Research article 23 Feb 2016
Research article | 23 Feb 2016
Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcings
Shaun Lovejoy and Costas Varotsos
Related authors
Shaun Lovejoy
Nonlin. Processes Geophys., 29, 93–121, https://doi.org/10.5194/npg-29-93-2022, https://doi.org/10.5194/npg-29-93-2022, 2022
Short summary
Short summary
The difference between the energy that the Earth receives from the Sun and the energy it emits as black-body radiation is stored in a scaling hierarchy of structures in the ocean, soil and hydrosphere. The simplest scaling storage model leads to the fractional energy balance equation (FEBE). We examine the statistical properties of FEBE when it is driven by random fluctuations. In this paper, we explore the statistical properties of this mathematically simple yet neglected equation.
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-2022, https://doi.org/10.5194/esd-13-81-2022, 2022
Short summary
Short summary
This paper presents a new class of energy balance model that accounts for the long memory within the Earth's energy storage. The model is calibrated on instrumental temperature records and the historical energy budget of the Earth using an error model predicted by the model itself. Our equilibrium climate sensitivity and future temperature projection estimates are consistent with those estimated by complex climate models.
Shaun Lovejoy
Earth Syst. Dynam., 12, 469–487, https://doi.org/10.5194/esd-12-469-2021, https://doi.org/10.5194/esd-12-469-2021, 2021
Short summary
Short summary
Monthly scale, seasonal-scale, and decadal-scale modeling of the atmosphere is possible using the principle of energy balance. Yet the scope of classical approaches is limited because they do not adequately deal with energy storage in the Earth system. We show that the introduction of a vertical coordinate implies that the storage has a huge memory. This memory can be used for macroweather (long-range) forecasts and climate projections.
Shaun Lovejoy
Earth Syst. Dynam., 12, 489–511, https://doi.org/10.5194/esd-12-489-2021, https://doi.org/10.5194/esd-12-489-2021, 2021
Short summary
Short summary
Radiant energy is exchanged between the Earth's surface and outer space. Some of the local imbalances are stored in the subsurface, and some are transported horizontally. In Part 1 I showed how – in a horizontally homogeneous Earth – these classical approaches imply long-memory storage useful for seasonal forecasting and multidecadal projections. In this Part 2, I show how to apply these results to the heterogeneous real Earth.
Shaun Lovejoy and Fabrice Lambert
Clim. Past, 15, 1999–2017, https://doi.org/10.5194/cp-15-1999-2019, https://doi.org/10.5194/cp-15-1999-2019, 2019
Short summary
Short summary
We analyze the statistical properties of the eight past glacial–interglacial cycles as well as subsections of a generic glacial cycle using the high-resolution dust flux dataset from the Antarctic EPICA Dome C ice core. We show that the high southern latitude climate during glacial maxima, interglacial, and glacial inception is generally more stable but more drought-prone than during mid-glacial conditions.
Shaun Lovejoy and Fabrice Lambert
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-110, https://doi.org/10.5194/cp-2018-110, 2018
Manuscript not accepted for further review
Short summary
Short summary
The Holocene has been strikingly long and stable when compared to earlier interglacials, and some have argued that the Holocene's exceptional stability permitted the development of agriculture and the spread of civilization. We characterize the past 800 000 years using a high resolution dust record from an Antarctic ice core. We find that although the Holocene is particularly stable when compared to other interglacials, it is not an outlier and other factors may have kickstarted civilization.
F. Landais, F. Schmidt, and S. Lovejoy
Nonlin. Processes Geophys., 22, 713–722, https://doi.org/10.5194/npg-22-713-2015, https://doi.org/10.5194/npg-22-713-2015, 2015
Short summary
Short summary
In the present study, we investigate the scaling properties of the topography of Mars. Planetary topographic fields are well known to exhibit (mono)fractal behavior. Indeed, fractal formalism is efficient in reproducing the variability observed in topography. Our results suggest a multifractal behavior from the planetary scale down to 10 km. From 10 km to 300 m, the topography seems to be simple monofractal.
S. Lovejoy, L. del Rio Amador, and R. Hébert
Earth Syst. Dynam., 6, 637–658, https://doi.org/10.5194/esd-6-637-2015, https://doi.org/10.5194/esd-6-637-2015, 2015
Short summary
Short summary
Numerical climate models forecast the weather well beyond the deterministic limit. In this “macroweather” regime, they are random number generators. Stochastic models can have more realistic noises and can be forced to converge to the real-world climate. Existing stochastic models do not exploit the very long atmospheric and oceanic memories. With skill up to decades, our new ScaLIng Macroweather Model (SLIMM) exploits this to make forecasts more accurate than GCMs.
C. A. Varotsos, S. Lovejoy, N. V. Sarlis, C. G. Tzanis, and M. N. Efstathiou
Atmos. Chem. Phys., 15, 7301–7306, https://doi.org/10.5194/acp-15-7301-2015, https://doi.org/10.5194/acp-15-7301-2015, 2015
Short summary
Short summary
Varotsos et al. (Theor. Appl. Climatol., 114, 725–727, 2013) found that the solar ultraviolet (UV) wavelengths exhibit 1/f-type power-law correlations. In this study, we show that the residues of the spectral solar incident flux with respect to the Planck law over a wider range of wavelengths (i.e. UV-visible) have a scaling regime too.
J. Pinel and S. Lovejoy
Atmos. Chem. Phys., 14, 3195–3210, https://doi.org/10.5194/acp-14-3195-2014, https://doi.org/10.5194/acp-14-3195-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
S. Lovejoy, D. Schertzer, and D. Varon
Earth Syst. Dynam., 4, 439–454, https://doi.org/10.5194/esd-4-439-2013, https://doi.org/10.5194/esd-4-439-2013, 2013
A. Gires, I. Tchiguirinskaia, D. Schertzer, and S. Lovejoy
Nonlin. Processes Geophys., 20, 343–356, https://doi.org/10.5194/npg-20-343-2013, https://doi.org/10.5194/npg-20-343-2013, 2013
Shaun Lovejoy
Nonlin. Processes Geophys., 29, 93–121, https://doi.org/10.5194/npg-29-93-2022, https://doi.org/10.5194/npg-29-93-2022, 2022
Short summary
Short summary
The difference between the energy that the Earth receives from the Sun and the energy it emits as black-body radiation is stored in a scaling hierarchy of structures in the ocean, soil and hydrosphere. The simplest scaling storage model leads to the fractional energy balance equation (FEBE). We examine the statistical properties of FEBE when it is driven by random fluctuations. In this paper, we explore the statistical properties of this mathematically simple yet neglected equation.
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-2022, https://doi.org/10.5194/esd-13-81-2022, 2022
Short summary
Short summary
This paper presents a new class of energy balance model that accounts for the long memory within the Earth's energy storage. The model is calibrated on instrumental temperature records and the historical energy budget of the Earth using an error model predicted by the model itself. Our equilibrium climate sensitivity and future temperature projection estimates are consistent with those estimated by complex climate models.
Shaun Lovejoy
Earth Syst. Dynam., 12, 469–487, https://doi.org/10.5194/esd-12-469-2021, https://doi.org/10.5194/esd-12-469-2021, 2021
Short summary
Short summary
Monthly scale, seasonal-scale, and decadal-scale modeling of the atmosphere is possible using the principle of energy balance. Yet the scope of classical approaches is limited because they do not adequately deal with energy storage in the Earth system. We show that the introduction of a vertical coordinate implies that the storage has a huge memory. This memory can be used for macroweather (long-range) forecasts and climate projections.
