants in the coastal filter,
Mar. Ecol. Prog. Ser., 348, 1–18, https://doi.org/10.3354/meps07132, 2007.
Meier, H. E. M., Döscher, R., Broman, B., and Piechura, J.: The major
Baltic inflow in January 2003 and preconditioning by smaller inflows in
summer/autumn 2002: a model study, Oceanologia, 46, 557–579, 2004.
Meier, H. E. M., Andersson, H. C., Eilola, K., Gustafsson, B. G., Kuznetsov,
I., Müller-Karulis, B., Neumann, T., and Savchuk, O. P.: Hypoxia in future climates: A model ensemble study for the Baltic Sea, Geophys Res. Lett., 38, L24608, https://doi.org/10.1029/2011GL049929, 2011.
Meier, H. E. M., Andersson, H. C., Arheimer, B., Blenckner, T., Chubarenko,
B., Donnelly, C., Eilola, K., Gustafsson, B. G., Hansson, A., Havenhand, J.,
Höglund, A., Kuznetsov, I., MacKenzie, B. R., Müller-Karulis, B.,
Neumann, T., Niiranen, S., Piwowarczyk, J., Raudsepp, U., Reckermann, M.,
Ruoho-Airola, T., Savchuk, O. P., Schenk, F., Schimanke, S., Väli, G.,
Weslawski, J.-M., and Zorita, E.: Comparing reconstructed past variations
and future projections of the Baltic Sea ecosystem – first results from
multi-model ensemble simulations, Environ. Res. Lett., 7, 034005, https://doi.org/10.1088/1748-9326/7/3/034005, 2012a.
Meier, H. E. M., Müller-Karulis, B., Andersson, H. C., Dieterich, C.,
Eilola, K., Gustafsson, B. G., Höglund, A., Hordoir, R., Kuznetsov, I.,
Neumann, T., Ranjbar, Z., Savchuk, O. P., and Schimanke, S.: Impact of
Climate Change on Ecological Quality Indicators and Biogeochemical Fluxes in
the Baltic Sea: A Multi-Model Ensemble Study, Ambio, 41, 558–573,
https://doi.org/10.1007/s13280-012-0320-3, 2012b.
Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K.,
Gustafsson, B. G., Höglund, A., and Schimanke, S.: Modeling the combined
impact of changing climate and changing nutrient loads on the Baltic Sea
environment in an ensemble of transient simulations for 1961–2099, Clim.
Dyn., 39, 2421–2441, https://doi.org/10.1007/s00382-012-1339-7, 2012c.
Meier, H. E. M., Andersson, H. C., Arheimer, B., Donnelly, C., Eilola, K.,
Gustafsson, B. G., Kotwicki, L., Neset, T.-S., Niiranen, S., Piwowarczyk,
J., Savchuk, O. P., Schenk, F., Węsławski, J. M., and Zorita, E.:
Ensemble Modeling of the Baltic Sea Ecosystem to Provide Scenarios for
Management, Ambio, 43, 37–48, https://doi.org/10.1007/s13280-013-0475-6, 2014.
Meier, H. E. M., Höglund, A., Eilola, K., and Almroth-Rosell, E.: Impact
of accelerated future global mean sea level rise on hypoxia in the Baltic
Sea, Clim. Dynam., 49, 163–172, https://doi.org/10.1007/s00382-016-3333-y, 2017.
Meier, H. E. M., Edman, M. K., Eilola, K. J., Placke, M., Neumann, T.,
Andersson, H. C., Brunnabend, S.-E., Dieterich, C., Frauen, C., Friedland,
R., Gröger, M., Gustafsson, B. G., Gustafsson, E., Isaev, A., Kniebusch,
M., Kuznetsov, I., Müller-Karulis, B., Omstedt, A., Ryabchenko, V.,
Saraiva, S., and Savchuk, O. P.: Assessment of Eutrophication Abatement
Scenarios for the Baltic Sea by Multi-Model Ensemble Simulations, Front.
Mar. Sci., 5, 440, https://doi.org/10.3389/fmars.2018.00440, 2018a.
Meier, H. E. M., Väli, G., Naumann, M., Eilola, K., and Frauen, C.:
Recently Accelerated Oxygen Consumption Rates Amplify Deoxygenation in the
Baltic Sea, J. Geophys. Res.-Oceans, 123, 3227–3240, https://doi.org/10.1029/2017JC013686, 2018b.
Meier, H. E. M., Edman, M., Eilola, K., Placke, M., Neumann, T., Andersson,
H. C., Brunnabend, S.-E., Dieterich, C., Frauen, C., Friedland, R., Gröger, M., Gustafsson, B. G., Gustafsson, E., Isaev, A., Kniebusch, M.,
Kuznetsov, I., Müller-Karulis, B., Naumann, M., Omstedt, A., Ryabchenko,
V., Saraiva, S., and Savchuk, O. P.: Assessment of Uncertainties in Scenario
Simulations of Biogeochemical Cycles in the Baltic Sea, Front. Mar. Sci., 6,
46, https://doi.org/10.3389/fmars.2019.00046, 2019a.
Meier, H. E. M., Eilola, K., Almroth-Rosell, E., Schimanke, S., Kniebusch,
M., Höglund, A., Pemberton, P., Liu, Y., Väli, G., and Saraiva, S.:
Disentangling the impact of nutrient load and climate changes on Baltic Sea
hypoxia and eutrophication since 1850, Clim. Dynam., 53, 1145–1166,
https://doi.org/10.1007/s00382-018-4296-y, 2019b.
Meier, H. E. M., Eilola, K., Almroth-Rosell, E., Schimanke, S., Kniebusch,
M., Höglund, A., Pemberton, P., Liu, Y., Väli, G., and Saraiva, S.:
Correction to: Disentangling the impact of nutrient load and climate changes
on Baltic Sea hypoxia and eutrophication since 1850, Clim. Dynam., 53,
1167–1169, https://doi.org/10.1007/s00382-018-4483-x, 2019c.
Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O. P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., and Zhang, W.: Climate Change in the Baltic Sea Region: A Summary, Earth Syst. Dynam. Discuss. [preprint], https://doi.org/10.5194/esd-2021-67, in review, 2021.
Meier, H. E. M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F., Safonova, K., Christensen, O. B., and Kjellström, E.: Oceanographic regional climate projections for the Baltic Sea until 2100, Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, 2022.
Melvasalo, T., Pawlak, J., Grasshoff, K., Thorell, L., and Tsiban, A. (Eds.):
Assessment of the effects of pollution on the natural resources of the
Baltic Sea, 1980, in: Baltic Sea Environment Proceedings 5B, HELCOM, 426 pp., http://archive.iwlearn.net/helcom.fi/publications/bsep/en_GB/bseplist/index.html
(last access: 27 March 2022), 1981.
Mermillod-Blondin, F., Foulquier, A., Gilbert, F., Navel, S., Montuelle, B.,
Bellvert, F., Comte, G., Grossi, V., Fourel, F., Lecuyer, C., and Simon, L.:
Benzo(a)pyrene inhibits the role of the bioturbator Tubifex tubifex in river
sediment biogeochemistry, Sci. Total Environ., 450–451, 230–241,
https://doi.org/10.1016/j.scitotenv.2013.02.013, 2013.
Meunier, C. L., Liess, A., Andersson, A., Brugel, S., Paczkowska, J., Rahman, H., Skoglund, B., and Rowe, O. F.: Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff, Mar. Environ. Res., 129, 236–244, https://doi.org/10.1016/j.marenvres.2017.06.008, 2017.
Meyer, T., Lei, Y. D., and Wania, F.: Transport of polycyclic aromatic hydrocarbons and pesticides during snowmelt within an urban watershed, Water
Res., 45, 1147–1156, https://doi.org/10.1016/j.watres.2010.11.004, 2011.
Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean alkalinity, buffering
and biogeochemical processes, Rev. Geophys., 58, e2019RG000681,
https://doi.org/10.1029/2019RG000681, 2020.
Millero, F. J.: Carbonate constants for estuarine waters, Mar. Freshwater
Res., 61, 139–142, https://doi.org/10.1071/MF09254, 2010.
Milligan, A. J., Halsey, K. H., and Behrenfeld, M. J.: Advancing interpretations of 14C-uptake measurements in the context of
phytoplankton physiology and ecology, J. Plankton Res., 37, 692–698,
https://doi.org/10.1093/plankt/fbv051, 2015.
Miltner, A. and Emeis, K-C.: Terrestrial organic matter in surface sediments
of the Baltic Sea, NW Europe, as determined by CuO oxidation, Geochim. Cosmochim. Ac., 65, 1285–1299, https://doi.org/10.1016/S0016-7037(00)00603-7, 2001.
Mohrholz, V.: Major Baltic Inflow Statistics – Revised, Front. Mar. Sci.,
5, 384, https://doi.org/10.3389/fmars.2018.00384, 2018.
Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., and Gräwe, U.:
Fresh oxygen for the Baltic Sea-An exceptional saline inflow after a decade
of stagnation, J. Mar. Syst., 148, 152–166, https://doi.org/10.1016/j.jmarsys.2015.03.005, 2015.
Moodley, L., Middelburg, J. J., Herman, P. M. J., Soetaert, K., and de Lange, G. J.: Oxygenation and organic-matter preservation in marine sediments: Direct experimental evidence from ancient organic carbon-rich deposits, Geology, 33, 889–892, https://doi.org/10.1130/G21731.1, 2005.
Moran, M. A., Sheldon Jr, W. M., and Zepp, R. G.: Carbon loss and optical
property changes during long-term photochemical and biological degradation
of estuarine dissolved organic matter, Limnol. Oceanogr., 45, 1254–1264,
https://doi.org/10.4319/lo.2000.45.6.1254, 2000.
Mort, H. P., Slomp, C. P., Gustafsson, B. G., and Andersen, T. J.: Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions, Geochim. Cosmochim. Ac., 74, 1350–1362, https://doi.org/10.1016/j.gca.2009.11.016, 2010.
Motwani, N. H., Duberg, J., Svedén, J. B., and Gorokhova, E.: Grazing on
cyanobacteria and transfer of diazotrophic nitrogen to zooplankton in the
Baltic Sea, Limnol. Oceanogr, 63, 672–686, https://doi.org/10.1002/lno.10659, 2018.
Müller, J. D.: Ocean Acidification in the Baltic Sea: Involved Processes,
Metrology of pH in Brackish Waters, and Calcification under Fluctuating
Conditions, PhD Thesis, University of Rostock, Rostock, https://doi.org/10.18453/rosdok_id00002303, 2018.
Müller, J. D. and Rehder, G.: Metrology of pH Measurements in Brackish
Waters – Part 2: Experimental Characterization of Purified meta-Cresol
Purple for Spectrophotometric pHT Measurements, Front. Mar. Sci., 5, 177, https://doi.org/10.3389/fmars.2018.00177, 2018.
Müller, J. D., Schneider, B., and Rehder, G: Long-term alkalinity trends
in the Baltic Sea and their implications for CO2-induced acidification, Limnol. Oceanogr., 61, 1984–2002, https://doi.org/10.1002/lno.10349, 2016.
Müller, J. D., Bastkowski, F., Sander, B., Seitz, S., Turner, D. R.,
Dickson, A. G., and Rehder, G.: Metrology for pH Measurements in Brackish
Waters – Part 1: Extending Electrochemical pHT Measurements of TRIS Buffers to Salinities 5–20, Front. Mar. Sci., 5, 176, https://doi.org/10.3389/fmars.2018.00176, 2018a.
Müller, J. D., Schneider, B., Aßmann, S., and Rehder, G.:
Spectrophotometric pH measurements in the presence of dissolved organic
matter and hydrogen sulfide, Limnol. Oceanogr. Meth., 16, 68–82,
https://doi.org/10.1002/lom3.10227, 2018b.
Mulsow, S., Landrum, P. F., and Robbins, J. A.: Biological mixing responses
to sublethal concentrations of DDT in sediments by Heteromastus filiformis
using a 137Cs marker layer technique, Mar. Ecol. Prog. Ser., 239,
181–191, https://doi.org/10.3354/meps239181, 2002.
Myllykangas, J., Jilbert, T., Jakobs, G., Rehder, G., Werner, J., and Hietanen, S.: Effects of the 2014 Major Baltic Inflow on methane and nitrous
oxide dynamics in the water column of the central Baltic Sea, Earth Syst.
Dynam., 8, 817–826, https://doi.org/10.5194/esd-8-817-2017, 2017.
Myllykangas, J., Hietanen, S., and Jilbert, T.: Legacy effects of eutrophication on modern methane dynamics in a boreal estuary, Estuar. Coasts, 43, 189–206, https://doi.org/10.1007/s12237-019-00677-0, 2020a.
Myllykangas, J., Rissanen, A. J., Hietanen, S., and Jilbert, T.: Influence of electron acceptor availability and microbial community structure on sedimentary methane oxidation in a boreal estuary, Biogeochemistry, 148,
291–309, https://doi.org/10.1007/s10533-020-00660-z, 2020b.
Nausch, M., Nausch, G., Wasmund, N., and Nagel, K.: Phosphorus pool
variations and their relation to cyanobacteria development in the Baltic
Sea: A three-year study, J. Mar. Syst., 71, 99–111, https://doi.org/10.1016/j.jmarsys.2007.06.004, 2008.
Neumann, T.: Climate-change effects on the Baltic Sea ecosystem: A model
study, J. Mar. Syst., 81, 213–224, https://doi.org/10.1016/j.jmarsys.2009.12.001, 2010.
Neumann, T., Eilola, K., Gustafsson, B., Müller-Karulis, B., Kuznetsov,
I., Meier, H. E. M., and Savchuk, O. P.: Extremes of Temperature, Oxygen and
Blooms in the Baltic Sea in a Changing Climate, Ambio, 41, 574–585,
https://doi.org/10.1007/s13280-012-0321-2, 2012.
Neumann, T., Radtke, H., and Seifert, T.: On the importance of Major Baltic
Inflows for oxygenation of the central Baltic Sea, J. Geophys. Res.-Oceans,
122, 1090–1101, https://doi.org/10.1002/2016JC012525, 2017.
Nilsson, M. M., Kononets, M. , Ekeroth, N, , Viktorsson, L., Hylén, A.,
Sommer, S., Pfannkuche, O., Almroth-Rosell, E., Atamanchuk, D., Andersson,
J. H., Roos, P., Tengberg, A., and Hall, P. O. J.: Organic carbon recycling
in Baltic Sea sediments – An integrated estimate on the system scale based
on in situ measurements, Mar. Chem., 209, 81–93,
https://doi.org/10.1016/j.marchem.2018.11.004, 2019.
Nilsson, M. M., Hylén, A., Ekeroth, N., Kononets, M. Y., Viktorsson, L.,
Almroth-Rossell, E., Ross, P., Tengberg, A., and Hall, P. O. J.: Particle
shuttling and oxidation capacity of sedimentary organic carbon on the Baltic
Sea system scale, Mar. Chem., 232, 103963, https://doi.org/10.1016/j.marchem.2021.103963, 2021.
