Articles | Volume 12, issue 4
https://doi.org/10.5194/esd-12-1413-2021
https://doi.org/10.5194/esd-12-1413-2021
Research article
 | 
02 Dec 2021
Research article |  | 02 Dec 2021

Process-based analysis of terrestrial carbon flux predictability

István Dunkl, Aaron Spring, Pierre Friedlingstein, and Victor Brovkin

Related authors

Compensatory effects conceal large uncertainties in the modelled processes behind the ENSO-CO2 relationship
István Dunkl, Ana Bastos, and Tatiana Ilyina
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-7,https://doi.org/10.5194/esd-2024-7, 2024
Revised manuscript accepted for ESD
Short summary
Gross primary productivity and the predictability of CO2: more uncertainty in what we predict than how well we predict it
István Dunkl, Nicole Lovenduski, Alessio Collalti, Vivek K. Arora, Tatiana Ilyina, and Victor Brovkin
Biogeosciences, 20, 3523–3538, https://doi.org/10.5194/bg-20-3523-2023,https://doi.org/10.5194/bg-20-3523-2023, 2023
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022,https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
Trivial improvements in predictive skill due to direct reconstruction of the global carbon cycle
Aaron Spring, István Dunkl, Hongmei Li, Victor Brovkin, and Tatiana Ilyina
Earth Syst. Dynam., 12, 1139–1167, https://doi.org/10.5194/esd-12-1139-2021,https://doi.org/10.5194/esd-12-1139-2021, 2021
Short summary

Related subject area

Earth system interactions with the biosphere: biogeochemical cycles
How does the phytoplankton–light feedback affect the marine N2O inventory?
Sarah Berthet, Julien Jouanno, Roland Séférian, Marion Gehlen, and William Llovel
Earth Syst. Dynam., 14, 399–412, https://doi.org/10.5194/esd-14-399-2023,https://doi.org/10.5194/esd-14-399-2023, 2023
Short summary
Time-varying changes and uncertainties in the CMIP6 ocean carbon sink from global to local scale
Parsa Gooya, Neil C. Swart, and Roberta C. Hamme
Earth Syst. Dynam., 14, 383–398, https://doi.org/10.5194/esd-14-383-2023,https://doi.org/10.5194/esd-14-383-2023, 2023
Short summary
Interannual global carbon cycle variations linked to atmospheric circulation variability
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022,https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Contrasting projections of the ENSO-driven CO2 flux variability in the equatorial Pacific under high-warming scenario
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022,https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Divergent historical GPP trends among state-of-the-art multi-model simulations and satellite-based products
Ruqi Yang, Jun Wang, Ning Zeng, Stephen Sitch, Wenhan Tang, Matthew Joseph McGrath, Qixiang Cai, Di Liu, Danica Lombardozzi, Hanqin Tian, Atul K. Jain, and Pengfei Han
Earth Syst. Dynam., 13, 833–849, https://doi.org/10.5194/esd-13-833-2022,https://doi.org/10.5194/esd-13-833-2022, 2022
Short summary

Cited articles

Bastos, A., Running, S. W., Gouveia, C., and Trigo, R. M.: The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011, J. Geophys. Res.-Biogeo., 118, 1247–1255, https://doi.org/10.1002/jgrg.20100, 2013. a, b
Bastos, A., Friedlingstein, P., Sitch, S., Chen, C., Mialon, A., Wigneron, J.-P., Arora, V. K., Briggs, P. R., Canadell, J. G., Ciais, P., Chevallier, F., Cheng, L., Delire, C., Haverd, V., Jain, A. K., Joos, F., Kato, E., Lienert, S., Lombardozzi, D., Melton, J. R., Myneni, R., Nabel, J. E. M. S., Pongratz, J., Poulter, B., Rödenbeck, C., Séférian, R., Tian, H., van Eck, C., Viovy, N., Vuichard, N., Walker, A. P., Wiltshire, A., Yang, J., Zaehle, S., Zeng, N., and Zhu, D.: Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches, Philos. T. R. Soc. Lond. B, 373, 20170304, https://doi.org/10.1098/rstb.2017.0304, 2018. a
Becker, E. J., van den Dool, H., and Peña, M.: Short-Term Climate Extremes: Prediction Skill and Predictability, J. Climate, 26, 512–531, https://doi.org/10.1175/JCLI-D-12-00177.1, 2013. a
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate, Science, 329, 834–838, https://doi.org/10.1126/science.1184984, 2010. a
Bellucci, A., Haarsma, R., Bellouin, N., Booth, B., Cagnazzo, C., van den Hurk, B., Keenlyside, N., Koenigk, T., Massonnet, F., Materia, S., and Weiss, M.: Advancements in decadal climate predictability: The role of nonoceanic drivers, Rev. Geophys., 53, 165–202, https://doi.org/10.1002/2014RG000473, 2015. a
Download
Short summary
The variability in atmospheric CO2 is largely controlled by terrestrial carbon fluxes. These land–atmosphere fluxes are predictable for around 2 years, but the mechanisms providing the predictability are not well understood. By decomposing the predictability of carbon fluxes into individual contributors we were able to explain the spatial and seasonal patterns and the interannual variability of CO2 flux predictability.
Altmetrics
Final-revised paper
Preprint