Shaun Lovejoy
Earth Syst. Dynam., 12, 489–511, https://doi.org/10.5194/esd-12-489-2021, https://doi.org/10.5194/esd-12-489-2021, 2021
Short summary
Short summary
Radiant energy is exchanged between the Earth's surface and outer space. Some of the local imbalances are stored in the subsurface, and some are transported horizontally. In Part 1 I showed how – in a horizontally homogeneous Earth – these classical approaches imply long-memory storage useful for seasonal forecasting and multidecadal projections. In this Part 2, I show how to apply these results to the heterogeneous real Earth.
Shaun Lovejoy and Fabrice Lambert
Clim. Past, 15, 1999–2017, https://doi.org/10.5194/cp-15-1999-2019, https://doi.org/10.5194/cp-15-1999-2019, 2019
Short summary
Short summary
We analyze the statistical properties of the eight past glacial–interglacial cycles as well as subsections of a generic glacial cycle using the high-resolution dust flux dataset from the Antarctic EPICA Dome C ice core. We show that the high southern latitude climate during glacial maxima, interglacial, and glacial inception is generally more stable but more drought-prone than during mid-glacial conditions.
Shaun Lovejoy and Fabrice Lambert
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-110, https://doi.org/10.5194/cp-2018-110, 2018
Manuscript not accepted for further review
Short summary
Short summary
The Holocene has been strikingly long and stable when compared to earlier interglacials, and some have argued that the Holocene's exceptional stability permitted the development of agriculture and the spread of civilization. We characterize the past 800 000 years using a high resolution dust record from an Antarctic ice core. We find that although the Holocene is particularly stable when compared to other interglacials, it is not an outlier and other factors may have kickstarted civilization.
John Christodoulakis, Chris G. Tzanis, Costas A. Varotsos, Martin Ferm, and Johan Tidblad
Atmos. Chem. Phys., 17, 439–448, https://doi.org/10.5194/acp-17-439-2017, https://doi.org/10.5194/acp-17-439-2017, 2017
Short summary
Short summary
In this paper we present the corrosion/soiling results obtained from the analysis of different kind of materials that were exposed in Athens during the period 2003–2012. According to these results, the corrosion/soiling of the particular exposed materials tend to decrease over the years, except for the case of copper. Based on this long experimental database, applicable to multi-pollutant situation of the Athens basin, we present newly developed dose–response functions (DRFs).
Costas A. Varotsos, Chris G. Tzanis, and Nicholas V. Sarlis
Atmos. Chem. Phys., 16, 2007–2011, https://doi.org/10.5194/acp-16-2007-2016, https://doi.org/10.5194/acp-16-2007-2016, 2016
Short summary
Short summary
It has been recently reported that the current 2015–2016 El Niño could become "one of the strongest on record". To further explore this claim, we performed a new analysis that allows the detection of precursory signals of the strong El Niño events by using a recently developed non-linear dynamics tool. The analysis of the SOI time series shows that the 2015–2016 El Niño would be rather a "moderate to strong" or even a "strong” event and not "one of the strongest on record", as that of 1997–1998.
F. Landais, F. Schmidt, and S. Lovejoy
Nonlin. Processes Geophys., 22, 713–722, https://doi.org/10.5194/npg-22-713-2015, https://doi.org/10.5194/npg-22-713-2015, 2015
Short summary
Short summary
In the present study, we investigate the scaling properties of the topography of Mars. Planetary topographic fields are well known to exhibit (mono)fractal behavior. Indeed, fractal formalism is efficient in reproducing the variability observed in topography. Our results suggest a multifractal behavior from the planetary scale down to 10 km. From 10 km to 300 m, the topography seems to be simple monofractal.
S. Lovejoy, L. del Rio Amador, and R. Hébert
Earth Syst. Dynam., 6, 637–658, https://doi.org/10.5194/esd-6-637-2015, https://doi.org/10.5194/esd-6-637-2015, 2015
Short summary
Short summary
Numerical climate models forecast the weather well beyond the deterministic limit. In this “macroweather” regime, they are random number generators. Stochastic models can have more realistic noises and can be forced to converge to the real-world climate. Existing stochastic models do not exploit the very long atmospheric and oceanic memories. With skill up to decades, our new ScaLIng Macroweather Model (SLIMM) exploits this to make forecasts more accurate than GCMs.
J. Christodoulakis, C. Varotsos, A. P. Cracknell, C. Tzanis, and A. Neofytos
Atmos. Meas. Tech., 8, 3037–3046, https://doi.org/10.5194/amt-8-3037-2015, https://doi.org/10.5194/amt-8-3037-2015, 2015
Short summary
Short summary
We investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray-light interference. The monochromatic-heterochromatic stray light derived by Basher’s model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the Athens Dobson instrument appears to have an insignificant stray-light error.
C. A. Varotsos, S. Lovejoy, N. V. Sarlis, C. G. Tzanis, and M. N. Efstathiou
Atmos. Chem. Phys., 15, 7301–7306, https://doi.org/10.5194/acp-15-7301-2015, https://doi.org/10.5194/acp-15-7301-2015, 2015
Short summary
Short summary
Varotsos et al. (Theor. Appl. Climatol., 114, 725–727, 2013) found that the solar ultraviolet (UV) wavelengths exhibit 1/f-type power-law correlations. In this study, we show that the residues of the spectral solar incident flux with respect to the Planck law over a wider range of wavelengths (i.e. UV-visible) have a scaling regime too.
C. A. Varotsos, I. N. Melnikova, A. P. Cracknell, C. Tzanis, and A. V. Vasilyev
Atmos. Chem. Phys., 14, 6953–6965, https://doi.org/10.5194/acp-14-6953-2014, https://doi.org/10.5194/acp-14-6953-2014, 2014
J. Pinel and S. Lovejoy
Atmos. Chem. Phys., 14, 3195–3210, https://doi.org/10.5194/acp-14-3195-2014, https://doi.org/10.5194/acp-14-3195-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
S. Lovejoy, D. Schertzer, and D. Varon
Earth Syst. Dynam., 4, 439–454, https://doi.org/10.5194/esd-4-439-2013, https://doi.org/10.5194/esd-4-439-2013, 2013
A. Gires, I. Tchiguirinskaia, D. Schertzer, and S. Lovejoy
Nonlin. Processes Geophys., 20, 343–356, https://doi.org/10.5194/npg-20-343-2013, https://doi.org/10.5194/npg-20-343-2013, 2013
Related subject area
Dynamics of the Earth system: concepts
Sedimentary microplankton distributions are shaped by oceanographically connected areas
Natural hazards and extreme events in the Baltic Sea region
Taxonomies for structuring models for World–Earth systems analysis of the Anthropocene: subsystems, their interactions and social–ecological feedback loops
ESD Ideas: A weak positive feedback between sea level and the planetary albedo
The potential for structural errors in emergent constraints
Sea level dynamics and coastal erosion in the Baltic Sea region
Earth system economics: a biophysical approach to the human component of the Earth system
The half-order energy balance equation – Part 1: The homogeneous HEBE and long memories
The half-order energy balance equation – Part 2: The inhomogeneous HEBE and 2D energy balance models
A dynamical systems characterization of atmospheric jet regimes
Synchronized spatial shifts of Hadley and Walker circulations
ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability
Temperatures from energy balance models: the effective heat capacity matters
Relating climate sensitivity indices to projection uncertainty
The role of prior assumptions in carbon budget calculations
Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework
π-theorem generalization of the ice-age theory
Earth system data cubes unravel global multivariate dynamics
ESD Ideas: Why are glaciations slower than deglaciations?
Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time
Climate system response to stratospheric sulfate aerosols: sensitivity to altitude of aerosol layer
Minimal dynamical systems model of the Northern Hemisphere jet stream via embedding of climate data
Millennium-length precipitation reconstruction over south-eastern Asia: a pseudo-proxy approach
Including the efficacy of land ice changes in deriving climate sensitivity from paleodata
The role of moisture transport for precipitation in the inter-annual and inter-daily fluctuations of the Arctic sea ice extension
On the assessment of the moisture transport by the Great Plains low-level jet
ESD Ideas: The stochastic climate model shows that underestimated Holocene trends and variability represent two sides of the same coin
Cascading transitions in the climate system
The climate of a retrograde rotating Earth
Diurnal land surface energy balance partitioning estimated from the thermodynamic limit of a cold heat engine
How intermittency affects the rate at which rainfall extremes respond to changes in temperature
Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data
On deeper human dimensions in Earth system analysis and modelling
Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset
Estimating sowing and harvest dates based on the Asian summer monsoon
Quantifying changes in spatial patterns of surface air temperature dynamics over several decades
Systematic Correlation Matrix Evaluation (SCoMaE) – a bottom–up, science-led approach to identifying indicators
Climate indices for the Baltic states from principal component analysis
Fractal scaling analysis of groundwater dynamics in confined aquifers
An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle
Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques
Young people's burden: requirement of negative CO2 emissions
Emission metrics for quantifying regional climate impacts of aviation
An efficient training scheme for supermodels
Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation
A network-based detection scheme for the jet stream core
Evidence of cosmic recurrent and lagged millennia-scale patterns and consequent forecasts: multi-scale responses of solar activity (SA) to planetary gravitational forcing (PGF)
A wavelet-based approach to detect climate change on the coherent and turbulent component of the atmospheric circulation
Are there multiple scaling regimes in Holocene temperature records?
Early warning signals of tipping points in periodically forced systems
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Jonathan F. Donges, Wolfgang Lucht, Sarah E. Cornell, Jobst Heitzig, Wolfram Barfuss, Steven J. Lade, and Maja Schlüter
Earth Syst. Dynam., 12, 1115–1137, https://doi.org/10.5194/esd-12-1115-2021, https://doi.org/10.5194/esd-12-1115-2021, 2021
Ben Marzeion
Earth Syst. Dynam., 12, 1057–1060, https://doi.org/10.5194/esd-12-1057-2021, https://doi.org/10.5194/esd-12-1057-2021, 2021
Short summary
Short summary
The oceans are typically darker than land surfaces. Expanding oceans through sea-level rise may thus lead to a darker planet Earth, reflecting less sunlight. The additionally absorbed sunlight may heat planet Earth, leading to further sea-level rise. Here, we provide a rough estimate of the strength of this feedback: it turns out to be very weak, but clearly positive, thereby destabilizing the Earth system.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Eric D. Galbraith
Earth Syst. Dynam., 12, 671–687, https://doi.org/10.5194/esd-12-671-2021, https://doi.org/10.5194/esd-12-671-2021, 2021
Short summary
Short summary
Scientific tradition has left a gap between the study of humans and the rest of the Earth system. Here, a holistic approach to the global human system is proposed, intended to provide seamless integration with natural sciences. At the core, this focuses on what humans are doing with their time, what the bio-physical outcomes of those activities are, and what the lived experience is. The quantitative approach can facilitate data analysis across scales and integrated human–Earth system modeling.
Shaun Lovejoy
Earth Syst. Dynam., 12, 469–487, https://doi.org/10.5194/esd-12-469-2021, https://doi.org/10.5194/esd-12-469-2021, 2021
Short summary
Short summary
Monthly scale, seasonal-scale, and decadal-scale modeling of the atmosphere is possible using the principle of energy balance. Yet the scope of classical approaches is limited because they do not adequately deal with energy storage in the Earth system. We show that the introduction of a vertical coordinate implies that the storage has a huge memory. This memory can be used for macroweather (long-range) forecasts and climate projections.
Shaun Lovejoy
Earth Syst. Dynam., 12, 489–511, https://doi.org/10.5194/esd-12-489-2021, https://doi.org/10.5194/esd-12-489-2021, 2021
Short summary
Short summary
Radiant energy is exchanged between the Earth's surface and outer space. Some of the local imbalances are stored in the subsurface, and some are transported horizontally. In Part 1 I showed how – in a horizontally homogeneous Earth – these classical approaches imply long-memory storage useful for seasonal forecasting and multidecadal projections. In this Part 2, I show how to apply these results to the heterogeneous real Earth.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Kyung-Sook Yun, Axel Timmermann, and Malte F. Stuecker
Earth Syst. Dynam., 12, 121–132, https://doi.org/10.5194/esd-12-121-2021, https://doi.org/10.5194/esd-12-121-2021, 2021
Short summary
Short summary
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What has been overlooked so far is the question of whether these two circulations can shift their positions in a synchronized manner. We here show the synchronized spatial shifts between Walker and Hadley cells and further highlight a novel aspect of how tropical sea surface temperature anomalies can couple these two circulations. The re-positioning has important implications for extratropical rainfall.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Gerrit Lohmann
Earth Syst. Dynam., 11, 1195–1208, https://doi.org/10.5194/esd-11-1195-2020, https://doi.org/10.5194/esd-11-1195-2020, 2020
Short summary
Short summary
With the development of computer capacities, simpler models like energy balance models have not disappeared, and a stronger emphasis has been given to the concept of a hierarchy of models. The global temperature is calculated by the radiation budget through the incoming energy from the Sun and the outgoing energy from the Earth. The argument that the temperature can be calculated by a simple radiation budget is revisited, and it is found that the effective heat capacity matters.
Benjamin Sanderson
Earth Syst. Dynam., 11, 721–735, https://doi.org/10.5194/esd-11-721-2020, https://doi.org/10.5194/esd-11-721-2020, 2020
Short summary
Short summary
Here, we assess the degree to which the idealized responses to transient forcing increase and step change forcing increase relate to warming under future scenarios. We find a possible explanation for the poor performance of transient metrics (relative to equilibrium response) as a metric of high-emission future warming in terms of their sensitivity to non-equilibrated initial conditions, and propose alternative metrics which better describe warming under high mitigation scenarios.
Benjamin Sanderson
Earth Syst. Dynam., 11, 563–577, https://doi.org/10.5194/esd-11-563-2020, https://doi.org/10.5194/esd-11-563-2020, 2020
Short summary
Short summary
Levels of future temperature change are often used interchangeably with carbon budget allowances in climate policy, a relatively robust relationship on the timescale of this century. However, recent advances in understanding underline that continued warming after net-zero emissions have been achieved cannot be ruled out by observations of warming to date. We consider here how such behavior could be constrained and how policy can be framed in the context of these uncertainties.