Nizzetto, L., Macleod, M., Borgå, K., Cabrerizo, A., Dachs, J., Di Guardo, A., Ghirardello, D., Hansen, K. M., Jarvis, A., Lindroth, A., Ludwig, B., Monteith, D., Perlinger, J. A., Scheringer M., Schwendenmann, L., Semple, K. T., Wick, L. Y., Zhang, G., and Jones, K. C.: Past, Present, and Future Controls on Levels of Persistent Organic Pollutants in the Global Environment, Environ. Sci. Technol., 44, 6526–6531, https://doi.org/10.1021/es100178f, 2010.
Noffke, A., Sommer, S., Dale, A. W., Hall, P. O. J., and Pfannkuche, O.:
Benthic nutrient fluxes in the Eastern Gotland Basin (Baltic Sea) with
particular focus on microbial mat ecosystems, J. Mar. Syst., 158, 1–12,
https://doi.org/10.1016/j.jmarsys.2016.01.007, 2016.
Norkko, J., Reed, D. C., Timmermann, K., Norkko, A., Gustafsson, B. G.,
Bonsdorff, E., Slomp, C. P., Carstensen, J., and Conley, D. J.: A welcome
can of worms? Hypoxia mitigation by an invasive species, Global Change Biol.,
18, 422–434, https://doi.org/10.1111/j.1365-2486.2011.02513.x, 2012.
Nystrand, M. I., Osterholm, P., Yu, C. X., and Astrom, M.: Distribution and
speciation of metals, phosphorus, sulfate and organic material in brackish
estuary water affected by acid sulfate soils, Appl. Geochem., 66, 264–274, https://doi.org/10.1016/j.apgeochem.2016.01.003, 2016.
Olesen, J. E., Børgesen, C. D., Hashemi, F., Jabloun, M., Bar-Michalczyk,
D., Zurek, A. J., Bartosova, A., Bosshard, T., Hansen, A. L., and Refsgaard,
J. C.: Nitrate leaching losses from two Baltic Sea catchments under scenarios of changes in land use, land management and climate, Ambio, 48, 1252–1263, https://doi.org/10.1007/s13280-019-01254-2, 2019.
Olofsson, M., Klawonn, I., and Karlson, B.: Nitrogen fixation estimates for
the Baltic Sea indicate high rates for the previously overlooked Bothnian
Sea, Ambio, 50, 203–214, https://doi.org/10.1007/s13280-020-01331-x, 2021.
Omstedt, A., Edman, M., Anderson, L. G., and Laudon H.: Factors influencing
the acid–base (pH) balance in the Baltic Sea: a sensitivity analysis, Tellus B, 62, 280–295, https://doi.org/10.1111/j.1600-0889.2010.00463.x, 2010.
Omstedt, A., Edman, M., Claremar, B., Frodin, P., Gustafsson, E., Humborg,
C., Hägg, H., Morth, M., Rutgersson, A., Schurgers, G., Smith, B., Wällstedt T., and Yurova, A.: Future changes in the Baltic Sea acid – base (pH) and oxygen balances, Tellus B, 64, 19586, https://doi.org/10.3402/tellusb.v64i0.19586, 2012.
Otte, J. M., Harter, J., Laufer, K., Blackwell, N., Straub, D., Kappler, A.,
and Kleindienst, S.: The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients,
Environ. Microbiol., 20, 2483–2499, https://doi.org/10.1111/1462-2920.14260, 2018.
Øygarden, L., Deelstra, J., Lagzdins, A., Bechmann, M., Greipsland, I.,
Kyllmar, K., Povilaitis, A., and Iital, A.: Climate change and the potential
effects on runoff and nitrogen losses in the Nordic–Baltic region, Agr. Ecosyst. Environ., 198, 114–126, https://doi.org/10.1016/j.agee.2014.06.025, 2014.
Paczkowska, J., Brugel, S., Rowe, O., Lefébure, R., Brutemark, A., and
Andersson, A.: Response of Coastal Phytoplankton to High Inflows of Terrestrial Matter, Front. Mar. Sci., 7, 80, https://doi.org/10.3389/fmars.2020.00080, 2020.
Pengerud, A., Stålnacke, P., Bechmann, M., BlicherMathiesen, G., Iital,
A., Koskiaho, J., Kyllmar, K., Lagzdins, A., and Povilaitis, A.: Temporal
trends in phosphorus concentrations and losses from agricultural catchments
in the Nordic and Baltic countries, Acta Agric. Scand. B, 65, 173–185, https://doi.org/10.1080/09064710.2014.993690, 2015.
Petro, C., Zäncker, B., Starnawski, P., Jochum, L. M., Ferdelman, T. G.,
Jørgensen, B. B., Røy, H., Kjeldsen, K. U., and Schramm, A.: Marine
Deep Biosphere Microbial Communities Assemble in Near-Surface Sediments in
Aarhus Bay, Front. Microbiol., 10, 758, https://doi.org/10.3389/fmicb.2019.00758, 2019.
Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L.,
Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N., and Nielsen, L. P.: Filamentous bacteria transport electrons over centimetre distances, Nature, 491, 218–221, https://doi.org/10.1038/nature11586, 2012.
Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A.,
Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A.,
González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N.,
Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A.,
Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C.,
Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M.,
Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson,
A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S.
S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I.,
Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M.,
Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T.,
Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue,
H.: A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT),
Earth Syst. Sci. Data, 5, 125–143, https://doi.org/10.5194/essd-5-125-2013, 2013.
Pihlainen, S., Zandersen, M., Hyytiainen, K., Andersen, H. E., Bartosova, A., Gustafsson, B., Jabloun, M., McCrackin, M., Meier, H. E. M., Olesen, J. E., Saraiva, S., Swaney, D., and Thodsen, H.: Impacts of changing society and climate on nutrient loading to the Baltic Sea, Sci. Total Environ, 731,
138935, https://doi.org/10.1016/j.schnew.2001.1.138935, 2020.
Piña-Ochoa, E. and Álvarez-Cobelas, M.: Denitrification in aquatic
environments: A cross-system analysis, Biogeochemistry, 81, 111–130,
https://doi.org/10.1007/s10533-006-9033-7, 2006.
Platt, T. and Sathyendranath, S.: Fundamental issues in measurement of
primary production, ICES Marine Science Symposia, 197, 3–8, 1993.
Pohl, C. and Hennings, U.: The effect of redox processes on the partitioning
of Cd, Pb, Cu, and Mn between dissolved and particulate phases in the Baltic
Sea, Mar. Chem., 65, 41–53, https://doi.org/10.1016/S0304-4203(99)00009-2, 1999.
Polyak, Y., Shigaeva, T., Gubelit, Y., Bakina, L., Kudryavtseva, V., and
Polyak, M.: Sediment microbial activity and its relation to environmental
variables along the eastern Gulf of Finland coastline, J. Mar. Syst., 171,
101–110, https://doi.org/10.1016/j.jmarsys.2016.11.017, 2017.
Purina, I., Labucis, A., Barda, I., Jurgensone, I., and Aigars, J.: Primary
productivity in the Gulf of Riga (Baltic Sea) in relation to phytoplankton
species and nutrient variability, Oceanologia, 60, 544–552, https://doi.org/10.1016/j.oceano.2018.04.005, 2018.
Raateoja, M., Seppälä, J., and Kuosa, H.: Bio-optical modelling of
primary production in the SW Finnish coastal zone, Baltic Sea: fast repetition rate fluorometry in Case 2 waters, Mar. Ecol. Prog. Ser., 267,
9–26, https://doi.org/10.3354/meps267009, 2004.
Raateoja, M., Kuosa, H., and Hällfors, S.: Fate of excess phosphorus in
the Baltic Sea: A real driving force for cyanobacterial blooms?, J. Sea Res.,
65, 315–321, https://doi.org/10.1016/j.seares.2011.01.004, 2011.
