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Abstract. At scales much longer than the deterministic predictability limits (about 10 days), the statistics of the

atmosphere undergoes a drastic transition, the high-frequency weather acts as a random forcing on the lower-

frequency macroweather. In addition, up to decadal and centennial scales the equivalent radiative forcings of

solar, volcanic and anthropogenic perturbations are small compared to the mean incoming solar flux. This justi-

fies the common practice of reducing forcings to radiative equivalents (which are assumed to combine linearly),

as well as the development of linear stochastic models, including for forecasting at monthly to decadal scales.

In order to clarify the validity of the linearity assumption and determine its scale range, we use last millen-

nium simulations, with both the simplified Zebiak–Cane (ZC) model and the NASA GISS E2-R fully coupled

GCM. We systematically compare the statistical properties of solar-only, volcanic-only and combined solar and

volcanic forcings over the range of timescales from 1 to 1000 years. We also compare the statistics to multiproxy

temperature reconstructions. The main findings are (a) that the variability in the ZC and GCM models is too

weak at centennial and longer scales; (b) for longer than ≈ 50 years, the solar and volcanic forcings combine

subadditively (nonlinearly) compounding the weakness of the response; and (c) the models display another non-

linear effect at shorter timescales: their sensitivities are much higher for weak forcing than for strong forcing

(their intermittencies are different) and we quantify this with statistical scaling exponents.

1 Introduction

1.1 Linearity versus nonlinearity

The general circulation model (GCM) approach to climate

modelling is based on the idea that whereas weather is

an initial value problem, the climate is a boundary value

problem (Bryson, 1997; Pielke, 1998). This means that al-

though the weather’s sensitive dependence on initial condi-

tions (chaos, the “butterfly effect”) leads to a loss of pre-

dictability at timescales of about 10 days, averaging over

enough “weather” nevertheless leads to a convergence to the

model’s “climate”. This climate is thus the state to which av-

erages of model outputs converge for fixed atmospheric com-

positions and boundary conditions (i.e. control runs).

The question then arises as to the response of the system

to small changes in the boundary conditions: for example,

anthropogenic forcings are less than 2 W m−2 and, at least

over scales of several years, solar and volcanic forcings are of

similar magnitude or smaller (see e.g. Fig. 1a and the quan-

tification in Fig. 2). These numbers are of the order of 1 %

of the mean solar radiative flux; thus, we may anticipate that

the atmosphere responds fairly linearly. This is indeed that

usual assumption, and it justifies the reduction of potentially

complex forcings to overall radiative forcings (see Meehl

et al., 2004, for GCM investigations at annual scales and

Hansen et al., 2005, for greenhouse gases). However, at long

enough scales, linearity clearly breaks down; indeed, start-

ing with the celebrated “Daisyworld” model (Watson and

Lovelock, 1983), there is a whole body of literature that uses
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energy balance models to study the strongly nonlinear in-

teractions/feedbacks between global temperatures and albe-

dos. There is no debate that temperature–albedo feedbacks

are important at the multimillennial scales of the glacial–

interglacial transitions. Whereas some authors (e.g. Roques

et al., 2014) use timescales as short as 200 years for the

critical ice–albedo feedbacks, others have assumed that the

temperature response to solar and volcanic forcings over

the last millennium is reasonably linear (e.g. Østvand et al.,

2014; Rypdal and Rypdal, 2014), while Pelletier (1998) and

Fraedrich et al. (2009) assume linearity to even longer scales.

It is therefore important to establish the timescales over

which linear responses are a reasonable assumption. How-

ever, clearly even over scales where typical responses to

small forcings are relatively linear, the response may be non-

linear if the forcing is volcanic or volcanic-like, i.e. if it is

sufficiently “spikey” or intermittent.

1.2 Atmospheric variability: scaling regimes

Before turning our attention to models, what can we

learn empirically? Certainly, at high enough frequencies

(the weather regime), the atmosphere is highly nonlinear.

However, at about 10 days, the atmosphere undergoes a

drastic transition to a lower-frequency regime, and this

“macroweather” regime is potentially quasi-linear in its re-

sponses. Indeed, the basic atmospheric scaling regimes were

identified some time ago – primarily using spectral analy-

sis (Lovejoy and Schertzer, 1986; Pelletier, 1998; Shackleton

and Imbrie, 1990; Huybers and Curry, 2006). However, the

use of real space fluctuations provided a clearer picture and

a simpler interpretation. It also showed that the usual view

of atmospheric variability, as a sequence of narrow-scale

range processes (e.g. nonlinear oscillators), has seriously ne-

glected the main source of variability, namely the scaling

“background spectrum” (Lovejoy, 2014b). What was found

is that, for virtually all atmospheric fields, there was a transi-

tion from the behaviour of the mean temperature fluctuations

scaling 〈1T (1t)〉≈1tH with H > 0 to a lower-frequency

scaling regime with H < 0 at scales 1t >≈ 10 days – the

macroweather regime. The transition scale of around 10 days

can be theoretically predicted on the basis of the scaling of

the turbulent wind due to solar forcing (via the imposed en-

ergy rate density; see Lovejoy and Schertzer, 2010, 2013;

Lovejoy et al., 2014). Whereas the weather is naturally iden-

tified with the high-frequency H > 0 regime and with tem-

perature values “wandering” up and down like in a drunk-

ard’s walk, the lower-frequency H < 0 regime is character-

ized by fluctuations tending to cancel out – effectively start-

ing to converge. This converging regime is a low-frequency

type of weather, described as “macroweather” (Lovejoy,

2013; Lovejoy et al., 2014). For the GCM control runs,

macroweather effectively continues to asymptotically long

times; in the real world, it continues to timescales of 10–

30 years (industrial) and 50–100 years (pre-industrial), af-

ter which a new H > 0 regime is observed. It is natural to

associate this new regime with the climate (see Fig. 5 of

Lovejoy et al., 2013; see also Franzke et al., 2013). Other

papers analyzing macroweather scaling include Koscielny-

Bunde et al. (1998), Eichner et al. (2003), Kantelhardt et

al. (2006), Rybski et al. (2006), Bunde et al. (2005), Østvand

et al. (2014), Rypdal and Rypdal (2014) and Fredriksen and

Rypdal (2016).

The explanation for the “macroweather” to climate transi-

tion (at scale τc) appears to be that over the “macroweather”

timescales – where the fluctuations are “cancelling” – other,

slow processes which presumably include both external cli-

mate forcings and other slow (internal) land–ice or biogeo-

chemical processes become stronger and stronger. At some

point (τc) their variability dominates. A significant point

where opinions diverge is the value of the global transition

scale τc during the pre-industrial Holocene, as well as the

possibility that there are large regional variations in τc dur-

ing the Holocene, so that Greenland ice core data may not be

globally representative; see Lovejoy (2015a) for a discussion.

1.3 Scaling in the numerical models

There have been several studies on the low-frequency con-

trol run responses of GCMs (Vyushin et al., 2004; Zhu et al.,

2006; Fraedrich et al., 2009; Lovejoy et al., 2013; Fredriksen

and Rypdal, 2016); the responses were found to be scaling

down to their lowest frequencies. This scaling is a conse-

quence of the absence of a characteristic timescale for the

long-time model convergence; it turns out that the relevant

scaling exponents are very small: empirically the GCM con-

vergence is “ultra-slow” (Lovejoy et al., 2013) (Sect. 3.4).

Most earlier studies have focused on the implications of the

long-range statistical dependencies implicit in the scaling

statistics. Unfortunately, due to this rather technical focus,

the broader implications of the scaling have not been widely

appreciated.

More recently, using scaling fluctuation analysis, be-

haviour has been put into the general theoretical framework

of GCM climate modelling (Lovejoy et al., 2013). From the

scaling point of view, it appears that the climate arises as

a consequence of slow internal climate processes combined

with external forcings (especially volcanic and solar, as well

as – in the recent period – anthropogenic forcings). From

the point of view of the GCMs, the low-frequency (multi-

centennial) variability arises exclusively as a response to ex-

ternal forcings, although potentially – with the addition of

(known or currently unknown) slow processes such as land–

ice or biogeochemical processes – new internal sources of

low-frequency variability could be included. Ignoring the re-

cent (industrial) period, and confining ourselves to the last

millennium, the key question for GCMs is whether or not

they can reproduce the climate regime where the decline of

the “macroweather” fluctuations (H < 0) is arrested and the

increasing H > 0 climate regime fluctuations begin. In a re-
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cent publication (Lovejoy et al., 2013), four GCMs simulat-

ing the last millennium were statistically analyzed and it was

found that their low-frequency variability (especially below

(100 yr)−1) was somewhat weak, and this was linked to both

the weakness of the solar forcings (when using sunspot-based

solar reconstructions with H > 0) and – for strong volcanic

forcings – the statistical type of the forcing (H < 0; Lovejoy

and Schertzer, 2012a; Bothe et al., 2013a, b; Zanchettin et

al., 2013; see also Zanchettin et al., 2010, for the dynamics

on centennial timescales).