Jonathan F. Donges, Jobst Heitzig, Wolfram Barfuss, Marc Wiedermann, Johannes A. Kassel, Tim Kittel, Jakob J. Kolb, Till Kolster, Finn Müller-Hansen, Ilona M. Otto, Kilian B. Zimmerer, and Wolfgang Lucht
Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, https://doi.org/10.5194/esd-11-395-2020, 2020
Short summary
Short summary
We present an open-source software framework for developing so-called
world–Earth modelsthat link physical, chemical and biological processes with social, economic and cultural processes to study the Earth system's future trajectories in the Anthropocene. Due to its modular structure, the software allows interdisciplinary studies of global change and sustainable development that combine stylized model components from Earth system science, climatology, economics, ecology and sociology.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020, https://doi.org/10.5194/esd-11-281-2020, 2020
Short summary
Short summary
Using the central theorem of dimensional analysis, the π theorem, we show that the relationship between the amplitude and duration of glacial cycles is governed by a property of scale invariance that does not depend on the physical nature of the underlying positive and negative feedbacks incorporated by the system. It thus turns out to be one of the most fundamental properties of the Pleistocene climate.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Christine Ramadhin and Chuixiang Yi
Earth Syst. Dynam., 11, 13–16, https://doi.org/10.5194/esd-11-13-2020, https://doi.org/10.5194/esd-11-13-2020, 2020
Short summary
Short summary
Here we explore ancient climate transitions from warm periods to ice ages and from ice ages to warm periods of the last 400 000 years. The changeovers from warm to ice age conditions are slower than those from ice age to warm conditions. We propose the presence of strong negative sea–ice feedbacks may be responsible for slowing the transition from warm to full ice age conditions. By improving understanding of past abrupt changes, we may have improved knowledge of future system behavior.
M. Levent Kavvas, Tongbi Tu, Ali Ercan, and James Polsinelli
Earth Syst. Dynam., 11, 1–12, https://doi.org/10.5194/esd-11-1-2020, https://doi.org/10.5194/esd-11-1-2020, 2020
Short summary
Short summary
After deriving a fractional continuity equation, a previously-developed equation for water flux in porous media was combined with the Dupuit approximation to obtain an equation for groundwater motion in multi-fractional space in unconfined aquifers. As demonstrated in the numerical application, the orders of the fractional space and time derivatives modulate the speed of groundwater table evolution, slowing the process with the decrease in the powers of the fractional derivatives from 1.
Krishna-Pillai Sukumara-Pillai Krishnamohan, Govindasamy Bala, Long Cao, Lei Duan, and Ken Caldeira
Earth Syst. Dynam., 10, 885–900, https://doi.org/10.5194/esd-10-885-2019, https://doi.org/10.5194/esd-10-885-2019, 2019
Short summary
Short summary
We find that sulfate aerosols are more effective in cooling the climate system when they reside higher in the stratosphere. We explain this sensitivity in terms of radiative forcing at the top of the atmosphere. Sulfate aerosols heat the stratospheric layers, causing an increase in stratospheric water vapor content and a reduction in high clouds. These changes are larger when aerosols are prescribed near the tropopause, offsetting part of the aerosol-induced negative radiative forcing/cooling.
Davide Faranda, Yuzuru Sato, Gabriele Messori, Nicholas R. Moloney, and Pascal Yiou
Earth Syst. Dynam., 10, 555–567, https://doi.org/10.5194/esd-10-555-2019, https://doi.org/10.5194/esd-10-555-2019, 2019
Short summary
Short summary
We show how the complex dynamics of the jet stream at midlatitude can be described by a simple mathematical model. We match the properties of the model to those obtained by the jet data derived from observations.
Stefanie Talento, Lea Schneider, Johannes Werner, and Jürg Luterbacher
Earth Syst. Dynam., 10, 347–364, https://doi.org/10.5194/esd-10-347-2019, https://doi.org/10.5194/esd-10-347-2019, 2019
Short summary
Short summary
Quantifying hydroclimate variability beyond the instrumental period is essential for putting fluctuations into long-term perspective and providing a validation for climate models. We evaluate, in a virtual setup, the potential for generating millennium-long summer precipitation reconstructions over south-eastern Asia.
We find that performing a real-world reconstruction with the current available proxy network is indeed feasible, as virtual-world reconstructions are skilful in most areas.
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019, https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Short summary
Processes causing the same global-average radiative forcing might lead to different global temperature changes. We expand the theoretical framework by which we calculate paleoclimate sensitivity with an efficacy factor. Applying the revised approach to radiative forcing caused by CO2 and land ice albedo perturbations, inferred from data of the past 800 000 years, gives a new paleo-based estimate of climate sensitivity.
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 10, 121–133, https://doi.org/10.5194/esd-10-121-2019, https://doi.org/10.5194/esd-10-121-2019, 2019
Short summary
Short summary
Ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring. On a daily basis extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons it thus contributes to Arctic sea ice melting. These patterns differ sharply from that linked to decline, especially in summer when the opposite trend applies.
Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raquel Nieto, and Luis Gimeno
Earth Syst. Dynam., 10, 107–119, https://doi.org/10.5194/esd-10-107-2019, https://doi.org/10.5194/esd-10-107-2019, 2019
Short summary
Short summary
We analyse moisture transport triggered by the Great Plains low-level jet (GPLLJ), a maximum in wind speed fields located within the first kilometre of the US Great Plain's troposphere, through the innovative Eulerian Weather Research and Forecasting Model tracer tool. Much moisture associated with this low-level jet has been found in northern regions located in a vast extension of the continent, highlighting the key role played by the GPLLJ in North America's advective transport of moisture.
Gerrit Lohmann
Earth Syst. Dynam., 9, 1279–1281, https://doi.org/10.5194/esd-9-1279-2018, https://doi.org/10.5194/esd-9-1279-2018, 2018
Short summary
Short summary
Long-term sea surface temperature trends and variability are underestimated in models compared to paleoclimate data. The idea is presented that the trends and variability are related, which is elaborated in a conceptual model framework. The temperature spectrum can be used to estimate the timescale-dependent climate sensitivity.
Mark M. Dekker, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1243–1260, https://doi.org/10.5194/esd-9-1243-2018, https://doi.org/10.5194/esd-9-1243-2018, 2018
Short summary
Short summary
We introduce a framework of cascading tipping, i.e. a sequence of abrupt transitions occurring because a transition in one system affects the background conditions of another system. Using bifurcation theory, various types of these events are considered and early warning indicators are suggested. An illustration of such an event is found in a conceptual model, coupling the North Atlantic Ocean with the equatorial Pacific. This demonstrates the possibility of events such as this in nature.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 9, 1127–1140, https://doi.org/10.5194/esd-9-1127-2018, https://doi.org/10.5194/esd-9-1127-2018, 2018
Short summary
Short summary
Turbulent fluxes represent an efficient way to transport heat and moisture from the surface into the atmosphere. Due to their inherently highly complex nature, they are commonly described by semiempirical relationships. What we show here is that these fluxes can also be predicted by viewing them as the outcome of a heat engine that operates between the warm surface and the cooler atmosphere and that works at its limit.
