Articles | Volume 5, issue 2
https://doi.org/10.5194/esd-5-257-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esd-5-257-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Bimodality of woody cover and biomass across the precipitation gradient in West Africa
Z. Yin
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
S. C. Dekker
Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
B. J. J. M. van den Hurk
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
H. A. Dijkstra
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
Related authors
M. Baudena, S. C. Dekker, P. M. van Bodegom, B. Cuesta, S. I. Higgins, V. Lehsten, C. H. Reick, M. Rietkerk, S. Scheiter, Z. Yin, M. A. Zavala, and V. Brovkin
Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, https://doi.org/10.5194/bg-12-1833-2015, 2015
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Geosci. Model Dev., 7, 821–845, https://doi.org/10.5194/gmd-7-821-2014, https://doi.org/10.5194/gmd-7-821-2014, 2014
Francesco Guardamagna, Claudia Wieners, and Henk Dijkstra
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-24, https://doi.org/10.5194/npg-2024-24, 2024
Preprint under review for NPG
Short summary
Short summary
Artificial intelligence (AI) has recently shown promising results in ENSO (El Niño Southern Oscillation) forecasting, outperforming traditional models. Yet, AI models deliver accurate predictions without showing the underlying mechanisms. Our study examines a specific AI model, the Reservoir Computer (RC). Our results show that the RC is less sensitive to initial perturbations than the traditional Zebiak and Cane (ZC) model. This reduced sensitivity can explain the RC's superior skills.
Bouke Biemond, Wouter Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-2322, https://doi.org/10.5194/egusphere-2024-2322, 2024
Short summary
Short summary
We study salinity in estuaries which consist of a network of channels. To this end, we develop a model which computes the flow and salinity in such systems. We use the model to quantify by which mechanisms salt is transported in estuarine networks, the response to changes in river discharge, and the impact of depth changes. Results e.g. show that when changing the depth of a channel, effects on salt intrusion in other channels in the network can be larger than the effect on the channel itself.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024, https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary
Short summary
We might be able to constrain uncertainty in future climate projections by investigating variations in the climate of the past. In this study, we investigate the interactions of climate variability between the tropical Pacific (El Niño) and the North Pacific in a warm past climate – the mid-Pliocene, a period roughly 3 million years ago. Using model simulations, we find that, although the variability in El Niño was reduced, the variability in the North Pacific atmosphere was not.
Amber A. Boot and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-2431, https://doi.org/10.5194/egusphere-2024-2431, 2024
Short summary
Short summary
The ocean is forced at the surface by a heat flux and freshwater flux. This noise can influence long-term ocean variability and the large scale circulation. Here we study noise characteristics in reanalysis data for these fluxes. We try to capture the noise characteristics by using several noise models and compare these to state-of-the-art climate models. A point wise noise model performs better than the climate models and can be used as forcing in ocean-only models to study.
Sacha Sinet, Peter Ashwin, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 859–873, https://doi.org/10.5194/esd-15-859-2024, https://doi.org/10.5194/esd-15-859-2024, 2024
Short summary
Short summary
Some components of the Earth system may irreversibly collapse under global warming. Among them, the Atlantic Meridional Overturning Circulation (AMOC), the Greenland Ice Sheet, and West Antarctica Ice Sheet are of utmost importance for maintaining the present-day climate. In a simplified model, we show that both the rate of ice melting and the natural variability linked to freshwater fluxes over the Atlantic Ocean drastically affect how an ice sheet collapse impacts the AMOC stability.
Julia E. Weiffenbach, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Alan M. Haywood, Stephen J. Hunter, Xiangyu Li, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, Ning Tan, Julia C. Tindall, and Zhongshi Zhang
Clim. Past, 20, 1067–1086, https://doi.org/10.5194/cp-20-1067-2024, https://doi.org/10.5194/cp-20-1067-2024, 2024
Short summary
Short summary
Elevated atmospheric CO2 concentrations and a smaller Antarctic Ice Sheet during the mid-Pliocene (~ 3 million years ago) cause the Southern Ocean surface to become fresher and warmer, which affects the global ocean circulation. The CO2 concentration and the smaller Antarctic Ice Sheet both have a similar and approximately equal impact on the Southern Ocean. The conditions of the Southern Ocean in the mid-Pliocene could therefore be analogous to those in a future climate with smaller ice sheets.