1.4 This paper

The weakness of the responses to solar and volcanic forc-

ings at multicentennial scales raises a question of linear-

ity: is the response of the combined (solar plus volcanic)

forcing roughly the sum of the individual responses? Ad-

ditivity is often implicitly assumed when climate forcings

are reduced to their equivalent radiative forcings, and Mann

et al. (2005) have already pointed out that, in the Zebiak–

Cane (ZC) model discussed below, they are not additive.

Here we more precisely analyze this question and quantify

the degree of sub-additivity as a function of temporal scale

(Sect. 3.4). A related linear/nonlinear issue pointed out by

Clement et al. (1996) is that, due to the nonlinear model re-

sponse, there is a high sensitivity to a small forcing and a

low sensitivity to a large forcing. Systems in which strong

and weak events have different statistical behaviours display

stronger or weaker “clustering” and are often termed “inter-

mittent” (from turbulence). When they are also scaling, the

weak and strong events are characterized by different scal-

ing exponents that quantify how the respective clustering

changes with timescale. In Sect. 4, we investigate this quanti-

tatively and confirm that it is particularly strong for volcanic

forcing, and that for the ZC model the response (including

that of a GCM) is much less intermittent, implying that the

model strongly (and nonlinearly) smooths the forcing.

In this paper, we establish analysis methodologies that

can address these issues and apply them to model outputs

that cover the required range of timescales: last millennium

model outputs. Unfortunately – although we consider the

NASA GISS E2-R last millennium simulations – there seem

to be no full last millennium GCM simulations that have the

entire suite of volcanic-only, solar-only and solar plus vol-

canic forcings and responses; therefore we have used the sim-

plified ZC model outputs published by Mann et al. (2005)

(and even this lacked control runs to directly quantify the in-

ternal variability).

Although the ZC model lacks several important mecha-

nisms – notably, for our purposes, deep ocean dynamics –

there are clearly sources of low-frequency variability present

in the model. For example, Goswami and Shukla (1991), us-

ing 360-year control runs, found multidecadal and multicen-

tennial nonlinear variability due to the feedbacks between

Sea Surface Temperature (SST) anomalies, low-level conver-

gence and atmospheric heating. In addition, in justifying their

millennium ZC simulations, Mann et al. (2005) specifically

cited model centennial-scale variability as a factor motivat-

ing their study.

2 Data and analysis

2.1 Discussion

During the pre-industrial part of the last millennium, the at-

mospheric composition was roughly constant, and the Earth’s

orbital parameters varied by only a small amount. The main

forcings used in GCM climate models over this period are

thus solar and volcanic (in the GISS-E2-R simulations dis-

cussed below, reconstructed land use changes are also simu-

lated but the corresponding forcings are comparatively weak

and will not be discussed further). In particular, the impor-

tance of volcanic forcings was demonstrated by Minnis et

al. (1993), who investigated the volcanic radiative forcing

caused by the 1991 eruption of Mount Pinatubo, and found

that volcanic aerosols produced a strong cooling effect. Later,

Shindell et al. (2003) used a stratosphere-resolving GCM to

examine the effect of the volcanic aerosols and solar irradi-

ance variability on pre-industrial climate change. They found

that the best agreement with historical and proxy data was

obtained using both forcings. However, solar and volcanic

forcings induce different responses because the stratospheric

and surface influences in the solar case reinforce one an-

other, but in the volcanic case they are opposed. In addition,

there are important differences in solar and volcanic tempo-

ral variabilities (including seasonality) that statistically link

volcanic eruptions with the onset of El Niño–Southern Os-

cillation events (Mann et al., 2005). Decreased solar irradi-

ance cools the surface and stratosphere (Cracknell and Varot-

sos, 2007, 2011; Kondratyev and Varotsos, 1995a, b). In con-

trast, volcanic eruptions cool the surface, but aerosol heating

warms the sunlit lower stratosphere (Shindell et al., 2003;

Miller et al., 2012). This leads to an increased meridional

gradient in the lower stratosphere but a reduced gradient in

the tropopause region (Chandra et al., 1996; Varotsos et al.,

1994, 2009).

Vyushin et al. (2004) suggested that volcanic forcings im-

prove the low-frequency variability scaling performance of

atmosphere–ocean models compared to all other forcings

(see, however, the comment by Blender and Fraedrich, 2004,

which also discusses earlier papers on the field) and Blender

and Fraedrich (2004). Weber (2005) used a set of simulations

with a climate model, driven by reconstructed forcings, in or-

der to study the Northern Hemisphere temperature response

to volcanic and solar forcing during 1000–1850. It was con-

cluded that the response to solar forcing equilibrates at in-

terdecadal timescales, while the response to volcanic forcing

never equilibrates due to the fact that the time interval be-

tween volcanic eruptions is typically shorter than the dissi-

pation timescale of the climate system (in fact, they are scal-
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ing, so that eruptions occur over all observed timescales; see

below).

At the same time, Mann et al. (2005) investigated the re-

sponse of El Niño to natural radiative forcing changes dur-

ing 1000–1999 by employing the ZC model for the coupled

ocean–atmosphere system in the tropical Pacific. They found

that the composite feedback of the volcanic and solar radia-

tive forcing to past changes, reproduces the fluctuations in

the variability in the historic El Niño records (e.g. Efstathiou

et al., 2011; Varotsos, 2013; Varotsos et al., 2015a, b).

Finally, as discussed below, Lovejoy and

Schertzer (2012a) analyzed the timescale dependence

of several solar reconstructions (Lean, 2000; Wang et al.,

2005; Krivova et al., 2007; Steinhilber et al., 2009; Shapiro et

al., 2011) and the two main volcanic reconstructions (Crow-

ley, 2000, and Gao et al., 2008; referred to as “Crowley”

and “Gao” in the following). The solar forcings were found

to be qualitatively quite different depending on whether the

reconstructions were based on sunspots or 10Be isotopes

from ice cores, with the former increasing with timescale and

the latter decreasing with timescale. This quantitative and

qualitative difference brings into question the reliability of

the solar reconstructions. By comparison, the two volcanic

reconstructions were both statistically similar in type; they

were very strong at annual and sometimes multiannual

scales, but they quickly decrease with timescale (H < 0),

explaining why they are weak at centennial and millennial

scales. We re-examine these findings below.

2.2 The climate simulation of Mann et al. (2005) using

the ZC model

Mann et al. (2005) used the ZC model of the tropi-

cal Pacific coupled ocean–atmosphere system (Zebiak and

Cane, 1987) to produce a 100-realization ensemble for so-

lar forcing only, volcanic forcing only and combined forc-

ings over the last millennium. Figure 1a shows the forc-

ings and mean responses of the model which were ob-

tained from ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate_

forcing/mann2005/mann2005.txt. No anthropogenic effects

were included. Mann et al. (2005) modelled the region be-

tween 30 and −30◦ latitude by scaling the Crowley volcanic

forcing reconstruction with a geometric factor 1.57 to take

the limited range of latitudes into account. Figure 1b shows

the corresponding GISS-E2-R simulation responses for three

different forcings as discussed in Schmidt et al. (2014) and

Lovejoy et al. (2013). Although these were averaged over the

Northern Hemisphere land only (a somewhat different geog-

raphy than the ZC simulations), one can see that the low fre-

quencies seem similar even if the high frequencies are some-

what different. We quantify this below.
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Figure 1. (a) Top graph: the radiative forcings RF (top, W m2) and

responses T (K) from AD 1000 to 2000 for the Zebiak–Cane model,

from Mann et al. (2005), integrated over the entire simulation re-

gion. The forcings are reconstructed solar (brown), solar blown up

by a factor 5 (orange) and volcanic (black). For the solar forcing

(top series), note the higher-resolution and wandering character for

the recent centuries – this part is based on sunspots, not 10Be. Bot-

tom graph: the responses are for the solar forcing only (top), vol-

canic forcing only (middle) and both (bottom); they have been off-

set in the vertical for clarity by 2.5, 1.5, and 0.5 K, respectively.