Raateoja, M., Hällfors, H., and Kaitala, S.: Vernal phytoplankton bloom
in the Baltic Sea: Intensity and relation to nutrient regime, J. Sea Res.,
138, 24–33, https://doi.org/10.1016/j.seares.2018.05.003, 2018.
Radtke, H., Lipka, M., Bunke, D., Morys, C., Woelfel, J., Cahill, B., Böttcher, M. E., Forster, S., Leipe, T., Rehder, G., and Neumann, T.:
Ecological ReGional Ocean Model with vertically resolved sediments (ERGOM
SED 1.0): coupling benthic and pelagic biogeochemistry of the south-western
Baltic Sea, Geosci. Model Dev., 12, 275–320, https://doi.org/10.5194/gmd-12-275-2019, 2019.
Radtke, H., Brunnabend, S. E., Gräwe, U., and Meier, H. E. M.: Investigating interdecadal salinity changes in the Baltic Sea in a
1850–2008 hindcast simulation, Clim. Past, 16, 1617–1642, https://doi.org/10.5194/cp-16-1617-2020, 2020.
Rahm, L., Jönsson, A., and Wulff, F.: Nitrogen fixation in the Baltic proper: an empirical study, J. Mar. Syst., 25, 239–248, https://doi.org/10.1016/S0924-7963(00)00018-X, 2000.
Rasigraf, O., Schmitt, J., Jetten, M. S. M., and Lüke, C.: Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment, MicrobiologyOpen, 6, e475, https://doi.org/10.1002/mbo3.475, 2017.
Rasigraf, O., van Helmond, N. A. G. M., Frank, J., Lenstra, W. K., Egger, M., Slomp, C. P., and Jetten, M. S. M.: Microbial community composition and functional potential in Bothnian Sea sediments is linked to Fe and S dynamics and the quality of organic matter, Limnol. Oceanogr., 65, 113–133,
https://doi.org/10.1002/lno.11371, 2020.
Reckermann, M., Omstedt, A., Soomere, T., Aigars, J., Akhtar, N., Bełdowska, M., Bełdowski, J., Cronin, T., Czub, M., Eero, M., Hyytiäinen, K. P., Jalkanen, J.-P., Kiessling, A., Kjellström, E., Kuliński, K., Larsén, X. G., McCrackin, M., Meier, H. E. M., Oberbeckmann, S., Parnell, K., Pons-Seres de Brauwer, C., Poska, A., Saarinen, J., Szymczycha, B., Undeman, E., Wörman, A., and Zorita, E.: Human impacts and their interactions in the Baltic Sea region, Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, 2022.
Reed, D. C., Slomp, C. P., and Gustafsson, B. G.: Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: A coupled benthic-pelagic model of a coastal system, Limnol. Oceanogr., 56, 1075–1092, https://doi.org/10.4319/lo.2011.56.3.1075, 2011.
Reed, D. C., Gustafsson, B. G., and Slomp, C. P.: Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments, Earth
Planet. Sc. Lett., 434, 241–251, https://doi.org/10.1016/j.epsl.2015.11.033, 2016.
Renk, H.: Primary production of the Southern Baltic in 1979–1983, Oceanologia, 29, 51–75, 1990.
Reusch, T. B. H., Dierking, J., Andersson, H. C., Bonsdorff, E., Carstensen,
J., Casini, M., Czajkowski, M., Hasler, B., Hinsby, K., Hyytiänen, K.,
Johannesson, K., Jomaa, S., Jormalainen, V., Kuosa, H., Kurland, S., Ojaveer, H., Refsgaard, J. C., Sandström, A., Schwarz, G., Tonderski, K., Winder, M., and Zandersen, M.: The Baltic Sea as a time machine for the future coastal ocean, Sci. Adv., 4, eaar8195, https://doi.org/10.1126/sciadv.aar8195, 2018.
Reyes, C., Dellwig, O., Dähnke, K., Gehre, M., Noriega-Ortega, B. E.,
Böttcher, M. E., Meister, P., and Friedrich, M. W.: Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing, FEMS Microbiol. Ecol., 92, fiw054,
https://doi.org/10.1093/femsec/fiw054, 2016.
Reyes, C., Schneider, D., Lipka, M., Thürmer, A., Böttcher, M. E.,
and Friedrich, M. W.: Nitrogen metabolism genes from temperate marine sediments, Mar. Biotechnol., 19, 175–190, https://doi.org/10.1007/s10126-017-9741-0, 2017.
Rieck, A., Herlemann, D. P. R., Jürgens, K., and Grossart, H.-P.:
Particle-associated differ from free-living bacteria in surface waters of
the Baltic Sea, Front. Microbiol., 6, 1297, https://doi.org/10.3389/fmicb.2015.01297, 2015.
Riemann, B., Carstensen, J., Dahl, K., Fossing, H., Hansen, J. W., Jakobsen,
H. H., Josefson, A. B., Krause-Jensen, D., Markager, S., Stæhr, P. A.,
Timmermann, K., Windolf, J., and Andersen, J. H.: Recovery of Danish coastal
ecosystems after reductions in nutrient loading: A holistic ecosystem approach, Estuar. Coasts, 39, 82–97, https://doi.org/10.1007/s12237-015-9980-0, 2016.
Riemann, L., Leitet, C., Pommier, T., Simu, K., Holmfeldt, K., Larsson, U.,
and Hagstrom, A.: The Native Bacterioplankton Community in the Central Baltic Sea Is Influenced by Freshwater Bacterial Species, Appl. Environ. Microbiol., 74, 503–515, https://doi.org/10.1128/AEM.01983-07, 2008.
Risgaard-Petersen, N., Revil, A., Meister, P., and Nielsen, L. P.: Sulfur,
iron-, and calcium cycling associated with natural electric currents running
through marine sediment, Geochim. Cosmochim. Ac., 92, 1–13, https://doi.org/10.1016/j.gca.2012.05.036, 2012.
Rodríguez, J., Gallampois, C. M. J., Timonen, S., Andersson, A., Sinkko, H., Haglund, P., Berglund, Å. M. M., Ripszam, M., Figueroa, D., Tysklind, M., and Rowe, O.: Effects of Organic Pollutants on Bacterial Communities Under Future Climate Change Scenarios, Front. Microbiol., 9, 2926, https://doi.org/10.3389/fmicb.2018.02926, 2018.
Rolff, C. and Elfwing, T.: Increasing nitrogen limitation in the Bothnian Sea, potentially caused by inflow of phosphate-rich water from the Baltic Proper, Ambio, 44, 601–611, https://doi.org/10.1007/s13280-015-0675-3, 2015.
Rooze, J., Egger, M., Tsandev, I., and Slomp, C. P.: Iron-dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact, Limnol. Oceanogr., 61, S267–S282, https://doi.org/10.1002/lno.10275, 2016.
Rosenstrand Poulsen, J., Thodsen, H., Larsen, S. E., Ovesen, N. B., Kronvang, B., Christensen, B. T., Olesen, J. E., Eriksen, J., Ellermann, T., Christensen, J. H., Windolf, J., Carstensen, M. V., and Tornbjerg, H.:
Estimation of Nitrogen Concentrations from root zone to marine areas around
the year 1900, edited by: Nordemann Jensen, P., Scientific Report from DCE
No. 241, Danish Centre for Environment and Energy, 126 pp., https://dce2.au.dk/pub/SR241.pdf (last access: 27 March 2022), 2017.