Marc Schleiss
Earth Syst. Dynam., 9, 955–968, https://doi.org/10.5194/esd-9-955-2018, https://doi.org/10.5194/esd-9-955-2018, 2018
Short summary
Short summary
The present study aims at explaining how intermittency (i.e., the alternation of dry and rainy periods) affects the rate at which precipitation extremes increase with temperature. Using high-resolution rainfall data from 99 stations in the United States, we show that at scales beyond a few hours, intermittency causes rainfall extremes to deviate substantially from Clausius–Clapeyron. A new model is proposed to better represent and predict these changes across scales.
Ragnhild Bieltvedt Skeie, Terje Berntsen, Magne Aldrin, Marit Holden, and Gunnar Myhre
Earth Syst. Dynam., 9, 879–894, https://doi.org/10.5194/esd-9-879-2018, https://doi.org/10.5194/esd-9-879-2018, 2018
Short summary
Short summary
A key question in climate science is how the global mean surface temperature responds to changes in greenhouse gases. This dependency is quantified by the climate sensitivity, which is determined by the complex feedbacks in the climate system. In this study observations of past climate change are used to estimate this sensitivity. Our estimate is consistent with values for the equilibrium climate sensitivity estimated by complex climate models but sensitive to the use of uncertain input data.
Dieter Gerten, Martin Schönfeld, and Bernhard Schauberger
Earth Syst. Dynam., 9, 849–863, https://doi.org/10.5194/esd-9-849-2018, https://doi.org/10.5194/esd-9-849-2018, 2018
Short summary
Short summary
Cultural processes are underrepresented in Earth system models, although they decisively shape humanity’s planetary imprint. We set forth ideas on how Earth system analysis can be enriched by formalising aspects of religion (understood broadly as a collective belief in things held sacred). We sketch possible modelling avenues (extensions of existing Earth system models and new co-evolutionary models) and suggest research primers to explicate and quantify mental aspects of the Anthropocene.
Stefan Lange
Earth Syst. Dynam., 9, 627–645, https://doi.org/10.5194/esd-9-627-2018, https://doi.org/10.5194/esd-9-627-2018, 2018
Short summary
Short summary
The bias correction of surface downwelling longwave and shortwave radiation using parametric quantile mapping methods is shown to be more effective (i) at the daily than at the monthly timescale, (ii) if the spatial resolution gap between the reference data and the data to be corrected is bridged in a more suitable manner than by bilinear interpolation, and (iii) if physical upper limits are taken into account during the adjustment of either radiation component.
Camilla Mathison, Chetan Deva, Pete Falloon, and Andrew J. Challinor
Earth Syst. Dynam., 9, 563–592, https://doi.org/10.5194/esd-9-563-2018, https://doi.org/10.5194/esd-9-563-2018, 2018
Short summary
Short summary
Sowing and harvest dates are a significant source of uncertainty within crop models. South Asia is one region with a large uncertainty. We aim to provide more accurate sowing and harvest dates than currently available and that are relevant for climate impact assessments. This method reproduces the present day sowing and harvest dates for most parts of India and when applied to two future periods provides a useful way of modelling potential growing season adaptations to changes in future climate.
Dario A. Zappalà, Marcelo Barreiro, and Cristina Masoller
Earth Syst. Dynam., 9, 383–391, https://doi.org/10.5194/esd-9-383-2018, https://doi.org/10.5194/esd-9-383-2018, 2018
Short summary
Short summary
The dynamics of our climate involves multiple timescales, and while a lot of work has been devoted to quantifying variations in time-averaged variables or variations in their seasonal cycles, variations in daily variability that occur over several decades still remain poorly understood. Here we analyse daily surface air temperature and demonstrate that inter-decadal changes can be precisely identified and quantified with the Hilbert analysis tool.
Nadine Mengis, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 9, 15–31, https://doi.org/10.5194/esd-9-15-2018, https://doi.org/10.5194/esd-9-15-2018, 2018
Short summary
Short summary
The Systematic Correlation Matrix Evaluation (SCoMaE) method applies statistical information to systematically select, transparent, nonredundant indicators for a comprehensive assessment of the Earth system state. We show that due to changing climate forcing, such as anthropogenic climate change, the ad hoc assessment indicators might need to be reevaluated. Within an iterative process, this method would allow us to select scientifically consistent and societally relevant assessment indicators.
Liga Bethere, Juris Sennikovs, and Uldis Bethers
Earth Syst. Dynam., 8, 951–962, https://doi.org/10.5194/esd-8-951-2017, https://doi.org/10.5194/esd-8-951-2017, 2017
Short summary
Short summary
We define three new climate indices based on monthly mean temperature and total precipitation values that describe the main features of the climate in the Baltic states. Higher values in each index correspond to (1) less distinct seasonality and (2) warmer and (3) wetter climate. It was calculated that in the future all three indices will increase. Such indices summarize and illustrate the spatial features of the Baltic climate, and they can be used in further analysis of climate change impact.
Tongbi Tu, Ali Ercan, and M. Levent Kavvas
Earth Syst. Dynam., 8, 931–949, https://doi.org/10.5194/esd-8-931-2017, https://doi.org/10.5194/esd-8-931-2017, 2017
Short summary
Short summary
Groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior, and the underlying distribution exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics. The estimated Hurst exponent is highly dependent on the length and the specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 8, 849–864, https://doi.org/10.5194/esd-8-849-2017, https://doi.org/10.5194/esd-8-849-2017, 2017
Short summary
Short summary
We provide an explanation why land temperatures respond more strongly to global warming than ocean temperatures, a robust finding in observations and models that has so far not been understood well. We explain it by the different ways by which ocean and land surfaces buffer the strong variation in solar radiation and demonstrate this with a simple, physically based model. Our explanation also illustrates why nighttime temperatures warm more strongly, another robust finding of global warming.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017, https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Short summary
Global temperature now exceeds +1.25 °C relative to 1880–1920, similar to warmth of the Eemian period. Keeping warming less than 1.5 °C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.
Marianne T. Lund, Borgar Aamaas, Terje Berntsen, Lisa Bock, Ulrike Burkhardt, Jan S. Fuglestvedt, and Keith P. Shine
Earth Syst. Dynam., 8, 547–563, https://doi.org/10.5194/esd-8-547-2017, https://doi.org/10.5194/esd-8-547-2017, 2017
Francine J. Schevenhoven and Frank M. Selten
Earth Syst. Dynam., 8, 429–438, https://doi.org/10.5194/esd-8-429-2017, https://doi.org/10.5194/esd-8-429-2017, 2017
Short summary
Short summary
Weather and climate models have improved steadily over time, but the models remain imperfect. Given these imperfect models, predictions might be improved by combining the models into a so-called “supermodel”. In this paper we show a new method to construct such a supermodel. The results indicate that the supermodel has superior forecast quality compared to the individual models.
Giuliano Di Baldassarre, Fabian Martinez, Zahra Kalantari, and Alberto Viglione
Earth Syst. Dynam., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, https://doi.org/10.5194/esd-8-225-2017, 2017
Short summary
Short summary
There is still little understanding about the dynamics emerging from human–water interactions. As a result, policies and measures to reduce the impacts of floods and droughts often lead to unintended consequences. This paper proposes a research agenda to improve our understanding of human–water interactions, and presents an initial attempt to model the reciprocal effects between water management, droughts, and floods.