(b) GISS-ER-2 responses averaged over land (the Northern Hemi-

sphereonly) at annual resolution. The industrial part since 1900 was

excluded due to the dominance of the anthropogenic forcings. The

solar forcing is the same as for the ZC model and is sunspot-based

since 1610. The top row is for the solar forcing only, the middle se-

ries is the response to the solar and Crowley reconstructed volcanic

forcing series (i.e. the same as used in the ZC model), and the bot-

tom series uses the solar and reconstructed volcanic forcing series

from Gao et al. (2008). Each series has been offset in the vertical

by 1 K for clarity (these are anomalies, so the absolute temperature

values are unimportant).
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3 Methods

3.1 Comparing simulations with observations as

functions of scale

The ultimate goal of weather and climate modelling (includ-

ing forecasting) is to make simulations Tsim(t) as close as

possible to observations Tobs(t). Ignoring measurement er-

rors and simplifying the discussion by only considering a

single spatial location (i.e. a single time series), the goal is to

achieve simulations with Tsim(t)= Tobs(t). However, not only

is this very ambitious for the simulations, but even when con-

sidering the observations, Tobs(t) is often difficult to evaluate,

if only because data are often sparse or inadequate in various

ways. However, a necessary condition for Tsim(t)= Tobs(t) is

the weaker statistical equality: Tsim(t)
d
= Tobs(t), where “

d
=”

means equal in probability distributions (we can say that

a
d
= b if Pr(a > s)=Pr(b> s), where “Pr” indicates “prob-

ability”). Although Tsim(t)
d
= Tobs(t) is only a necessary (but

not sufficient) condition for Tsim(t)= Tobs(t), it is much eas-

ier to empirically verify.

Starting in the 1990s, with the advent of ensemble fore-

casting systems, the rank histogram (RH) method was pro-

posed (Anderson, 1996) as a simple non-parametric test of

Tsim(t)
d
= Tobs(t), and this has led to a large body of liter-

ature, including recently Bothe et al. (2013a, b). From our

perspective there are two limitations of the RH method. First,

it is non-parametric, so that its statistical power is low. More

importantly, it essentially tests the equation Tsim(t)
d
= Tobs(t)

at a single unique timescale/resolution. This is troublesome

since the statistics of both Tsim(t) and Tobs(t) series will de-

pend on their space–time resolutions; averaging in space al-

ters the temporal statistics, so that e.g. 5◦× 5◦ data are not

only spatially but also effectively temporally smoothed with

respect to 1◦× 1◦ data. This means that, even if Tsim(t) and

Tobs(t) have nominally the same temporal resolutions, they

may easily have different high-frequency variability. Possi-

bly more importantly – as claimed in Lovejoy et al. (2013)

and below – the main difference between Tsim(t) and Tobs(t)

may be that the latter has more low-frequency variability than

the former, and this will not be captured by the RH tech-

nique, which operates only at the highest frequency available.

This problem is indirectly acknowledged; see, for example,

the discussion of correlations in Marzban et al. (2011). The

potential significance of the low frequencies becomes obvi-

ous when H > 0 for the low-frequency range. In this case,

since the series tends to “wander”, small differences in the

low frequencies may translate into very large differences in

RH, even if the high frequencies are relatively accurate.

A straightforward solution is to use the same basic idea

– i.e. to change the sense of equality from deterministic to

probabilistic (“=” to “
d
=”) – but compare the statistics sys-

tematically over a range of timescales. The simplest way

to do this is to check the equality 1Tsim(1t)
d
=1Tobs(1t),

where 1T is the fluctuation of the temperature over a time

period 1t (see the discussion in Lovejoy and Schertzer,

2013, Box 11.1). In general, knowledge of the probabilities

is equivalent to knowledge of (all) the statistical moments

(including the non-integer ones), and for technical reasons

it turns out to be easier to check 1Tsim(1t)
d
=1Tobs(1t) by

considering the statistical moments.

3.2 Scaling fluctuation analysis

In order to isolate the variability as a function of timescale

1t , we estimated the fluctuations1F (1t) (forcings, W m−2)

and 1T (1t) (responses, K). Although it is traditional (and

often adequate) to define fluctuations by absolute differences

1T (1t)= |T (t +1t)− T (t)|, for our purposes this is not

sufficient. Instead, we should use the absolute difference of

the means from t to t +1t/2 and from t +1t/2 to t +1t .

Technically, the latter corresponds to defining fluctuations

using Haar wavelets rather than “poor man’s” wavelets (dif-

ferences). In a scaling regime, the fluctuations vary with the

time lag in a power law manner:

1T = ϕ1tH , (1)

where ϕ is a controlling dynamical variable (e.g. a dynamical

flux) whose mean 〈ϕ〉 is independent of the lag1t (i.e. inde-

pendent of the timescale). This means that the behaviour of

the mean fluctuation is <1T >≈1tH , so that when H > 0

fluctuations on average tend to grow with scale, whereas

when H < 0 they tend to decrease. Note that the symbol

“H” is in honour of Harold Edwin Hurst (Hurst, 1951). Al-

though, in the case of quasi-Gaussian statistics, it is equal

to his eponymous exponent, the H used here is valid in the

more general multifractal case and is generally different.

Fluctuations defined as differences are adequate for

fluctuations increasing with scale (H > 0). When H > 0,

the rate at which average differences increase with time

lag 1t directly reflects the increasing importance of low

frequencies with respect to high frequencies. However,

in physical systems the differences tend to increase even

when H < 0. This is because correlations 〈T (t +1t)T (t)〉

tend to decrease with the time lag 1t and this directly

implies that the mean square differences (〈1T (1t)2
〉)

increase (mathematically, for a stationary process,

〈1T (1t)2
〉= 〈(T (t +1t)− T (t))2

〉= 2(〈T 2
〉− 〈T (t +1t)

T (t)〉). This means that when H < 0, differences cannot

correctly characterize the fluctuations. For H < 0 the high-

frequency details dominate the differences and prevent these

differences from decreasing with increasing scale 1t .

The Haar fluctuation, which is useful for −1<H < 1,

is particularly easy to understand since, with proper “cali-

bration” in regions where H > 0, its value can be made to

be very close to the difference fluctuation, while in regions

whereH < 0, it can be made close to another simple to inter-

pret “anomaly fluctuation”. The latter is simply the temporal
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average of the series over a duration 1t of the series with

its overall mean removed (in Lovejoy and Schertzer, 2012b,

this was termed a “tendency” fluctuation which is a less intu-

itive term). In this case, the decrease in the Haar fluctuations

for increasing lag1t characterizes how effectively averaging

a (mean zero) process (the anomaly) over longer timescales

reduces its variability. Here, the calibration is affected by

multiplying the raw Haar fluctuation by a factor of 2, which

brings the values of the Haar fluctuations very close to both

the corresponding difference and anomaly fluctuations (over

timescales with H > 0 and H < 0, respectively). This means

that in regions whereH > 0, to good accuracy, the Haar fluc-

tuations can be treated as differences, whereas in regions

where H < 0 they can be treated as anomalies. While other

techniques such as detrended fluctuation analysis (Peng et

al., 1994) perform just as well for determining exponents,

they have the disadvantage that their fluctuations are not at

all easy to interpret (they are the standard deviations of the

residues of polynomial regressions on the running sum of the

original series). Indeed, the DFA fluctuation function is typi-

cally presented without any units.

Once estimated, the variation in the fluctuations with

timescale can be quantified by using the fluctuations’ statis-

tics; the qth order structure function Sq (1t) is particularly

convenient:

Sq (1t)= 〈1T (1t)q〉, (2)

where “〈 〉” indicates ensemble averaging (here, we average

over all disjoint intervals of length 1t). Note that although

q can in principle be any value, here we restrict it to q > 0

since divergences may occur – indeed for multifractals, di-

vergences are expected – for any q < 0. In a scaling regime,

Sq (1t) is a power law:

Sq (1t)= 〈1T (1t)q〉 ∝1tξ (q)
; ξ (q)= qH −K(q), (3)

where the exponent ξ (q) has a linear part qH and a generally

nonlinear and convex part K(q) with K(1)= 0. K(q) char-

acterizes the strong non-Gaussian, multifractal variability:

the “intermittency”. Gaussian processes have K(q)= 0. The

root-mean-square (RMS) variation S2(1t)1/2 (denoted sim-

ply S(1t) below) has the exponent ξ (2)/2=H −K(2)/2.