Rotaru, A.-E., Calabrese, F., Stryhanyuk, H., Musat, F., Shrestha, P. M.,
Weber, H. S., Snoeyenbos-West, O. L. O., Hall, P. O. J., Richnow, H. H.,
Musat, N., and Thamdrup, B.: Conductive particles enable syntrophic acetate
oxidation between Geobacter and Methanosarcina from coastal sediments, mBio 9, e00226-18, https://doi.org/10.1128/mBio.00226-18, 2018.
Rügner, H., Schwientek, M., Milačič, R., Zuliani, T., Vidmar, J., Paunović, M., Laschou, S., Kalogianni, E., Skoulikidis, N. T., and Diamantini, E.: Particle bound pollutants in rivers: Results from suspended
sediment sampling in Globaqua River Basins, Sci. Total Environ., 647,
645–652, https://doi.org/10.1016/j.scitotenv.2018.08.027, 2019.
Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Larsén, X. G., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., and Wasmund, N.: Natural hazards and extreme events in the Baltic Sea region, Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, 2022.
Rydberg, L., Ærtebjerg, G., and Edler, L.: Fifty years of primary production measurements in the Baltic entrance region, trends and variability in relation to land-based input of nutrients, J. Sea Res., 56, 1–16, https://doi.org/10.1016/j.seares.2006.03.009, 2006.
Sakshaug, E., Bricaud, A., Dandonneau, Y., Falkowski, P. G., Kiefer, D. A.,
Legendre, L., Morel, A., Parslow, J., and Takahashi, M.: Parameters of
photosynthesis: definitions, theory and interpretation of results, J.
Plankton Res., 19, 1637–1670, https://doi.org/10.1093/plankt/19.11.1637, 1997.
Sarkkola, S., Nieminen, M., Koivusalo, H., Lauren, A., Kortelainen, P.,
Mattsson, T., Palviainen, M., Piirainen, S., Starr, M., and Finer, L.: Iron
concentrations are increasing in surface waters from forested headwater
catchments in eastern Finland, Sci. Total Environ., 463–464, 683–689,
https://doi.org/10.1016/j.scitotenv.2013.06.072, 2013.
Savchuk, O. and Wulff, F.: Modeling the Baltic Sea eutrophication in a
decision support system, Ambio, 36, 141–148, https://doi.org/10.1579/0044-7447(2007)36[141:mtbsei]2.0.co;2, 2007.
Savchuk, O. P.: Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model, J. Mar. Syst., 32, 253–280,
https://doi.org/10.1016/S0924-7963(02)00039-8, 2002.
Savchuk, O. P.: Resolving the Baltic Sea into seven subbasins: N and P budgets for 1991–1999, J. Mar. Syst., 56, 1–15, https://doi.org/10.1016/j.jmarsys.2004.08.005, 2005.
Savchuk, O. P.: Large-Scale Nutrient Dynamics in the Baltic Sea, 1970–2016,
Front. Mar. Sci., 5, 95, https://doi.org/10.3389/fmars.2018.00095, 2018.
Savchuk, O. P., Wulff, F., Hille, S., Humborg, C., and Pollehne, F.: The Baltic Sea a century ago – a reconstruction from model simulations, verified
by observations, J Mar. Syst., 74, 485–494, https://doi.org/10.1016/j.jmarsys.2008.03.008, 2008.
Savchuk, O. P., Gustafsson, B. G., Rodriguez Medina, M., Sokolov, A., and
Wulff, F.: External nutrient loads to the Baltic Sea 1970–2006, Baltic Nest
Institute Technical Report 5, https://www.su.se/ (last access: 27 March 2022), 2012a.
Savchuk, O. P., Eilola, K., Gustafsson, B. G., Rodriguez Medina, M., and
Ruolo-Airola, T.: Long-term reconstruction of nutrient loads to the Baltic
Sea 1850–2006, Technical Report No. 6, Baltic Nest Institute, 12 pp., https://www.su.se/ (last access: 27 March 2022), 2012b.
Savchuk, O. P., Gustafsson, B. G., and Muller-Karulis, B.: BALTSEM – a
marine model for decision support within the Baltic Sea region (No. 7), BNI
Technical reports, BNI, 60 pp., https://www.su.se/ (last access: 27 March 2022), 2012c.
Sawicka, J. E. and Brüchert, V.: Annual variability and regulation of
methane and sulfate fluxes in Baltic Sea estuarine sediments, Biogeosciences, 14, 325–339, https://doi.org/10.5194/bg-14-325-2017, 2017.
Schaper, J. L., Seher, W., Nützmann, G., Putschew, A., Jekel, M., and
Lewandowski, J.: The fate of polar trace organic compounds in the hyporheic
zone, Water Res., 140, 158–166, https://doi.org/10.1016/j.watres.2018.04.040, 2018.
Schernewski, G. and Neumann, T.: The trophic state of the Baltic Sea a
century ago, J. Mar. Syst., 53, 109–124, https://doi.org/10.1016/j.jmarsys.2004.03.007, 2005.
Schimanke, S. and Meier, H. M.: Decadal-to-centennial variability of
salinity in the Baltic Sea, J. Climate, 29, 7173–7188, https://doi.org/10.1175/JCLI-D-15-0443.1, 2016.
Schlüter, M., Sauter, E. J., Andersen, C. E., Dahlgaard, H., and Dando, P. R.: Spatial distribution and budget for submarine groundwater discharge in
Eckernforde Bay (Western Baltic Sea), Limnol. Oceanogr., 49, 157–167,
https://doi.org/10.4319/lo.2004.49.1.0157, 2004.
Schmale, O., Blumenberg, M., Kießlich, K., Jakobs, G., Berndmeyer, C., Labrenz, M., Thiel, V., and Rehder, G.: Aerobic methanotrophy within the pelagic redox-zone of the Gotland Deep (central Baltic Sea), Biogeosciences, 9, 4969–4977, https://doi.org/10.5194/bg-9-4969-2012, 2012.
Schneider, B. and Müller, J. D.: Biogeochemical Transformations in the
Baltic Sea – Observations Through Carbon Dioxide Glasses, Springer, ISBN 978-3-319-61699-5, 2018.
Schneider, B. and Otto, S.: Organic matter mineralization in the deep water of the Gotland Basin (Baltic Sea): Rates and oxidant demand, J. Mar. Syst., 195, 20–29, https://doi.org/10.1016/j.jmarsys.2019.03.006, 2019.
Schneider, B., Kaitala, S., Raateoja, M., and Sadkowiak, B.: A nitrogen
fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data, Cont. Shelf Res., 29, 1535–1540, 2009.
Schneider, B., Gülzow, W., Sadkowiak, B., and Rehder, G.: Detecting
sinks and sources of CO2 and CH4 by ferrybox-based measurements in the Baltic Sea: Three case studies, J. Mar. Syst., 140, 13–25, 2014.
Schneider, B., Buecker, S., Kaitala, S., Maunula, P., and Wasmund, N.:
Characteristics of the spring/summer production in the Mecklenburg Bight
(Baltic Sea) as revealed by long-term pCO2 data, Oceanologia, 57, 375–385, 2015a.
Schneider, B., Eilola, K., Lukkari, K., Muller-Karulis, B., and Neumann, T.:
Environmental Impacts—Marine Biogeochemistry, in: Second Assessment of
Climate Change for the Baltic Sea Basin, edited by: The BACC II Author Team,
Regional Climate Studies, Springer International Publishing, Cham, 337–361,
https://doi.org/10.1007/978-3-319-16006-1_18, 2015b.
Schneider, B., Dellwig, O., Kuliński, K., Omstedt, A., Pollehne, F., Rehder, G., and Savchuk, O.: Biogeochemical cycles, in: Biological Oceanography of the Baltic Sea, edited by: Snoeijs-Leijonmalm, P., Schubert,
H., and Radziejewska, T., Springer Netherlands, Dordrecht, 87–122,
https://doi.org/10.1007/978-94-007-0668-2_3, 2017.