Sonja Molnos, Tarek Mamdouh, Stefan Petri, Thomas Nocke, Tino Weinkauf, and Dim Coumou
Earth Syst. Dynam., 8, 75–89, https://doi.org/10.5194/esd-8-75-2017, https://doi.org/10.5194/esd-8-75-2017, 2017
Jorge Sánchez-Sesma
Earth Syst. Dynam., 7, 583–595, https://doi.org/10.5194/esd-7-583-2016, https://doi.org/10.5194/esd-7-583-2016, 2016
Short summary
Short summary
This study, supported with detailed reconstructed solar records over last millennia, began to detect objectively patterns and recurrences in Solar activity. It is part of a process, in geosciences that began four centuries ago, when Newton removed the last doubts about the validity of the heliocentric model of the Solar System. It is intended to provide motivations to develop a more robust science of the Earth´s climate, centered not only in the geo or helio-proceses, but also in the cosmic ones
Davide Faranda and Dimitri Defrance
Earth Syst. Dynam., 7, 517–523, https://doi.org/10.5194/esd-7-517-2016, https://doi.org/10.5194/esd-7-517-2016, 2016
Short summary
Short summary
We introduce a general technique to detect a climate change signal in the coherent and turbulent components of the atmospheric circulation. Our analysis suggests that the coherent components (atmospheric waves, long-term oscillations) will experience the greatest changes in future climate, proportionally to the greenhouse gas emission scenario considered.
Tine Nilsen, Kristoffer Rypdal, and Hege-Beate Fredriksen
Earth Syst. Dynam., 7, 419–439, https://doi.org/10.5194/esd-7-419-2016, https://doi.org/10.5194/esd-7-419-2016, 2016
Short summary
Short summary
In this article it is discussed how temperature variability on centennial timescales and longer can be described in a simplistic way. By analysing the scaling in late Holocene temperature reconstructions and longer temperature records from Greenland and Antarctic ice cores, we find that the choice of model depends heavily on the data material and timescale one chooses to emphasize. Ignoring data beyond the Holocene seems plausible when predicting temperature, but not for other purposes.
Mark S. Williamson, Sebastian Bathiany, and Timothy M. Lenton
Earth Syst. Dynam., 7, 313–326, https://doi.org/10.5194/esd-7-313-2016, https://doi.org/10.5194/esd-7-313-2016, 2016
Short summary
Short summary
We find early warnings of abrupt changes in complex dynamical systems such as the climate where the usual early warning indicators do not work. In particular, these are systems that are periodically forced, for example by the annual cycle of solar insolation. We show these indicators are good theoretically in a general setting then apply them to a specific system, that of the Arctic sea ice, which has been conjectured to be close to such a tipping point. We do not find evidence of it.
Cited articles
Anderson, J. L.: A method for producing and evaluating probabilistic
forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, 1996.
Ashkenazy, Y., Baker, D., Gildor, H., and Havlin, S.: Nonlinearity and
multifractality of climate change in the past 420,000 years, Geophys. Res.
Lett., 30, 2146, https://doi.org/10.1029/2003GL018099, 2003.
Blender, R. and Fraedrich, K.: Comment on “Volcanic forcing improves
atmosphere–ocean coupled general circulation model scaling performance” by
D. Vyushin, I. Zhidkov, S. Havlin, A. Bunde, and S. Brenner, Geophys. Res.
Lett., 31, L22213, https://doi.org/10.1029/2004GL020797, 2004.
Bothe, O., Jungclaus, J. H., and Zanchettin, D.: Consistency of the multi-model
CMIP5/PMIP3-past1000 ensemble, Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, 2013a.
Bothe, O., Jungclaus, J. H., Zanchettin, D., and Zorita, E.: Climate of the last
millennium: ensemble consistency of simulations and reconstructions, Clim. Past,
9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013, 2013b.
Bryson, R. A.: The Paradigm of Climatology: An Essay, B. Am. Meteorol. Soc.,
78, 450–456, 1997.
Budyko, M. I.: The effect of solar radiation variations on the climate of
the earth, Tellus, 21, 611–619, 1969.
Bunde, A., Eichner, J. F., .Kantelhardt, J. W., and Havlin, S.: Long-term
memory: a natural mechanism for the clustering of extreme events and
anomalous residual times in climate records, Phys. Rev. Lett. , 94, 1–4,
https://doi.org/10.1103/PhysRevLett.94.048701, 2005.
Chandra, S., Varotsos, C., and Flynn, L. E.: The mid-latitude total ozone
trends in the northern hemisphere, Geophys. Res. Lett., 23, 555–558, 1996.
Clement, A. C., Seager, R., Cane, M. A., and Zebiak, S. E.: An ocean dynamical
thermostat, J. Climate, 9, 2190–2196, 1996.
Cracknell, A. P. and Varotsos, C. A.: The Antarctic 2006 ozone hole, Int.
J. Remote Sens., 28, 1–2, 2007.
Cracknell, A. P. and Varotsos, C. A.: New aspects of global climate-dynamics
research and remote sensing, Int. J. Remote Sens., 32, 579–600, 2011.
Crowley, T. J.: Causes of Climate Change Over the Past 1000 Years, Science,
289, 270–277, https://doi.org/10.1126/science.289.5477.270, 2000.
Dijkstra, H.: Nonlinear Climate Dynamics, Cambridge University Press, Cambridge, 357 pp., 2013.
Efstathiou, M. N., Tzanis, C., Cracknell, A. P., and Varotsos, C. A.: New
features of land and sea surface temperature anomalies, Int. J. Remote
Sens., 32, 3231–3238, 2011.
Eichner, J. F., Koscielny-Bunde, E., Bunde, A., Havlin, S., and
Schellnhuber, H.-J.: Power-law persistence and trends in the atmosphere: A
detailed study of long temperature records, Phys. Rev. E, 68, 046133,
https://doi.org/10.1103/PhysRevE.68.046133, 2003.
Fraedrich, K., Blender, R., and Zhu, X.: Continuum Climate Variability:
Long-Term Memory, Scaling, and 1∕f-Noise, Int. J. Mod. Phys. B, 23, 5403–5416, 2009.
Fredriksen, H.-B. and Rypdal, K.: Scaling of Atmosphere and Ocean
Temperature Correlations in Observations and Climate Models, J. Climate,
29, 1253–1268, https://doi.org/10.1175/JCLI-D-15-0457.1, 2016.
Gao, C. G., Robock, A., and Ammann, C.:, Volcanic forcing of climate over
the past 1500 years: and improved ice core-based index for climate models,
J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008.
Goswami, B. N. and Shukla, J.: Aperiodic Variability in the Cane–Zebiak
Model, J. Climate, 6, 628–638, 1991.
Hasselmann, K.: Stochastic Climate models, part I: Theory, Tellus, 28, 473–485, 1976.
Huang, S.: Merging Information from Different Resources for New Insights
into Climate Change in the Past and Future, Geophys. Res. Lett., 31, L13205,
https://doi.org/10.1029/2004GL019781, 2004.
Hurst, H. E.: Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng.,
116, 770–808, 1951.
Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum
temperature variability, Nature, 441, 329–332, https://doi.org/10.1038/nature04745, 2006.