It is only when the intermittency is small (K(q)≈ 0) that

we have ξ (2)/2≈H = ξ (1). Note that since the spectrum

is a second-order statistic, we have the useful exact re-

lationship for the exponent β of the power law spectra:

β = 1+ ξ (2)= 1+ 2H −K(2) (this is a corollary of the

Wiener–Khintchin theorem). Again, only whenK(2) is small

do we have the commonly used relation β ≈ 1+ 2H ; in this

special case, H > 0, H < 0 corresponds to β > 1, β < 1. To

get an idea of the implications of the nonlinear K(q), note

that a high q value characterizes the scaling of the strong

events, whereas a low q characterizes the scaling of the weak

events (q is not restricted to integer values). The scalings

are different whenever the strong and weak events cluster

to different degrees; the clustering, in turn, is precisely de-

termined by another exponent – the codimension – which

itself is uniquely determined by K(q). We return to the phe-

nomenon of “intermittency” in Sect. 4; it is particularly pro-

nounced in the case of volcanic forcings.

Figure 2a shows the result of estimating the Haar fluctu-

ations for the solar and volcanic forcings. The solar recon-

struction that was used is a hybrid obtained by “splicing” the

annual resolution sunspot-based reconstruction (Fig. 2b, top;

back to 1610, although only the more recent part was used by

Mann et al., 2005) with a 10Be-based reconstruction (Fig. 2b,

bottom) at much lower resolution (≈ 40–50 years). In Fig. 2a,

the two rightmost curves are for two different 10Be recon-

structions; at any given timescale, their amplitudes differ by

nearly a factor of 10, yet they both have Haar fluctuations

that diminish with scale (H ≈−0.3). Figure 2b (top) clearly

shows the qualitative difference with “wandering” (H > 0,

sunspot-based) and Fig. 2b (bottom), the cancelling (H < 0,
10Be-based) solar reconstructions (Lovejoy and Schertzer,

2012a). In the “spliced” reconstruction used here, the early
10Be part (1000–1610) at low resolution was interpolated to

annual resolution; the interpolation was close to linear, so

that we find H ≈ 1 over the scale range 1–50 years, with the

H < 0 part barely visible over the range of 100–600 years

(roughly the length of the 10Be part of the reconstruction).

The reference lines in Fig. 2a have slopes −0.4, −0.3, and

0.4, showing that both solar and volcanic forcings are fairly

accurately scaling (although, because of the “splicing” for

the solar, only up until ≈ 200–300 years) but with exactly

opposite behaviours: whereas the solar fluctuations increase

with timescale, the volcanic fluctuations decrease with scale.

For timescales beyond 200–300 years, the solar forcing is

stronger than the volcanic forcing (they “cross” at roughly

0.3 W m−2).

3.3 Linearity and nonlinearity

There is no question that – at least in the usual determinis-

tic sense – the atmosphere is turbulent and nonlinear. Indeed,

the ratio of the nonlinear to the linear terms in the dynamical

equations – the Reynolds number – is typically about 1012.

Due to the smaller range of scales, in the numerical models

it is much lower, but it is still ≈ 103 to 104. Indeed, it turns

out that the variability builds up scale by scale from large

to small scales, so that – since the dissipation scale is about

10−3 m – the resulting (millimetre-scale) variability can be

enormous; the statistics of this buildup are quite accurately

modelled by multifractal cascades (see the review by Love-

joy and Schertzer, 2013, especially Ch. 4 for cascade anal-

yses of data and model outputs). The cascade-based Frac-

tionally Integrated Flux model (FIF; Schertzer and Lovejoy,

1987) is a nonlinear stochastic model of the weather scale dy-

namics, and can be extended to provide nonlinear stochastic

models of the macroweather and climate regimes (Lovejoy

and Schertzer, 2013, Ch. 10).
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Figure 2. (a) The RMS Haar fluctuation S(1t) for the solar and

volcanic reconstructions used in the ZC simulation for lags1t from

2 to 1000 years (left). The solar is a “hybrid” obtained by “splicing”

the sunspot-based reconstruction (b, top) with a 10Be-based recon-

struction (b, bottom). The two rightmost curves are for two differ-

ent 10Be reconstructions (Shapiro et al., 2011; Steinhilber et al.,

2009). Although at any given scale, their different assumptions lead

to amplitudes differing by nearly a factor of 10, their exponents are

virtually identical and the amplitudes diminish rapidly with scale.

(b) A comparison of the sunspot derived total solar irradiance (TSI)

anomaly (top, used in the ZC and GISS simulations back to 1610,

H ≈ 0.4) with a recent 10Be reconstruction (bottom, total TSI –

mean plus anomaly – since 7362 BC; see (a) for a fluctuation anal-

ysis, H ≈−0.3) similar to that “spliced” onto the sunspot recon-

struction for the period 1000–1610. We can see that the statistical

characteristics are totally different with the sunspot variations “wan-

dering” (H > 0), whereas the 10Be reconstruction is “cancelling”

(H < 0). The sunspot data were for the “background” (i.e. with no

11-year cycle; see Wang et al., 2005, for details); the data for the
10Be curve were from Shapiro et al. (2011).

However, ever since Hasselmann (1976), it has been pro-

posed that sufficiently space–time-averaged variables may

respond linearly to sufficiently space–time-averaged forc-

ings. In the resulting (low-frequency) phenomenological

models, the nonlinear deterministic (high-frequency) dynam-

ics act as a source of random perturbations; the resulting

stochastic model is usually taken as being linear. Such mod-

els are only justified if there is a physical-scale separation

between the high- and low-frequency processes. The exis-

tence of a relevant break (at 2–10-day scales) has been known

since Panofsky and Van der Hoven (1955) and was variously

theorized as the “scale of migratory pressure systems of syn-

optic weather map scale” (Van der Hoven, 1957) and later

as the “synoptic maximum” (Kolesnikov and Monin, 1965).

From the point of view of Hasselman-type linear stochas-

tic modelling (now often referred to as “linear inverse mod-

elling” (LIM), e.g. Penland and Sardeshmuhk, 1995; New-

man et al., 2003; Sardeshmukh and Sura, 2009), the system

is regarded as a multivariate Ornstein–Uhlenbeck (OU) pro-

cess. At high frequencies, an OU process is essentially the

integral of a white noise (with spectrum ω−βh with βh= 2),

whereas at low frequencies it is a white noise (i.e. ω−βl with

βl= 0). In the LIMs, these regimes correspond to the weather

and macroweather, respectively. Recently, Newman (2013)

showed that predictive skill for global temperature hindcasts

is somewhat superior to GCMs for 1–2-year horizons.

In the more general scaling picture going back to Lovejoy

and Schertzer (1986), the transition corresponds to the life-

time of planetary structures. This interpretation was quantita-

tively justified in Lovejoy and Schertzer (2010) by using the

turbulent energy rate density. The low- and high-frequency

regimes were scaling and had spectra significantly different

than those of OU processes (notably with 0.2<βl< 0.8),

with the two regimes now being referred to as “weather”

and “macroweather” (Lovejoy and Schertzer, 2013). Indeed,

the main difference with respect to the classical LIM is

at low frequencies. Although the difference in βl may not

seem so important, the LIM value βl= 0 (white noise) has

no low-frequency predictability whereas the actual values

0.2<βl< 0.8 (depending mostly on the land or ocean lo-

cation) corresponds to potentially huge predictability (the

latter can diverge as βl approaches 1). The new “ScaLIng

Macroweather Model” (SLIMM) has been proposed as a

set of fractional-order (but still linear) stochastic differen-

tial equations with predictive skill for global mean temper-

atures out to at least 10 years (Lovejoy et al., 2015; Lovejoy,

2015b). However, irrespective of the exact statistical nature

of the weather and macroweather regimes, a linear stochas-

tic model may still be a valid approximation over significant

ranges.

These linear stochastic models (whether LIM or SLIMM)

explicitly exploit the weather/macroweather transition and

may have some skill up to macroweather scales perhaps

as large as decades. However, at long enough timescales,

another class of phenomenological model is often used,
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wherein the dynamics are determined by radiative energy

balances. Energy balance models focus on slower (true) cli-

mate scale processes such as sea ice–albedo feedbacks and

are generally quite nonlinear, being associated with nonlin-

ear features such as tipping points and bifurcations (Budyko,

1969). These models are typically zero- or one-dimensional

in space (i.e. they are averaged over the whole Earth or

over latitude bands) and may be deterministic or stochas-

tic (see Nicolis, 1988, for an early comparison of the two

approaches). See Dijkstra (2013) for a survey of the clas-

sical deterministic dynamical systems approach as well as

the more recent stochastic “random dynamical systems” ap-

proach (see also Ragone et al., 2014). Although energy bal-

ance models are almost always nonlinear, there have been

several suggestions that linear energy balance models are in

fact valid up to millennial and even multimillennial scales.