Schulz, H. D. and Zabel, M. (Eds.).: Marine geochemistry, Springer-Verlag,
Berlin, Heidelberg, Germany, 574 pp., https://doi.org/10.1007/3-540-32144-6, 2006.
Schwientek, M., Rügner, H., Beckingham, B., Kuch, B., and Grathwohl, P.:
Integrated monitoring of particle associated transport of PAHs in contrasting catchments, Environ. Pollut., 172, 155–162, https://doi.org/10.1016/j.envpol.2012.09.004, 2013.
Seidel, M., Manecki, M., Herlemann, D. P. R., Deutsch, B., Schulz-Bull, D.,
Jürgens, K., and Dittmar, T.: Composition and transformation of dissolved organic matter in the Baltic Sea, Front. Earth Sci., 5, 31, https://doi.org/10.3389/feart.2017.00031, 2017.
Seitaj, D., Schauer, R., Sulu-Gambari, F., Hidalgo-Martinez, S., Malkin, S.
Y., Burdorf, L. D. W., Slomp, C. P., and Meysman, F. J. R.: Cable bacteria
generate a firewall against euxinia in seasonally hypoxic basins, P. Natl.
Acad. Sci. USA, 112, 13278–13283, https://doi.org/10.1073/pnas.1510152112, 2015.
Seitzinger, S., Harrison, J. A., Böhlke, J., Bouwman, A., Lowrance, R.,
Peterson, B., Tobias, C., and Drecht, G. V.: Denitrification across landscapes and waterscapes: A synthesis, Ecol. Appl., 16, 2064–2090,
https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2, 2006.
Shade, A., Peter, H., Allison, S. D., Baho, D., Berga, M., Buergmann, H.,
Huber, D. H., Langenheder, S., Lennon, J. T., Martiny, J. B., Matulich, K.
L., Schmidt, T. M., and Handelsman, J.: Fundamentals of Microbial Community
Resistance and Resilience, Front. Microbiol., 3, 417, https://doi.org/10.3389/fmicb.2012.00417, 2012.
Shen, D., Jürgens, K., and Beier, S.: Experimental insights into the
importance of ecologically dissimilar bacteria to community assembly along a
salinity gradient, Environ. Microbiol., 20, 1170–1184, 2018.
Shubenkovaa, O. V., Likhoshvaia, A. V., Kanapatskiib, T. A., and Pimenovb, N. V.: Microbial community of reduced pockmark sediments (Gdansk Deep, Baltic Sea), Microbiology, 79, 799–808, https://doi.org/10.1134/S0026261710060123, 2010.
Simis, S. G. H., Huot, Y., Babin, M., Seppälä, J., and Metsamaa, L.:
Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria, Photosynth. Res., 112, 13–30, https://doi.org/10.1007/s11120-012-9729-6, 2012.
Sinkko, H., Lukkari, K., Jama, A. S., Sihvonen, L. M., Sivonen, K., Rantanen, M., Paulin, L., and Lyra, C.: Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges, PLoS One, 6, e21555, https://doi.org/10.1371/journal.pone.0021555, 2011.
Sinkko, H,, Lukkari, K., Sihvonen, L. M., Sivonen, K., Leivuori, M., Rantanen, M., Paulin, L., and Lyra, C.: Bacteria contribute to sediment
nutrient release and reflect progressed eutrophication-driven hypoxia in an
organic-rich continental sea, PLoS One, 8, e67061, https://doi.org/10.1371/journal.pone.0067061, 2013.
Sinkko, H., Hepolehto, I., Lyra, C., Rinta-Kanto, J. M., Villnäs, A.,
Norkko, J., Norkko, A., and Timonen, S.: Increasing oxygen deficiency changes rare and moderately abundant bacterial communities in coastal soft sediments, Sci. Rep., 9, 16341, https://doi.org/10.1038/s41598-019-51432-1, 2019.
Skogen, M. D., Eilola, K., Hansen, J. L. S., Meier, H. E. M., Molchanov, M.
S., and Ryabchenko, V. A.: Eutrophication status of the North Sea, Skagerrak, Kattegat and the Baltic Sea in present and future climates: A model study, J. Mar. Syst., 132, 174–184, https://doi.org/10.1016/j.jmarsys.2014.02.004, 2014.
Slomp, C. P.: Phosphorus cycling in the estuarine and coastal zones biogeochemistry, in: Treatise on estuarine and coastal science, edited by:
Laane, R. W.P. M. and Middelburg, J. J., Elsevier/Academic Press, Amsterdam,
201–229, https://doi.org/10.1016/B978-0-12-374711-2, 2011.
Slomp, C. P., Mort, H. P., Jilbert, T., Reed, D. C., Gustafsson, B. G., and
Wolthers, M.: Coupled dynamics of iron and phosphorus in sediments of an
oligotrophic coastal basin and the impact of anaerobic oxidation of methane,
PLoS One, 8, e62386, https://doi.org/10.1371/journal.pone.0062386, 2013.
Smith, V. H., Joye, S. B., and Howarth, R. W.: Eutrophication of freshwater
and marine ecosystems, Limnol. Oceanogr., 51, 351–355, https://doi.org/10.4319/lo.2006.51.1_part_2.0351, 2006.
Snoeijs-Leijonmalm, P. and Andrén, E.: Why is the Baltic Sea so special to live in?, in: Biological Oceanography of the Baltic Sea, edited by: Snoeijs-Leijonmalm, P., Schubert, H., and Radziejewska, T., Springer, Netherlands, 23–84, https://doi.org/10.1007/978-94-007-0668-2_2, 2017.
Sobek, A., Bejgarn, S., Ruden, C., and Breitholtz, M.: The dilemma in
prioritizing chemicals for environmental analysis: known versus unknown
hazards, Environ. Sci. Process. Imp., 18, 1042–1049, https://doi.org/10.1039/C6EM00163G, 2016.
Sonne, C., Siebert, U., Gonnsen, K., Desforges, J. P., Eulaers, I., Persson,
S., Roos, A., Bäcklin, B.-M., Kauhala, K., Olsen, M. T., Harding, K. C.,
Treu, G., Galatius, A., Andersen-Ranberg, E., Gross, S., Lakemeyer, J., Lehnert, K., Lam, S. S., Peng, W., and Dietz, R.: Health effects from
contaminant exposure in Baltic Sea birds and marine mammals: A review, Environ. Int., 139, 105725, https://doi.org/10.1016/j.envint.2020.105725, 2020.
Spilling, K., Fuentes-Lema, A., Quemaliños, D., Klais, R., and Sobrino, C.: Primary production, carbon release, and respiration during spring bloom
in the Baltic Sea, Limnol. Oceanogr., 64, 1779–1789, https://doi.org/10.1002/lno.11150, 2019.
Stålnacke, P., Grimvall, A., Sundblad, K., and Tonderski, A.: Estimation
of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993,
Environ. Monit. Assess., 58, 173–200, https://doi.org/10.1023/A:1006073015871, 1999.
Starnawski, P., Bataillon, T., Ettema, T. J. G., Jochum, L. M., Schreiber, L., Chen, X., Lever, M. A., Polz, M. F., Jørgensen, B. B., Schramm, A.,
and Kjeldsen, K. U.: Microbial community assembly and evolution in subseafloor sediment, P. Natl. Acad. Sci. USA, 114, 2940–2945,
https://doi.org/10.1073/pnas.1614190114, 2017.
Steenbergh, A. K., Bodelier, P. L. E., Hoogveld, H. L., Slomp, C. P., and
Laanbroek, H. J.: Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redox-gradient, Limnol. Oceanogr.,
56, 2018–2026, https://doi.org/10.4319/lo.2011.56.6.2018, 2011.