Kantelhardt, J. W., Koscielny-Bunde, E., Rybski, D., Braun, P., Bunde, A.,
and Havlin, S.: Long-term persistence and multifractality of precipitation
and river runoff record, J. Geophys. Res., 111, D01106, https://doi.org/10.1029/2005JD005881, 2006.
Kolesnikov, V. N. and Monin, A. S.: Spectra of meteorological field
fluctuations, Izv. Atmos. Ocean. Phys., 1, 653–669, 1965.
Kolmogorov, A. N.: A refinement of previous hypotheses concerning the local
structure of turbulence in viscous incompressible fluid at high Reynolds
number, J. Fluid Mech., 83, 82–85, 1962.
Kondratyev, K. Y. and Varotsos, C. A.: Volcanic eruptions and global ozone
dynamics, Int. J. Remote Sens., 16, 1887–1895, 1995a.
Kondratyev, K. Y. and Varotsos, C. A.: Atmospheric greenhouse – effect in
the context of global climate-change, Nuovo Cimento della Societa Italiana di
Fisica C, 18, 123–151, 1995b.
Koscielny-Bunde, E., Bunde, A., Havlin, S., Roman, H. E., Goldreich, Y., and
Schellnhuber, H. J.: Indication of a universal persistence law governing
atmospheric variability, Phys. Rev. Lett., 81, 729–732, 1998.
Krivova, N. A., Balmaceda, L., and Solanski, S. K.: Reconstruction of solar
total irradiance since 1700 from the surface magnetic field flux, Astron.
Astrophys., 467, 335–346, https://doi.org/10.1051/0004-6361:20066725, 2007.
Lean, J. L.: Evolution of the Sun's Spectral Irradiance Since the Maunder
Minimum, Geophys. Res. Lett., 27, 2425–2428, 2000.
Lean, J. L. and Rind, D. H.: How natural and anthropogenic influences alter
global and regional surface temperatures: 1889 to 2006, Geophys. Res. Lett.,
35, L18701, https://doi.org/10.1029/2008GL034864, 2008.
Ljungqvist, F. C.: A new reconstruction of temperature variability in the
extra-tropical Northern Hemisphere during the last two millennia,
Geograf. Ann. A, 92, 339–351, https://doi.org/10.1111/j.1468-0459.2010.00399.x, 2010.
Lovejoy, S.: What is climate?, EOS, 94, 1–2, 2013.
Lovejoy, S.: Scaling fluctuation analysis and statistical hypothesis testing
of anthropogenic warming, Clim. Dynam., 42, 2339–2351, https://doi.org/10.1007/s00382-014-2128-2, 2014a.
Lovejoy, S.: A voyage through scales, a missing quadrillion and why the climate
is not what you expect, Clim. Dynam., 44, 3187–3210, https://doi.org/10.1007/s00382-014-2324-0, 2014b.
Lovejoy, S.: The macroweather to climate transition in the Holocene:
regional and epoch to epoch variability (comments on “Are there multiple
scaling regimes in Holocene temperature records?” by T. Nilsen, K. Rypdal,
and H.-B. Fredriksen), Earth Syst. Dynam. Discus., 6, C1–C10, 2015a.
Lovejoy, S.: Using scaling for macroweather forecasting including the pause,
Geophys. Res. Lett., 42, 7148–7155, https://doi.org/10.1002/2015GL065665, 2015b.
Lovejoy, S. and Schertzer, D.: Scale invariance in climatological
temperatures and the local spectral plateau, Ann. Geophys., 4B, 401–410, 1986.
Lovejoy, S. and Schertzer, D.: Towards a new synthesis for atmospheric
dynamics: space-time cascades, Atmos. Res., 96, 1–52, https://doi.org/10.1016/j.atmosres.2010.01.004, 2010.
Lovejoy, S. and Schertzer, D.: Stochastic and scaling climate
sensitivities: solar, volcanic and orbital forcings, Geophys. Res. Lett.,
39, L11702, https://doi.org/10.1029/2012GL051871, 2012a.
Lovejoy, S. and Schertzer, D.: Low frequency weather and the emergence of
the Climate, in: Extreme Events and Natural Hazards: The Complexity
Perspective, edited by: Sharma, A. S., Bunde, A., Baker, D. N., and Dimri,
V. P., AGU monographs, Washington, D.C., 231–254, 2012b.
Lovejoy, S. and Schertzer, D.: Haar wavelets, fluctuations and structure functions:
convenient choices for geophysics, Nonlin. Processes Geophys., 19, 513–527,
https://doi.org/10.5194/npg-19-513-2012, 2012c.
Lovejoy, S. and Schertzer, D.: The Weather and Climate: Emergent Laws and
Multifractal Cascades, Cambridge University Press, Cambridge, 496 pp., 2013.
Lovejoy, S., Schertzer, D., and Varon, D.: Do GCMs predict the climate … or
macroweather?, Earth Syst. Dynam., 4, 439–454, https://doi.org/10.5194/esd-4-439-2013, 2013.
Lovejoy, S., Muller, J. P., and Boisvert, J. P.: On Mars too, expect
macroweather, Geophys. Res. Lett., 41, 7694–7700, https://doi.org/10.1002/2014GL061861, 2014.
Lovejoy, S., del Rio Amador, L., and Hébert, R.: The ScaLIng Macroweather Model (SLIMM):
using scaling to forecast global-scale macroweather from months to decades,
Earth Syst. Dynam., 6, 637–658, https://doi.org/10.5194/esd-6-637-2015, 2015.
Mandelbrot, B. B.: Intermittent turbulence in self-similar cascades:
divergence of high moments and dimension of the carrier, J. Fluid Mech., 62, 331–350, 1974.
Mann, M. E., Cane, M. A., Zebiak, S. E., and Clement, A.: Volcanic and solar
forcing of the tropical pacific over the past 1000 years, J. Climate, 18, 447–456, 2005.
Marzban, C., Wang, R., Kong, F., and Leyton, S.: On the effect of
correlations on rank histograms: reliability of temperature and wind speed
forecasts from fine scale ensemble reforecasts, Mon. Weather Rev., 139,
295–310, https://doi.org/10.1175/2010MWR3129.1, 2011.
Meehl, G. A., Washington, W. M., Ammann, C. M., Arblaster, J. M., Wigley, T.
M. L., and Tebaldi, C.: Combinations Of Natural and Anthropogenic Forcings
In Twentieth-Century Climate, J. Climate, 17, 3721–3727, 2004.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J., Otto
Bliesner, B. L., Holland, M. M., and Anderson, C.: Abrupt onset of the
Little Ice Age triggered by volcanism and sustained by sea-ice/ocean
feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012.
Minnis, P., Harrison, E. F., Stowe, L. L., Gibson, G. G., Denn, F. M.,
Doelling, D. R., and Smith Jr., W. L.: Radiative Climate Forcing by the Mount
Pinatubo Eruption, Science, 259, 1411–1415, 1993.
Moberg, A., Sonnechkin, D. M., Holmgren, K., Datsenko, N. M., and
Karlén, W.: Highly variable Northern Hemisphere temperatures
reconstructed from low- and high-resolution proxy data, Nature, 433, 613–617, 2005.
Newman, M.: An Empirical Benchmark for Decadal Forecasts of Global Surface
Temperature Anomalies, J. Climate, 26, 5260–5269, https://doi.org/10.1175/JCLI-D-12-00590.1, 2013.
