Articles | Volume 12, issue 2
Earth Syst. Dynam., 12, 513–544, 2021
https://doi.org/10.5194/esd-12-513-2021
Earth Syst. Dynam., 12, 513–544, 2021
https://doi.org/10.5194/esd-12-513-2021

Research article 05 May 2021

Research article | 05 May 2021

Regional variation in the effectiveness of methane-based and land-based climate mitigation options

Garry D. Hayman et al.

Related authors

Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations
Toby Richard Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-109,https://doi.org/10.5194/hess-2021-109, 2021
Preprint under review for HESS
Short summary
Comparison of greenhouse gas fluxes from tropical forests and oil palm plantations on mineral soil
Julia Drewer, Melissa M. Leduning, Robert I. Griffiths, Tim Goodall, Peter E. Levy, Nicholas Cowan, Edward Comynn-Platt, Garry Hayman, Justin Sentian, Noreen Majalap, and Ute M. Skiba
Biogeosciences, 18, 1559–1575, https://doi.org/10.5194/bg-18-1559-2021,https://doi.org/10.5194/bg-18-1559-2021, 2021
Short summary
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020,https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Spatio-temporal variations and uncertainty in land surface modelling for high latitudes: univariate response analysis
Didier G. Leibovici, Shaun Quegan, Edward Comyn-Platt, Garry Hayman, Maria Val Martin, Mathieu Guimberteau, Arsène Druel, Dan Zhu, and Philippe Ciais
Biogeosciences, 17, 1821–1844, https://doi.org/10.5194/bg-17-1821-2020,https://doi.org/10.5194/bg-17-1821-2020, 2020
Short summary
Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0  °C
Chris Huntingford, Hui Yang, Anna Harper, Peter M. Cox, Nicola Gedney, Eleanor J. Burke, Jason A. Lowe, Garry Hayman, William J. Collins, Stephen M. Smith, and Edward Comyn-Platt
Earth Syst. Dynam., 8, 617–626, https://doi.org/10.5194/esd-8-617-2017,https://doi.org/10.5194/esd-8-617-2017, 2017
Short summary

Related subject area

Management of the Earth system: carbon sequestration and management
Soil organic carbon dynamics from agricultural management practices under climate change
Tobias Herzfeld, Jens Heinke, Susanne Rolinski, and Christoph Müller
Earth Syst. Dynam., 12, 1037–1055, https://doi.org/10.5194/esd-12-1037-2021,https://doi.org/10.5194/esd-12-1037-2021, 2021
Short summary
Meeting climate targets by direct CO2 injections: what price would the ocean have to pay?
Fabian Reith, Wolfgang Koeve, David P. Keller, Julia Getzlaff, and Andreas Oschlies
Earth Syst. Dynam., 10, 711–727, https://doi.org/10.5194/esd-10-711-2019,https://doi.org/10.5194/esd-10-711-2019, 2019
Short summary
Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model
Maarten C. Braakhekke, Jonathan C. Doelman, Peter Baas, Christoph Müller, Sibyll Schaphoff, Elke Stehfest, and Detlef P. van Vuuren
Earth Syst. Dynam., 10, 617–630, https://doi.org/10.5194/esd-10-617-2019,https://doi.org/10.5194/esd-10-617-2019, 2019
Short summary
Characteristics of soil profile CO2 concentrations in karst areas and their significance for global carbon cycles and climate change
Qiao Chen
Earth Syst. Dynam., 10, 525–538, https://doi.org/10.5194/esd-10-525-2019,https://doi.org/10.5194/esd-10-525-2019, 2019
Short summary
ESD Ideas: Photoelectrochemical carbon removal as negative emission technology
Matthias M. May and Kira Rehfeld
Earth Syst. Dynam., 10, 1–7, https://doi.org/10.5194/esd-10-1-2019,https://doi.org/10.5194/esd-10-1-2019, 2019
Short summary

Cited articles

Anderson, K. and Peters, G.: The trouble with negative emissions, Science, 354, 182–183, https://doi.org/10.1126/science.aah4567, 2016. 
Best, M., Pryor, M., Clark, D., Rooney, G., Essery, R., Ménard, C., Edwards, J., Hendry, M., Porson, A., and Gedney, N.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 
Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. M., and van Vuuren, D. P.: Long-term water demand for electricity, industry and households, Environ. Sci. Policy, 55, 75–86, https://doi.org/10.1016/j.envsci.2015.09.005, 2016. 
Burke, E. J., Ekici, A., Huang, Y., Chadburn, S. E., Huntingford, C., Ciais, P., Friedlingstein, P., Peng, S., and Krinner, G.: Quantifying uncertainties of permafrost carbon–climate feedbacks, Biogeosciences, 14, 3051–3066, https://doi.org/10.5194/bg-14-3051-2017, 2017a. 
Burke, E. J., Chadburn, S. E., and Ekici, A.: A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions, Geosci. Model Dev., 10, 959–975, https://doi.org/10.5194/gmd-10-959-2017, 2017b. 
Download
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Altmetrics
Final-revised paper
Preprint