Finally, we could mention the existence of empirical evi-

dence of stochastic linearity between forcings and responses

in the macroweather regime. Such evidence comes, for ex-

ample, from the apparent ability of linear regressions to “re-

move” the effects of volcanic, solar and anthropogenic forc-

ings (Lean and Rind, 2008). This has perhaps been quan-

titatively demonstrated in the case of anthropogenic forc-

ing, where use is made of the globally, annually averaged

CO2 radiative forcings (as a linear surrogate for all anthro-

pogenic forcings). When this radiative forcing was regressed

against similarly averaged temperatures, it gave residues with

amplitudes ±0.109 K (Lovejoy, 2014a), which is almost ex-

actly the same as GCM estimates of the natural variability

(e.g. Laepple et al., 2008). Notice that in this case the iden-

tification of the global temperature Tglobe as the sum of a re-

gression determined anthropogenic component (Tanth) with

residues as natural variability (Tnat) is in fact only a confir-

mation of stochastic linearity (i.e. Tglobe
d
= Tanth+ Tnat). This

is because the actual residues would presumably have been

different if there had been no anthropogenic forcing. Indeed,

when the residues were analyzed using fluctuation analysis,

it was only their statistics that were close to the pre-industrial

multiproxy statistics.

3.4 Testing linearity: the additivity of the responses

We can now test the linearity of the model responses to so-

lar and volcanic forcings. First, consider the model responses

(Fig. 3a). Compare the response to the volcanic-only forcing

(green) curve with the response from the solar-only forcing

(black). As expected from Fig. 2a, the former is stronger than

the latter up until centennial scales, reflecting the stronger

volcanic forcing. At scales 1t ≈> 100 years, however, we

see that the solar-only forcing has a stronger response, also

as expected from Fig. 2a. Now consider the response to

the combined volcanic and solar forcing (brown). Unsur-

prisingly, it is very close to the volcanic-only forcing until

1t ≈ 100 years; however, at longer timescales, the combined

response seems to decrease following the volcanic forcing

curve; it seems that at these longer timescales the volcanic

and solar forcings have negative feedbacks, so that the com-

bined response to solar plus volcanic forcing is actually less

than for pure solar forcing – that is, they are “subadditive”.

In order to quantify this we can easily determine the ex-

pected solar and volcanic response if the two were com-

bined additively (linearly). In the latter case, the solar and

volcanic fluctuations would not interfere with each other,

and since these forcings are statistically independent, the re-

sponses would also be statistically independent, the response

variances would add.

A linear response means that temperature fluctuations due

to only solar forcing (1Ts(1t)) and only volcanic forcing

(1Tν(1t)) would be related to the temperature fluctuations

of the response to the combined solar plus volcanic forcings

(1Ts,ν(1t)) as

1Ts,ν(1t)=1Ts(1t)+1Tν(1t). (4)

This is true regardless of the exact definition of the fluc-

tuation: as long as the fluctuation is defined by a lin-

ear operation on the temperature series, any wavelet will

do. Therefore, squaring both sides and averaging (“〈 〉”)

and assuming that the fluctuations in the solar and vol-

canic forcings are statistically independent of each other

(i.e. 〈1Ts(1t)1Tν(1t)〉= 0), we obtain

〈1Ts,ν(1t)2
〉 = 〈1Ts(1t)

2
〉+ 〈1Tν(1t)2

〉. (5)

The implied additive response structure function

S(1t)= (〈1Ts(1t)
2
〉+ 〈1Tν(1t)2

〉)1/2 is shown in

Fig. 3b along with the ratio of the latter to the ac-

tual (nonlinear) solar plus volcanic response (top:

(〈1Ts(1t)
2
〉+ 〈1Tν(1t)2

〉)1/2/〈1Ts,ν(1t)2
〉
1/2). It can

be seen that the ratio is fairly close to unity for timescales

below about 50 years. However, beyond 50 years there is

indeed a strong negative feedback between the solar and

volcanic forcings. This is seen more clearly in Fig. 3c, which

shows that, at 1t ≈ 400 years, the negative feedback is

strong enough to reduce the theoretical additive fluctuation

amplitudes by a factor of ≈ 2 (the fall-off at the largest

1t is probably an artefact of the poor statistics at these

scales). It should be noted that, in addition to linearity, the

latter holds assuming statistical independence (top curve in

Fig. 3c) of the solar and volcanic forcing. For comparison,

the bottom curve in Fig. 3c illustrates the results obtained

when analyzing the series constructed by directly summing

the two response series (instead of assuming statistical

independence). It is clearly seen that the basic result still

holds but it is a little less strong (a factor of ≈ 1.5). The

reason for the difference is that the cancellation of the

cross terms assumed by statistical independence is only

approximately valid on single realizations, especially at the

lower frequencies, where the statistics are worse (even on

a single realization, at any given scale – except the very

longest – there are several fluctuations, so that there is still

some averaging).
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Figure 3. (a) The RMS Haar fluctuations of the Zebiak–Cane (ZC) model responses (from an ensemble of 100 realizations) with volcanic

only (green, from the updated Crowley reconstruction), solar only (black, using the sunspot-based background; Wang et al., 2005), and both

(brown). No anthropogenic effects were modelled. Also shown for reference are the fluctuations for three multiproxy series (blue, dashed,

from 1500 to 1900, pre-industrial; the fluctuations statistics from the three series were averaged, and this curve was taken from Lovejoy and

Schertzer, 2012b). We see that the combined volcanic and solar response of the model reproduces the statistics until scales of≈ 50–100 years;

however, at longer timescales, the model fluctuations are much too weak – roughly 0.1 K (corresponding to ±0.05 K) and constant or falling

– whereas at 400-year scales, the temperature fluctuations are≈ 0.25 K (±0.125) and rising. (b) A comparison of the RMS fluctuations of the

ZC model response to combined solar and volcanic forcings (brown, bottom, from a), with the theoretical additive responses (black, bottom)

as well as their ratio (Sadditive/Sactual black, top). The additive response was determined from the RMS of the solar-only and volcanic-

only response variances (from a): additivity implies that the fluctuation variances add (assuming that the solar and volcanic forcings are

statistically independent). We can see that, after about 50–200 years, there are strong negative feedbacks, and the solar and volcanic forcings

are subadditive; see (c) for an enlargement of the ratio. (c) An enlarged view of the ratio of the linear to nonlinear responses (from b). The top

curve assumes for the combined forcing, the linearity of the response and statistical independence of the solar and volcanic forcings, whereas

the bottom curve uses the actual response to the combined forcings. The maximum at around 400 years (top curve) corresponds to a factor

≈ 2 (≈ 1.5, bottom curve) of negative feedback between the solar and volcanic forcings. The decline at longer durations (1t’s) – especially

the single 1000-year fluctuation – is likely to be an artefact of the limited statistics at these scales.
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The calculations above ignored the model’s internal vari-

ability; this was considered small due to the averaging over

100 realizations of the ZC model with the same forcings: the

internal variability is expected to largely cancel out. While

it is true that a definitive answer to this requires running the

model in “control mode” so as to capture only the internal

variability (as was done in for the GISS model; see Fig. 4),

there are nevertheless several reasons why the internal vari-

ability is almost certainly smaller than the response due to

the forcings:

i. We can get a typical order of magnitude of the internal

variability from the GISS model, Fig. 4; we see that for a

single realization – without averaging over 100 realiza-

tions as in Fig. 3a – the typical centennial variability is

≈±0.05 K and decreasing with a power law with expo-

nent ≈ ξ (2)/2≈−0.2. After averaging for 100 realiza-

tions, we expect this to decrease by (100)0.5
= 10, i.e. to

±0.005 K. This is much smaller than the centennial-

scale variability in the ZC responses in Fig. 3a (from

the graph, these are about ≈±(10−1.2)/2≈±0.03 K).

ii. We can use the fact that (a) the observed responses are

upper bounds on the internal variability and (b) that

the internal variability must decrease with scale (oth-

erwise the model’s climate diverges rather than con-

verges for long times). Exponents near the GISS

value ξ (2)/2≈−0.2 are common; see e.g. Lovejoy et

al. (2013). From Fig. 2, we see that the ZC solar re-

sponse at ≈ 20 years is ±0.03 K, so this is an upper

bound for the internal variability at all scales longer than

≈ 20 years. However, over the range ≈ 50–500 years

(relevant for the subadditivity conclusion), the solar re-

sponse variability is considerably larger than this noise

value: from the graph, ≈±(10−0.8)/2≈±0.08 K.