Stipa, T., Jalkanen, J.-P., Hongisto, M., Kali, J., and Brink, A.: Emissions
of NOx from Baltic shipping and first estimates of their effects on air quality and eutrophication of the Baltic Sea (No. 2008), HELCOM Baltic Sea Environment Fact Sheet, HELCOM, Helsinki, ISBN 978-951-53-3028-4, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.244&rep=rep1&type=pdf
(last access: 27 March 2022), 2008.
Stoicescu, S.-T., Lips, U., and Liblik, T.: Assessment of Eutrophication Status Based on Sub-Surface Oxygen Conditions in the Gulf of Finland (Baltic Sea), Front. Mar. Sci., 6, 54, https://doi.org/10.3389/fmars.2019.00054, 2019.
Stokowski, M., Schneider, B., Rehder, G., and Kuliński, K.: The
characteristics of the CO2 system of the Oder River estuary (Baltic
Sea), J. Mar. Syst., 211, 107444, https://doi.org/10.1016/j.jmarsys.2020.103418, 2020.
Stokowski, M., Winogradow, A., Szymczycha, B., Carstensen, J., and Kuliński, K.: The CO2 system dynamics in the vicinity of the
Vistula River mouth (the southern Baltic Sea): A baseline investigation,
Estuar. Coast. Shelf Sci., 258, 107444, https://doi.org/10.1016/j.ecss.2021.107444, 2021.
Struck, U., Pollehne, F., Bauerfeind, E., and v. Bodungen, B.: Sources of
nitrogen for the vertical particle flux in the Gotland Sea (Baltic Proper) – results from sediment trap studies, J. Mar. Syst., 45, 91–101,
https://doi.org/10.1016/j.jmarsys.2003.11.012, 2004.
Sun, X., Mörth, C., Humborg, C., and Gustafsson, B.: Temporal and spatial variations of rock weathering and CO2 consumption in the Baltic Sea catchment, Chem. Geol., 466, 57–69, https://doi.org/10.1016/j.chemgeo.2017.04.028, 2017.
Sunda, W. G. and Lewis, J. A. M.: Effect of complexation by natural organic-ligands on toxicity of copper to a unicellular alga, monochrysis-lutheri, Limnol. Oceanogr., 23, 870–876, https://doi.org/10.4319/lo.1978.23.5.0870, 1978.
Sundbäck, K., Miles, A., and Linares, F.: Nitrogen dynamics in nontidal
littoral sediments: Role of microphytobenthos and denitrification, Estuar. Coasts, 29, 1196–1211, https://doi.org/10.1007/BF02781820, 2006.
Svedén, J. B., Walve, J., Larsson, U., and Elmgren, R.: The bloom of
nitrogen-fixing cyanobacteria in the northern Baltic Proper stimulates summer production, J. Mar. Syst., 163, 102–112, https://doi.org/10.1016/j.jmarsys.2016.07.003, 2016.
Svendsen, L. M., Bartnicki, J., Boutrup, S., Gustafsson, B., Jarosinski, W.,
Knuuttila, S., Kotilainen, P., Larsen, S. E., Pyhälä, M., Ruoho-Airola, T., Sonesten, L., and Staaf, H.: Updated Fifth Baltic Sea
pollution load compilation (PLC-5.5) (No. 145), in: Baltic Sea Environment
Proceedings, 143 pp., https://www.helcom.fi/wp-content/uploads/2019/08/BSEP145_Lowres-1.pdf
(last access: 27 March 2022), 2015.
Szymczycha, B., Kroeger, K. D., and Pempkowiak, J.: Significance of groundwater discharge along the coast of Poland as a source of dissolved
metals to the southern Baltic Sea, Mar. Pollut. Bull., 109, 151–162,
https://doi.org/10.1016/j.marpolbul.2016.06.008, 2016.
Tamelander, T., Spilling, K., and Winder, M.: Organic matter export to the
seafloor in the Baltic Sea: Drivers of change and future projections, Ambio,
46, 842–851, https://doi.org/10.1007/s13280-017-0930-x, 2017.
Tauber, F.: Regionalized classification of seabed sediments in the German
Baltic Sea. BALTIC 2014, in: The 12th Colloquium on Baltic Sea Marine
Geology, 8–12 September 2014, Warnemünde, p. 79, https://www.io-warnemuende.de/tl_files/conference/bsg2014/pdf/abstract_volume0809.pdf
(last access: 27 March 2022), 2014.
Teikari, J. E., Fewer, D. P., Shrestha, R., Hou, S., Leikoski, N., Mäkelä, M., Simojoki, A., Hess, W. R., and Sivonen, K.: Strains of
the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane, ISME J., 12, 1619–1630, https://doi.org/10.1038/s41396-018-0056-6, 2018.
Thureborn, P., Lundin, D., Plathan, J., Poole, A. M., Sjöberg, B.-M.,
and Sjöling, S.: A Metagenomics Transect into the Deepest Point of the
Baltic Sea Reveals Clear Stratification of Microbial Functional Capacities,
PLoS ONE, 8, e74983, https://doi.org/10.1371/journal.pone.0074983, 2013.
Treude, T., Krüger, M., Boetius, A., and Jørgensen, B. B.: Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic), Limnol. Oceanogr., 50,
1771–1786, https://doi.org/10.4319/lo.2005.50.6.1771, 2005.
Trojan, T., Schreiber, L., Bjerg, J. T., Bøggild, A., Yang, T., Kjeldsen,
K. U., and Schramm, A.: A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema, Syst. Appl. Microbiol., 39, 297–306, https://doi.org/10.1016/j.syapm.2016.05.006, 2016.
Tuzen, M.: Determination of trace metals in the River Yesilirmak sediments
in Tokat, Turkey using sequential extraction procedure, Microchem. J., 74,
105–110, https://doi.org/10.1016/S0026-265X(02)00174-1, 2003.
Tyrrell, T., Schneider, B., Charalampopoulou, A., and Riebesel, U.: Coccolithophores and calcite saturation state in the Baltic and Black Seas,
Biogeosciences, 5, 485–494, https://doi.org/10.5194/bg-5-485-2008, 2008.
Ulfsbo, A., Kuliński, K., Anderson, L. G., and Turner, D. R.: Modelling
organic alkalinity in the Baltic Sea using a Humic-Pitzer approach, Mar.
Chem., 168, 18–26, https://doi.org/10.1016/j.marchem.2014.10.013, 2015.
Urbaniak, M., Kiedrzyńska, E., Wyrwicka, A., Zieliński, M., Mierzejewska, E., Kiedrzyński, M., Kannan, K., and Zalewski, M.: An
ecohydrological approach to the river contamination by PCDDs, PCDFs and
dl-PCBs–concentrations, distribution and removal using phytoremediation
techniques, Sci. Rep., 9, 1–17, https://doi.org/10.1038/s41598-019-55973-3, 2019.
Vahtera, Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H., Savchuk, O. P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N., and Wulff, F.: Internal ecosystem feedbacks enhance nitrogen-fixing cyanobaceria
blooms and complicate management in the Baltic Sea, Ambio, 36, 186–194,
https://doi.org/10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2, 2007.
Väli, G., Meier, H. E. M., and Elken, J.: Simulated halocline variability
in the Baltic Sea and its impact on hypoxia during 1961–2007, J. Geophys.
Res., 118, 6982–7000, https://doi.org/10.1002/2013JC009192, 2013.
van der Meer, J. R.: Environmental pollution promotes selection of microbial
degradation pathways, Front. Ecol. Environ., 4, 35–42,
https://doi.org/10.1890/1540-9295(2006)004[0035:EPPSOM]2.0.CO;2, 2006.