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 20, 549–567, https://doi.org/10.5194/os-20-549-2024, https://doi.org/10.5194/os-20-549-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component in the global climate system. Observations of the present-day AMOC indicate that it may weaken or collapse under global warming, with profound disruptive effects on future climate. However, AMOC weakening is not correctly represented because an important feedback is underestimated due to biases in the Atlantic's freshwater budget. Here we address these biases in several state-of-the-art climate model simulations.
Arie Staal, Pim Meijer, Maganizo Kruger Nyasulu, Obbe A. Tuinenburg, and Stefan C. Dekker
EGUsphere, https://doi.org/10.5194/egusphere-2024-790, https://doi.org/10.5194/egusphere-2024-790, 2024
Short summary
Short summary
Many areas across the globe rely on upwind land areas for their precipitation supply through terrestrial precipitation recycling. Here we simulate global precipitation recycling in four climate- and land-use scenarios until 2100. We find that global terrestrial moisture recycling decreases by 2.1 % with every degree of global warming, but with strong regional differences.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Aarnout J. van Delden, and Henk A. Dijkstra
Weather Clim. Dynam., 5, 395–417, https://doi.org/10.5194/wcd-5-395-2024, https://doi.org/10.5194/wcd-5-395-2024, 2024
Short summary
Short summary
The mid-Pliocene, a geological period around 3 million years ago, is sometimes considered the best analogue for near-future climate. It saw similar CO2 concentrations to the present-day but also a slightly different geography. In this study, we use climate model simulations and find that the Northern Hemisphere winter responds very differently to increased CO2 or to the mid-Pliocene geography. Our results weaken the potential of the mid-Pliocene as a future climate analogue.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Amber Adore Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-30, https://doi.org/10.5194/esd-2023-30, 2023
Revised manuscript accepted for ESD
Short summary
Short summary
We investigate the multiple equilibria window (MEW) of the Atlantic Meridional Overturning Circulation (AMOC) within a box model. We find that increasing the total carbon content of the system widens the MEW of the AMOC. The important mechanisms at play are the balance between the source and sink of carbon and the sensitivity of the AMOC to freshwater forcing over the Atlantic Ocean. Our results suggest that changes in the marine carbon cycle can influence AMOC stability in future climates.
Mohsen Soltani, Bert Hamelers, Abbas Mofidi, Christopher G. Fletcher, Arie Staal, Stefan C. Dekker, Patrick Laux, Joel Arnault, Harald Kunstmann, Ties van der Hoeven, and Maarten Lanters
Earth Syst. Dynam., 14, 931–953, https://doi.org/10.5194/esd-14-931-2023, https://doi.org/10.5194/esd-14-931-2023, 2023
Short summary
Short summary
The temporal changes and spatial patterns in precipitation events do not show a homogeneous tendency across the Sinai Peninsula. Mediterranean cyclones accompanied by the Red Sea and Persian troughs are responsible for the majority of Sinai's extreme rainfall events. Cyclone tracking captures 156 cyclones (rainfall ≥10 mm d-1) either formed within or transferred to the Mediterranean basin precipitating over Sinai.