We conclude that it is unlikely that the internal variability is

strong enough to account for the results.

In the ZC model, all forcings are input at the surface so that

here the subadditivity is due to the differing seasonality, fluc-

tuation intensities and spatial distributions of the solar and

volcanic forcings. In the GISS-E2-R GCM simulations, the

response to the solar forcing is too small to allow us to de-

termine whether it involves a similar solar–volcanic negative

feedback (Fig. 4). In vertically stratified atmospheres, i.e. in

GCMs or in the real atmosphere, non-additivity is perhaps

not surprising given the difference between the solar and

volcanic vertical heating profiles. If such negative feedbacks

are substantiated in further simulations, it would enhance the

credibility of the idea that current GCMs are missing critical

slow (multi-centennial, multi-millennial) climate processes.

No matter what the exact explanation, non-additivity under-

lines the limitations of the convenient reduction of climate

forcings to radiative forcing equivalents. It also indicates

that, at scales longer than about 50–200 years, energy bud-

get models must nonlinearly account for albedo–temperature
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Figure 4. A comparison of the Zebiak–Cane (ZC) model combined

(volcanic and solar forcing) response (bold, brown) with GISS-E2-

R simulations with solar-only forcing (red) and a control run (no

forcings, black), the GISS structure functions are for land, Northern

Hemisphere, reproduced from Lovejoy et al. (2013).

interactions (i.e. that linear energy budget models are inade-

quate at these timescales, and that albedo–temperature inter-

actions must at least be correctly parametrized).

Also shown for reference in Fig. 3a are the fluctuations

for three multiproxy estimates of annual Northern Hemi-

sphere temperatures (1500–1900, pre-industrial; Moberg et

al., 2005; Huang, 2004; Ljungqvist, 2010; analysis taken

from Lovejoy and Schertzer, 2012c). Although it should be

borne in mind that the ZC model region (the Pacific) does not

coincide with the proxy region (the Northern Hemisphere),

the latter is the best model validation available. In addition,

since we compare model and proxy fluctuation statistics as

functions of timescale, the fact that the spatial regions are

somewhat different is less important than if we had attempted

a direct year-by-year comparison of model outputs with the

multiproxy reconstructions.

In Fig. 3a, we see that the responses of the volcanic-only

and the combined volcanic and solar forcings fairly well re-

produce the RMS multiproxy statistics until≈ 50 years; how-

ever, at longer timescales, the model fluctuations are substan-

tially too weak – roughly 0.1 K (corresponding to ±0.05 K)

and constant or falling, whereas at 400-year scales, the RMS

multiproxy temperature fluctuations are ≈ 0.25 K (±0.125)

and rising. Indeed, in order to account for the ice ages,

they must continue to rise until ≈ 5 K (±2.5 K) at glacial–

interglacial scales of 50–100 kyr (the “glacial–interglacial

window”: according to palaeodata, this rise continues in a

smooth, power law manner withH > 0 until roughly 100 kyr;

see Lovejoy and Schertzer, 1986; Shackleton and Imbrie,

1990; Pelletier, 1998; Schmitt et al., 1995; Ashkenazy et al.,

2003; Huybers and Curry, 2006; Lovejoy et al., 2013).

In Fig. 4, we compare the RMS Haar fluctuations from the

ZC model combined (volcanic and solar forcing) response
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with those from simulations from the GISS-E2-R GCM with

solar-only forcing and a control run (no forcings, black; see

Lovejoy et al., 2013, for details; the GISS-E2-R solar forc-

ing was the same as the spliced series used in the ZC sim-

ulations). We see that the three are remarkably close over

the entire range; for the GISS model, this indicates that the

solar-only forcing is so small that the response is nearly the

same as for the unforced (control) run. The ZC combined

solar and volcanic forcing is clearly much weaker than the

pre-industrial multiproxies (dashed blue, same as in Fig. 3a).

The reference line with slope −0.2 shows the convergence

of the control to the model climate; the shallowness of the

slope (−0.2) implies that the convergence is ultra-slow. For

example, fluctuations from a 10-year run control run are only

reduced by a factor of (10/3000)−0.2
≈ 3 if the run is ex-

tended to 3 kyr.

Finally, in Fig. 5, we compare the responses to the vol-

canic forcings for the ZC model and for the GISS-E2-R

GCM for two different volcanic reconstructions (Gao et al.,

2008; Crowley, 2000; the latter reconstruction was used in

the ZC simulation. For reference, we again show the com-

bined ZC response and the pre-industrial multiproxies. We

see that the GISS GCM is much more sensitive to the vol-

canic forcing than the ZC model; indeed, it is too sensitive

at scales 1t <≈ 100, but nevertheless becomes too weak at

scales 1t ≈> 200 years. Indeed, since the volcanic forcings

continue to decrease with scale, we expect the responses to

keep diminishing with scale at larger 1t .

Note that for the spatial regions covered by the ZC simu-

lation, the GISS outputs and the multiproxy reconstructions

are not the same. For the latter, the reason is that there is no

perfectly appropriate (regionally defined) multiproxy series,

whereas for the GISS outputs we reproduced the structure

function analysis from a published source. Yet, the differ-

ences in the regions may not be so important since we are

only making statistical comparisons. This is especially true

since all the series are for planetary-scale temperatures (even

if they are not identical global-sized regions) and, in addition,

we are mostly interested in the 50-year (and longer) statistics,

and these may be quite similar.

4 Intermittency: a multifractal trace moment

analysis

4.1 The trace moment analysis technique

In the previous sections we considered the implications of

linearity when climate models were forced separately with

two different forcings compared with the response to the

combined forcing; we showed that the ZC model was sub-

additive. However, linearity also constrains the relation be-

tween the fluctuations in the forcings and the responses. For

example, at least since the work of Clement et al. (1996), in

the context of volcanic eruptions, it has been recognized that

the models are typically sensitive to weak forcing events but
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Figure 5. A comparison of the volcanic forcings for the ZC model

(bottom, green) and for the GISS-E2-R GCM for two different vol-

canic reconstructions (Gao et al., 2008; Crowley, 2000) (top green

curves, reproduced from Lovejoy et al., 2013). Also shown is the

combined response (ZC, brown) and the pre-industrial multiproxies

(dashed blue).

insensitive to strong ones (i.e. they are nonlinear), and Mann

et al. (2005) noticed this in their ZC simulations.

In a scaling regime, both forcings and responses will be

characterized by a hierarchy of exponents (i.e. the function

ξ (q) in Eq. (3) or equivalently by the exponent H and the

function K(q)), the differences in the statistics of weak and

strong events are reflected in these different exponents; high-

order moments (large q) are dominated by large fluctuations,

and vice versa for low-order moments. The degree of convex-

ity of K(q) quantifies the degree of these nonlinear effects

(indeed, how they vary over timescales 1t). Such “intermit-

tent” behaviour was first studied in the context of turbulence

(Kolmogorov, 1962; Mandelbrot, 1974).

In order to quantify this, recall that if the system is linear,

the response is a convolution of the system Green’s function

with the forcing; in spectral terms it acts as a filter. If it is

also scaling, then the filter is a power law: ω−H , where ω

is the frequency (mathematically, if T̃ (ω) and F̃ (ω) are the

Fourier transforms of the response and forcing, for a scal-

ing linear system, we have T̃ (ω)∝ω−H F̃ (ω); such a fil-

ter corresponds to a fractional integration of order H ). In

terms of fluctuations this implies 1T (1t)=1tH 1F (1t)

(assuming that the fluctuations are appropriately defined).

Therefore, by taking qth powers of both sides and ensem-

ble averaging, we see that in linear scaling systems we have

ξT (q)= q H + ξF (q) (compare Eq. 3 with ξT (q) and ξF (q),

the structure function exponents for the response and the

forcing, respectively). If ξT (q) and ξF (q) only differ by a

term linear in q, then KT (q)=KF (q), so that if we empiri-

cally find KT (q) 6=KF (q) (i.e. the intermittencies are differ-

ent) over some regime, then we may conclude that the system
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is nonlinear (note that this result is independent of whether

the linearity is deterministic or only statistical in nature).

Let us investigate the nonlinearity of the exponents by re-

turning to Eqs. (1)–(3) in more detail. Up until now we have

studied the statistical properties of the forcings and responses

using the RMS fluctuations; for example, we have used the

following equation but only for the value q = 2:

〈1T (1t)q〉 ∝ 〈ϕ
q

λ′
〉1tqH =1tξ (q)

; ξ (q)= qH −K(q). (6)

(See Eq. 1.) The exponent K(q) (implicitly defined in Eq. 3)

is given explicitly by

〈ϕ
q

λ′
〉 = λ′

K(q)
; λ′ =

τeff

1t
, (7)

where τeff is the effective outer scale of the multifractal cas-

cade process, ϕ gives rise to the strong variability and λ′ is

the cascade ratio from this outer scale to the scale of inter-

est 1t .