Vandieken, V., Pester, M., Finke, N., Hyun, J.-H., Friedrich, M. W., Loy, A., and Thamdrup, B.: Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria, ISME J., 6, 2078–2090, https://doi.org/10.1038/ismej.2012.41, 2012.
van Helmond, N. A. G. M., Robertson, E. K., Conley, D. J., Hermans, M.,
Humborg, C., Kubeneck, L. J., Lenstra, W. K., and Slomp, C. P.: Removal of
phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago,
Baltic Sea, Biogeosciences, 17, 2745–2766, https://doi.org/10.5194/bg-17-2745-2020, 2020.
Vankevich, R. E., Sofina, E. V., Eremina, T. E., Ryabchenko, V. A., Molchanov, M. S., and Isaev, A. V.: Effects of lateral processes on the
seasonal water stratification of the Gulf of Finland: 3-D NEMO-based model
study, Ocean Sci., 12, 987–1001, https://doi.org/10.5194/os-12-987-2016, 2016.
van Puijenbroek, P. J. T. M., Bouwman, A. F., Beusen, A. H. W., and Lucas, P. L.: Global implementation of two shared socioeconomic pathways for future sanitation and waste-water flows, Water. Sci. Technol., 71, 227–233,
https://doi.org/10.2166/wst.2014.498, 2015.
Vetterli, A., Hyytiäinen, K., Ahjos, M., Auvinen, P., Paulin, Hietanen, S., and Leskinen, E.: Seasonal patterns of bacterial communities in the coastal brackish sediments of the Gulf of Finland, Baltic Sea, Estuar. Coast. Shelf Sci., 165, 86–96, https://doi.org/10.1016/j.ecss.2015.07.049, 2015.
Viitasalo, M. and Bonsdorff, E.: Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning, Earth Syst. Dynam. Discuss. [preprint], https://doi.org/10.5194/esd-2021-73, in review, 2021.
Viktorsson, L., Almroth-Rosell, E., Tengberg, A., Vankevich, R., Neelov, I.,
Isaev, A., Kravtsov, V., and Hall, P.: Benthic phosphorus dynamics in the
Gulf of Finland, Baltic Sea, Aquat. Geochem., 18, 543–564,
https://doi.org/10.1007/s10498-011-9155-y, 2012.
Viktorsson, L., Ekeroth, N., Nilsson, M., Kononets, M., and Hall, P. O. J.:
Phosphorus recycling in sediments of the central Baltic Sea, Biogeosciences,
10, 3901–3916, https://doi.org/10.5194/bg-10-3901-2013, 2013.
Virtasalo, J. J. and Kotilainen, A. T.: Phosphorus forms and reactive iron in late glacial, postglacial and brackish-water sediments of the Archipelago Sea, northern Baltic Sea, Mar. Geol., 252, 1–12, https://doi.org/10.1016/j.margeo.2008.03.008, 2008.
Virtasalo, J. J., Schröder, J. F., Luoma, S., Majaniemi, J., Mursu, J.,
and Scholten, J.: Submarine groundwater discharge site in the First
Salpausselkä ice-marginal formation, south Finland, Solid Earth, 10,
405–423, https://doi.org/10.5194/se-10-405-2019, 2019.
Vybernaite-Lubiene, I., Zilius, M., Giordani, G., Petkuviene, J., Vaiciute, D., Bukaveckas, P. A., and Bartoli, M.: Effect of algal blooms on retention
of N, Si and P in Europe's largest coastal lagoon, Estuar. Coast. Shelf Sci., 194, 217–228, https://doi.org/10.1016/j.ecss.2017.06.020, 2017.
Wang, Z., Walker, G. W., Muir, D. C. G., and Nagatani-Yoshida, K.: Toward a
Global Understanding of Chemical Pollution: A First Comprehensive Analysis
of National and Regional Chemical Inventories, Environ. Sci. Technol., 54,
2575–2584, https://doi.org/10.1021/acs.est.9b06379, 2020.
Wasmund, N.: Occurrence of cyanobacterial blooms in the baltic sea in
relation to environmental conditions, Internationale Revue der gesamten
Hydrobiologie und Hydrographie, 82, 169–184, https://doi.org/10.1002/iroh.19970820205, 1997.
Wasmund, N., Andrushaitis, A., Łysiak-Pastuszak, E., Müller-Karulis,
B., Nausch, G., Neumann, T., Ojaveer, H., Olenina, I., Postel, L., and Witek, Z.: Trophic Status of the South-Eastern Baltic Sea: A Comparison of Coastal and Open Areas, Estuar. Coast. Shelf Sci., 53, 849–864, https://doi.org/10.1006/ecss.2001.0828, 2001.
Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R.,
and Sadkowiak, B.: Extension of the growing season of phytoplankton in the
western Baltic Sea in response to climate change, Mar. Ecol. Prog. Ser., 622, 1–16, https://doi.org/10.3354/meps12994, 2019.
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., and Zorita, E.: Sea level dynamics and coastal erosion in the Baltic Sea region, Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, 2021.
Wesslander, K., Omstedt, A., and Schneider, B.: On the carbon dioxide air–sea flux balance in the Baltic Sea, Cont. Shelf Res., 30, 1511–1521,
2010.
Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea, Global Change
Biol., 18, 2509–2519, https://doi.org/10.1111/j.1365-2486.2012.02718.x, 2012.
Winogradow, A. and Pempkowiak, J.: Organic carbon burial rates in the Baltic
Sea sediments, Estuar. Coast. Shelf Sci., 138, 27–36,
https://doi.org/10.1016/j.ecss.2013.12.001, 2014.
Wright, J. J., Konwar, K. M., and Hallam, S. J.: Microbial ecology of
expanding oxygen minimum zones, Nat. Rev. Microbiol., 10, 381–394,
https://doi.org/10.1038/nrmicro2778, 2012.
Yli-Hemminki, P., Jørgensen, K. S., and Lehtoranta, J.: Iron–manganese
concretions sustaining microbial life in the baltic sea: the structure of
the bacterial community and enrichments in metal-oxidizing conditions,
Geomicrobiol. J., 31, 263–275, https://doi.org/10.1080/01490451.2013.819050, 2014.
Yücel, M., Sommer, S., Dale, A. W., and Pfannkuche, O.: Microbial sulfide filter along a benthic redox gradient in the Eastern Gotland Basin, Baltic Sea, Front. Microbiol., 8, 169, https://doi.org/10.3389/fmicb.2017.00169, 2017.
Zandersen, M., Hyytiäinen, K., Meier, H. E. M., Tomczak, M. J., Bauer,
B., Haapasaari, P. E., Olesen, J. E., Gustafsson, B. G., Refsgaard, J., C.,
Fridell, E., Pihlainen, S., Le Tissier, M. D. A., Kosenius, A.-K., and Van Vuuren, D. P: Shared socio-economic pathways extended for the Baltic Sea:
exploring long-term environmental problems, Reg. Environ. Change, 19,
1073–1086, https://doi.org/10.1007/s10113-018-1453-0, 2019.
Zdun, A., Stoń-Egiert, J., Ficek, D., and Ostrowska, M.: Seasonal and Spatial Changes of Primary Production in the Baltic Sea (Europe) Based on in situ Measurements in the Period of 1993–2018, Front. Mar. Sci., 7, 604532,
https://doi.org/10.3389/fmars.2020.604532, 2021.
Zillen, L., Conley, D. J., Andren, T., Andren, E., and Björck, S.: Past
occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact, Earth-Sci. Rev., 91, 77–92, https://doi.org/10.1016/j.earscirev.2008.10.001, 2008.
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P)...
Special issue
Altmetrics
Final-revised paper
Preprint