Newman, M. P., Sardeshmukh, P. D., and Whitaker, J. S.: A study of
subseasonal predictability, Mon. Weather Rev., 131, 1715–1732, 2003.
Nicolis, C.: Transient climatic response to increasing CO2 concentration:
some dynamical scenarios, Tellus A, 40, 50–60, https://doi.org/10.1111/j.1600-0870.1988.tb00330.x, 1988.
Østvand, L., Nilsen, T., Rypdal, K., Divine, D., and Rypdal, M.: Long-range
memory in internal and forced dynamics of millennium-long climate model simulations,
Earth Syst. Dynam., 5, 295–308, https://doi.org/10.5194/esd-5-295-2014, 2014.
Panofsky, H. A. and Van der Hoven, I.: Spectra and cross-spectra of velocity
components in the mesometeorological range, Q. J. Roy. Meteorol. Soc., 81, 603–606, 1955.
Pelletier, J. D.: The power spectral density of atmospheric temperature
from scales of 10−2 to 106 yr, Earth Planet. Sci. Lett., 158, 157–164, 1998.
Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and
Goldberger, A. L.: Mosaic organisation of DNA nucleotides, Phys. Rev. E, 49, 1685–1689, 1994.
Penland, C. and Sardeshmuhk, P. D.: The optimal growth of tropical sea
surface temperature anomalies, J. Climate, 8, 1999–2024, 1995.
Pielke, R.: Climate prediction as an initial value problem, Bull. Am. Meteorol. Soc.,
79, 2743–2746, 1998.
Ragone, F., Lucarini, V., and Lunkeit, F.: A new framework for climate
sensitivity and prediction: a modelling perspective, Clim. Dynam., 1–13, 2014.
Rybski, D., Bunde, A., Havlin, S., and von Storch, H.: Long-term persistance
in climate and the detection problem, Geophys. Res. Lett., 33, L06718,
https://doi.org/10.1029/2005GL025591, 2006.
Rypdal, M. and Rypdal, K.: Long-memory effects in linear response models of
Earth's temperature and implications for future global warming, J. Climate,
27, 5240–5258, https://doi.org/10.1175/JCLI-D-13-00296.1, 2014.
Sardeshmukh, P. D. and Sura, P.: Reconciling non-gaussian climate
statistics with linear dynamics, J. Climate, 22, 1193–1207, 2009.
Schertzer, D. and Lovejoy, S.: Physical modeling and Analysis of Rain and
Clouds by Anisotropic Scaling of Multiplicative Processes, J. Geophys. Res.,
92, 9693–9714, 1987.
Schmidt, G. A., Annan, J. D., Bartlein, P. J., Cook, B. I., Guilyardi, E.,
Hargreaves, J. C., Harrison, S. P., Kageyama, M., LeGrande, A. N., Konecky, B.,
Lovejoy, S., Mann, M. E., Masson-Delmotte, V., Risi, C., Thompson, D., Timmermann,
A., Tremblay, L.-B., and Yiou, P.: Using palaeo-climate comparisons to constrain
future projections in CMIP5, Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, 2014.
Schmitt, F., Lovejoy, S., and Schertzer, D.: Multifractal analysis of the
Greenland Ice-core project climate data, Geophys. Res. Lett., 22, 1689–1692, 1995.
Shackleton, N. J. and Imbrie, J.: The δ18O spectrum of oceanic deep
water over a five-decade band, Climatic Change, 16, 217–230, 1990.
Shapiro, A. I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M.,
Shapiro, A. V., and Nyeki, S.: A new approach to long-term reconstruction of
the solar irradiance leads to large historical solar forcing, Astron.
Astrophys., 529, A67, https://doi.org/10.1051/0004-6361/201016173, 2011.
Shindell, D. T., Schmidt, G. A., Miller, R. I., and Mann, M. E.: Volcanic and
Solar Forcing of Climate Change during the Preindustrial Era, J. Climate,
16, 4094–4107, 2003.
Steinhilber, F., Beer, J., and Frohlich, C.: Total solar irradiance during
the Holocene, Geophys. Res. Lett., 36, L19704, https://doi.org/10.1029/2009GL040142, 2009.
Van der Hoven, I.: Power spectrum of horizontal wind speed in the frequency
range from 0.0007 to 900 cycles per hour, J. Meteorol., 14, 160–164, 1957.
Varotsos, C., Kalabokas, P., and Chronopoulos, G.: Association of the
laminated vertical ozone structure with the lower-stratospheric circulation,
J. Appl. Meteorol., 33, 473–476, 1994.
Varotsos, C., Efstathiou, M., and Tzanis, C.: Scaling behaviour of the global
tropopause, Atmos. Chem. Phys., 9, 677–683, https://doi.org/10.5194/acp-9-677-2009, 2009.
Varotsos, C. A.: The global signature of the ENSO and SST-like fields,
Theor. Appl. Climatol., 113, 197–204, 2013.
Varotsos, C. A., Tzanis, C., and Cracknell, A. P.: Precursory signals of the
major El Niño Southern Oscillation events, Theor. Appl. Climatol.,
https://doi.org/10.1007/s00704-015-1464-4, in press, 2015b.
Vyushin, D., Zhidkov, I., Havlin, S., Bunde, A., and Brenner, S.: Volcanic
forcing improves atmosphere-ocean coupled, general circulation model scaling
performance, Geophy. Res. Lett., 31, L10206, https://doi.org/10.1029/2004GL019499, 2004.
Wang, Y.-M., Lean, J. L., and Sheeley, N. R. J.: Modeling the Sun's magnetic
field and irradiance since 1713, Astrophys. J., 625, 522–538, 2005.
Watson, A. J. and Lovelock, J. E.: Biological homeostasis of the global
environment: the parable of Daisyworld, Tellus B, 35, 284–289, 1983.
Weber, S. L.: A timescale analysis of the Northern Hemisphere temperature
response to volcanic and solar forcing, Clim. Past, 1, 9–17, https://doi.org/10.5194/cp-1-9-2005, 2005.
Zanchettin, D., Rubino, A., and Jungclaus, J. H.: Intermittent
multidecadal-to-centennial fluctuations dominate global temperature
evolution over the last millennium, Geophys. Res. Lett., 37, L14702, https://doi.org/10.1029/2010GL043717, 2010.
Zebiak, S. E. and Cane, M. A.: A Model El Niño – Southern Oscillation,
Mon. Weather Rev., 115, 2262–2278, 1987.
Zhu, X., Fraederich, L., and Blender, R.: Variability regimes of simulated
Atlantic MOC, Geophys. Res. Lett., 33, L21603, https://doi.org/10.1029/2006GL027291, 2006.
Short summary
We compare the statistical properties of solar, volcanic and combined forcings over the range from 1 to 1000 years to see over which scale ranges they additively combine, a prediction of linear response. The main findings are (a) that the variability in the Zebiac–Cane model and GCMs are too weak at centennial and longer scales; (b) for longer than ≈ 50 years, the forcings combine subadditively; and (c) at shorter scales, strong (intermittency, e.g. volcanic) forcings are nonlinear.
We compare the statistical properties of solar, volcanic and combined forcings over the range...
Altmetrics
Final-revised paper
Preprint