If the driving flux ϕ was quasi-Gaussian, then K(q)= 0,

ξ (q)= q H and the exponent ξ (2)= 2H =β −1 would be

sufficient for a complete characterization of the statistics.

However, geophysical series are often far from Gaussian;

even without statistical analysis, a visual inspection (the

“sharp spike” of varying amplitudes; see Fig. 1a) of the vol-

canic series makes it obvious that it is particularly extreme in

this regard. We expect – at least in this case – that the K(q)

term will readily be quite large (although note the constraint

K(1)= 0 and the mean of ϕ (the q = 1 statistic) is indepen-

dent of scale). To characterize this, note that since K(1)= 0,

we have ξ (1)=H and then use the first two derivatives of

ξ (q) at q = 1 to estimate the tangent (linear approximation)

to K(q) near the mean (C1) and the curvature of K(q) near

the mean characterized by α. This gives

C1 =K
′(1)=H − ξ ′(1)

α =K ′′(1)/K ′(1)= ξ ′′(1)/(ξ ′(1)−H )

}
. (8)

The parameters C1 and α are particularly convenient since

– thanks to a kind of multiplicative central limit theorem –

there exist multifractal universality classes (Schertzer and

Lovejoy, 1987). For such universal multifractal processes,

the exponent functionK(q) can be entirely (i.e. not only near

q = 1) characterized by the same two parameters:

K(q)=
C1

α− 1

(
q∝− q

)
; 0≤ α ≤ 2. (9)

In the universality case (Eq. 9), it can be checked that the

estimate in Eq. (8) (near the mean) is satisfied, so that C1 and

α characterize all the statistical moments (actually, Eqs. 6

and 7 are only valid for q <qc; for q >qc, the above will

break down due to multifractal phase transitions; the critical

qc is typically > 2, so that here we confine our analyses to

q ≤ 2 and do not discuss the corresponding extreme – large q

– behaviour).

A drawback of the above fluctuation method for using ξ (q)

to estimate K(q) (Eq. 6) is that if C1 is not too big, then for

the low-order moments q, the exponent ξ (q) may be domi-

nated by the linear (q H ) term, so that the multifractal part

(K(q)) of the scaling is not too apparent. A simple way of

directly studying K(q) is to transform the original series so

as to estimate the flux ϕ at a small scale, essentially remov-

ing the (q H ) part of the exponent. It can then be degraded by

temporal averaging and the scaling of the various statistical

moments – the exponents K(q) – can be estimated directly.

To do this, we divide Eq. (1) by its ensemble average so as to

estimate the normalized flux at the highest resolution by

ϕ′ =
ϕ

〈ϕ〉
=

1T

〈1T 〉
, (10)

where the ensemble average (“〈 〉”) is estimated by averaging

over the available data (here a single series), and the fluctua-

tions 1t are estimated at the finest resolution (here 1 year).

4.2 Trace moment analysis of forcings, responses and

multiproxies

We now test Eq. (7); for convenience, we use the symbol λ

as the ratio of a convenient reference scale – here the length

of the series, τref= 1000 years, to the resolution scale1t (for

some analyses, 400 years was used instead; see the captions

in Fig. 6). In an empirical study, the outer scale τeff is not

known a priori and must be empirically estimated; denote

the scale at which the cascade starts by λ′.

Starting with Eq. (7), the basic prediction of multiplicative

cascades is that the normalized moments ϕ′ (Eq. 10) obey the

generic multiscaling relation:

M(q)=〈ϕ′
q
λ〉 = λ

′K(q)
=

(τeff

1t

)K(q)

=

(
λ

λeff

)K(q)

;

λ′ =
τeff

1t
=

λ

λeff

; λeff =
τref

τeff

. (11)

We can see that τeff can readily be empirically estimated

since a plot of log10M versus log10 λ will have lines (one

for each q, slopeK(q)) converging at the outer scale λ= λeff

(although, for a single realization such as here, the outer

scale will be poorly estimated. This is because for a single

sample (series) there is clearly no variability at the longest

timescales; there is a single long-term value that generally

poorly represents the ensemble mean). Figure 6a shows the

results when 1T is estimated by the absolute second dif-

ference at the finest resolution. The solar forcing (upper

right) was only shown for the recent period (1600–2000)

over which the higher-resolution sunspot-based reconstruc-

tion was used; the earlier 1000–1600 part was based on a

(too) low-resolution 10Be “splice” as discussed above (see

Fig. 2b). In the solar plot (upper left), but especially in the

volcanic forcing plot (upper right), we see that the scaling is

excellent over nearly the entire range (the points are nearly
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Figure 6. (a) Analysis of the flux/cascade structures of the ZC forcings (top row) and ZC temperature responses (middle, bottom rows); the

normalized trace moments (Eq. 11) are plotted for q = 2, 1.9, 1.8, 1.7, 1.6, . . . 0.1. Upper left is solar forcing (last 400 years only, mostly

sunspot-based), upper right is volcanic, middle left is solar response (last 400 years), and middle right (volcanic response) and lower left

are response to combined forcings (last 1000 years). Note that all axes are the same except for volcanic. For solar, only the last 400 years

were used since this was reconstructed using the more reliable sunspot-based method. The earlier 10Be-based reconstruction had relatively

poor resolution and is not shown. Since the volcanic variability was so dominant, for the combined response (bottom left) the entire series

was used. The red points and lines are the empirical values, and the blue lines are regressions constrained to go through a single outer scale

point (see Eq. 11). In comparing the different parts of the figure, note in particular (i) the log–log linearity for different statistical moments,

(ii) the fact that the lines for different moments reasonably cross at a single outer scale, and (iii) the overall amplitude of the fluctuations –

for example by visually comparing the range of the q = 2 moments (the top series) as we move from one graph to another. (b) The above

shows the responses for the GISS-E2-R simulations (Northern Hemisphere, land, 1500–1900); λ= 1 corresponds to 400 years. The upper

left is for the response to the Crowley reconstructed volcanic forcings (same as used in the ZC simulations, not the change in the vertical

scale), the upper right for the Gao reconstructed volcanic forcings and the lower left is for the solar-only forcing (mostly sunspot-based,

same as used in the ZC simulations). (c) Trace moment analysis of six annual resolution multiproxies, J: Jones; Ma: Mann 98; B: Briffa; C:

Crowley; Mo: Moberg; H: Huang. The curves are reproduced, with permission, from Fig. 11.8 of Lovejoy and Schertzer (2013), where full

details and references are given. All were for the pre-industrial period AD 1500–1900; λ= 1 corresponds to 400 years. The curve shows the

generic convergence of the envelope of curves to a quasi-Gaussian process; the proximity of the curve to the envelope indicates that, with the

possible exception of the Mann curve, the intermittency is low.
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Table 1. The scaling exponent estimates for the forcings and ZC model responses.

Forcings Responses Control runs

Solar Volcanic Solar Volcanic Combined GISS ECHAM5

H 0.40 −0.21 0.031 −0.17 −0.15 −0.26 −0.4

C1 0.095 0.48 0.022 0.054 0.038 < 0.01 < 0.01

α 1.04 0.31 1.82 2.0 2.0 – –

ξ (2)/2 0.33 −0.47 −0.01 −0.28 −0.23 < 0.01 < 0.01

β 1.66 0.06 0.98 0.44 0.54 0.47 0.2

τeff 630 years 300 years 100 years 100 years 250 years – –

Table 1 shows the scaling exponent estimates for the forcings and ZC model responses. For solar (forcing and response), only the recent

400-year (sunspot-based) series were used; for the others, the entire 1000-year range was used (see Fig. 6a). The RMS exponent was

estimated from Eqs. (6) and (9): H was estimated from the Haar fluctuations, and α and C1 were estimated from the trace moments

(Fig. 6a). Note that the external cascade scales are unreliable since they were estimated from a single realization. The control runs on the

right are for the GISS-E2-R model discussed in the text and (ECHAM5) from the fully coupled COSMOS-ASOB millennium long-term

simulations based on the Hamburg ECHAM5 model for AD 800–4000.

linear) and, in addition, the lines plausibly “point” (i.e. cross)

at a unique outer scale λ= λeff, which is not far from the

length of the series; see Table 1 for estimates of the corre-

sponding timescales. From these plots we see that the re-

sponses to the volcanic forcing “spikiness” (intermittency)

are much stronger than to the corresponding responses to

the weaker solar “spikiness”. The model atmosphere there-

fore considerably dampens the intermittency, but in addition

this effect is highly nonlinear, so that the intermittency of the

combined volcanic and solar forcing (bottom left) is actu-

ally a little less than the volcanic-only intermittency (bottom

right). Table 1 gives a quantitative characterization of the in-

termittency strength near the mean, using the C1 parameter.

It is interesting at this stage to compare the intermit-

tency of the ZC outputs with those of the GISS-E2-R GCM

(Fig. 6b) and with multiproxy temperature reconstructions

(Fig. 6c). In Fig. 6b, we see that the GISS-E2-R trace mo-

ments rapidly die off at large scales (small λ), so that the

intermittency is limited to small scales to the right of the

convergence point. In this figure, we see that the lines con-

verge at log10 λ≈ 1.1–1.5, corresponding to τeff in the range

roughly 10–30 years. Since the intermittency builds up scale

by scale from large scales modulating smaller scales in a hi-

erarchical manner, and since this range of scales is small, the

intermittency will be small. The partial exception is for the

upper right plot, which is for the GISS-E2-R response to the

large Gao volcanic forcing (recall that the ZC model uses the

weaker, Crowley volcanic reconstruction, whose response is

strongly intermittent; see Fig. 6b, the upper left plot). This

result shows that, contrary to the ZC model, whose response

is strongly intermittent (highly non-Gaussian) over most of

the range of timescales, the GISS-E2-R response is nearly

Gaussian, implying that the (highly non-Gaussian) forcings

are quite heavily (nonlinearly) damped.

This difference in the model responses to the forcing inter-

mittency is already interesting, but it does not settle the ques-

tion as to which model is more realistic. To attempt to an-

swer this question, we turn to Fig. 6c, which shows the trace

moment analysis for six multiproxy temperature reconstruc-

tions over the same (pre-industrial) period as the GISS-E2-R

model (1500–1900; unlike the ZC model, the GISS-E2-R in-

cluded anthropogenic forcings, so that the period since 1900

was not used in the GISS-E2-R analysis). Statistical com-

parisons of nine multiproxies were made in Ch. 11 of Love-

joy and Schertzer (2013) (for reasons of space, only six of

these are shown in Fig. 6c), where it was found that the pre-

2003 multiproxies had significantly smaller multicentennial

and lower-frequency variability than the more recent multi-

proxies used as reference in Figs. 4 and 5. However, Fig. 6c

shows that the intermittencies are all quite low (with the par-

tial exception of the Mann series; see the upper right plot).

This conclusion is supported by the comparison with the red

curves. These curves indicate the generic envelope of trace

moments of quasi-Gaussian processes; for q ≤ 2 it shows

how the latter converge (at large scales, small λ, to the left)

to the flat (K(q)= 0) Gaussian limit. We see that the actual

lines are only slightly outside this envelope showing that they

are only marginally more variable than quasi-Gaussian pro-

cesses.

The comparison of the GISS-E2-R outputs (Fig. 6b) with

the multiproxies (Fig. 6c) indicates that they are both of

low intermittency and are more similar to each other than

to the ZC multiproxy statistics. One is therefore tempted

to conclude that the GISS-E2-R model is more realis-

tic than the ZC model with its much stronger intermit-

tency. However, this conclusion may be premature since

the low multiproxy and GISS intermittencies may be due

to limitations of both the multiproxies and the GISS-E2-R

model. Multicentennial- and multimillennial-scale ice core

analyses display significant palaeotemperature intermittency

(C1≈ 0.05–0.1; Schmitt et al., 1995; see the discussion in

Ch. 11 of Lovejoy and Schertzer, 2013), so that the multi-

proxies may be insufficiently intermittent.
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5 Conclusions

From the point of view of GCMs, climate change is a con-

sequence of changing boundary conditions (including com-

position); the latter are the climate forcings. Since forcings

of interest (such as anthropogenic forcings) are typically of

the order of 1 % of the mean solar input, the responses are

plausibly linear. This justifies the reduction of the forcings to

a convenient common denominator: the “equivalent radiative

forcing” – a concept which is useful only if different forc-

ings add linearly, if they are “additive”. An additional conse-

quence of linearity is that the climate sensitivities are inde-

pendent of whether the fluctuations in the forcings are weak

or strong. Both consequences of linearity clearly have their

limits. For example, at millennial and longer scales, energy

balance models commonly discard linearity altogether and

assume that nonlinear albedo responses to orbital changes

are dominant. Similarly, at monthly and annual scales, the

linearity of the climate sensitivity has been questioned in the

context of sharp, strong volcanic forcings.

In view of the widespread use of the linearity assumption,

it is important to quantitatively establish its limits, and this

can best be done using numerical climate models. A partic-

ularly convenient context is provided by the last millennium

simulations, which (in the pre-industrial epoch) are primar-

ily driven by the physically distinct solar and volcanic forc-

ings (forcings due to land use changes are very weak). The

ideal case would be to have a suite of the responses of fully

coupled GCMs which include solar-only, volcanic-only and

combined solar and volcanic forcings and control runs (for

the internal variability) so that the responses could be eval-

uated both individually and when combined. Unfortunately,

the optimal set of GCM products consists of the GISS E2-R

millennium simulations with solar-only and solar plus vol-

canic forcing and a control run (this suite is missing the

volcanic-only responses). We therefore also considered the

outputs of a simplified climate model, the ZC model (Mann

et al., 2005), for which the full suite of external forcing re-

sponse was available.

Following a previous study, we first quantified the variabil-

ity in the forcings as a function of timescale by considering

fluctuations. These were estimated by using the difference

between the averages of the first and second halves of inter-

vals 1t (“Haar” fluctuations). This definition was necessary

in order to capture the two qualitatively different regimes,

namely those in which the average fluctuations increase with

timescale (H > 0) and those in which they decrease with

scale (H < 0). Whereas the solar forcing was small at an-

nual scales, it generally increased with scale. In compari-

son, the volcanic forcing was very strong at annual scales

but rapidly decreased, with the two becoming roughly equal

at about 200 years. By considering the response to the com-

bined forcing we were then able to examine and quantify

their non-additivity (nonlinearity). By direct analysis (Fig. 3b

and c), it was found that, in the ZC model, additivity of

the radiative forcings only works up until roughly 50-year

scales; at 400-year scales, there are negative feedback inter-

actions between the solar and volcanic forcings that reduce

the combined effect by a factor of≈ 1.5–2. This “subadditiv-

ity” makes their combined effects particularly weak at these

scales. Although this result seems statistically robust for the

ZC millennium simulations, until the source of the nonlinear-

ity is pin-pointed and the results reproduced with full-blown

coupled GCMs, they must be considered tentative (the con-

clusions would also be strengthened if ZC control runs out-

put were available to estimate the internal variability); many

more simulations with diverse forcings are needed to com-

pletely settle the issue.

In order to investigate possible nonlinear responses to

sharp, strong events (such as volcanic eruptions), we used

the fact that if the system is linear and scaling, then the dif-

ference between the structure function exponents (ξ (q)) for

the forcings and responses is itself a linear function of the

order of moment q (moments with large q are mostly sensi-

tive to the rare large values, and small q moments are dom-

inated by the frequent low values). By using the trace mo-

ment analysis technique, we isolated the nonlinear part of

ξ (q) (i.e. the function K(q)), which quantifies the intermit-

tent (multifractal, highly non-Gaussian) part of the variabil-

ity (associated with the “spikiness” of the signal). Unsurpris-

ingly we showed that the volcanic intermittency was much

stronger than the solar intermittency but that, in both cases,

the model responses were highly smoothed and were practi-

cally nonintermittent (close to Gaussian). We concluded that

the model responses to sharp, strong events were not char-

acterized by the same sensitivity as responses to the more

common weaker forcing events.

By examining model outputs, we have found evidence that

the response of the climate system is reasonably linear with

respect to the forcing up to timescales of 50 years at least

for weak (i.e. not sharp, intermittent) events. But the sharp,

intermittent events such as volcanic eruptions that occasion-

ally disrupt the linearity at shorter timescales become rapidly

weaker at longer and longer timescales (with scaling expo-

nent H ≈−0.3). In practice, linear stochastic models may

therefore be valid over most of the macroweather range, from

≈ 10 days to over 50 years. However, given their potential

importance, it would be worth designing specific coupled cli-

mate model experiments in order to investigate this further.
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