Valérian Jacques-Dumas, René M. van Westen, Freddy Bouchet, and Henk A. Dijkstra
Nonlin. Processes Geophys., 30, 195–216, https://doi.org/10.5194/npg-30-195-2023, https://doi.org/10.5194/npg-30-195-2023, 2023
Short summary
Short summary
Computing the probability of occurrence of rare events is relevant because of their high impact but also difficult due to the lack of data. Rare event algorithms are designed for that task, but their efficiency relies on a score function that is hard to compute. We compare four methods that compute this function from data and measure their performance to assess which one would be best suited to be applied to a climate model. We find neural networks to be most robust and flexible for this task.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Amber Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 1041–1058, https://doi.org/10.5194/esd-13-1041-2022, https://doi.org/10.5194/esd-13-1041-2022, 2022
Short summary
Short summary
Atmospheric pCO2 of the past shows large variability on different timescales. We focus on the effect of the strength of Atlantic Meridional Overturning Circulation (AMOC) on this variability and on the AMOC–pCO2 relationship. We find that climatic boundary conditions and the representation of biology in our model are most important for this relationship. Under certain conditions, we find internal oscillations, which can be relevant for atmospheric pCO2 variability during glacial cycles.
Mikael L. A. Kaandorp, Stefanie L. Ypma, Marijke Boonstra, Henk A. Dijkstra, and Erik van Sebille
Ocean Sci., 18, 269–293, https://doi.org/10.5194/os-18-269-2022, https://doi.org/10.5194/os-18-269-2022, 2022
Short summary
Short summary
A large amount of marine litter, such as plastics, is located on or around beaches. Both the total amount of this litter and its transport are poorly understood. We investigate this by training a machine learning model with data of cleanup efforts on Dutch beaches between 2014 and 2019, obtained by about 14 000 volunteers. We find that Dutch beaches contain up to 30 000 kg of litter, largely depending on tides, oceanic transport, and how exposed the beaches are.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
André Jüling, Anna von der Heydt, and Henk A. Dijkstra
Ocean Sci., 17, 1251–1271, https://doi.org/10.5194/os-17-1251-2021, https://doi.org/10.5194/os-17-1251-2021, 2021
Short summary
Short summary
On top of forced changes such as human-caused global warming, unforced climate variability exists. Most multidecadal variability (MV) involves the oceans, but current climate models use non-turbulent, coarse-resolution oceans. We investigate the effect of resolving important turbulent ocean features on MV. We find that ocean heat content, ocean–atmosphere heat flux, and global mean surface temperature MV is more pronounced in the higher-resolution model relative to higher-frequency variability.
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam., 12, 819–835, https://doi.org/10.5194/esd-12-819-2021, https://doi.org/10.5194/esd-12-819-2021, 2021
Short summary
Short summary
Tipping of one climate subsystem could trigger a cascade of subsequent tipping points and even global-scale climate tipping. Sequential shifts of atmosphere, sea ice and ocean have been recorded in proxy archives of past climate change. Based on this we propose a conceptual model for abrupt climate changes of the last glacial. Here, rate-induced tipping enables tipping cascades in systems with relatively weak coupling. An early warning signal is proposed that may detect such a tipping.
André Jüling, Xun Zhang, Daniele Castellana, Anna S. von der Heydt, and Henk A. Dijkstra
Ocean Sci., 17, 729–754, https://doi.org/10.5194/os-17-729-2021, https://doi.org/10.5194/os-17-729-2021, 2021
Short summary
Short summary
We investigate how the freshwater budget of the Atlantic changes under climate change, which has implications for the stability of the Atlantic Meridional Overturning Circulation. We compare the effect of ocean model resolution in a climate model and find many similarities between the simulations, enhancing trust in the current generation of climate models. However, ocean biases are reduced in the strongly eddying simulation, and significant local freshwater budget differences exist.
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021, https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Short summary
This paper proposes two improvements to the use of Trajectory-Adaptive Multilevel Sampling, a rare-event algorithm which computes noise-induced transition probabilities. The first improvement uses locally linearised dynamics in order to reduce the arbitrariness associated with defining what constitutes a transition. The second improvement uses empirical transition paths accumulated at high noise in order to formulate the score function which determines the performance of the algorithm.
Amber Boot, René M. van Westen, and Henk A. Dijkstra
Ocean Sci., 17, 335–350, https://doi.org/10.5194/os-17-335-2021, https://doi.org/10.5194/os-17-335-2021, 2021
Short summary
Short summary
The Maud Rise polynya is a hole in the sea ice surrounding Antarctica that occurs during winter. It appeared in 2016 and 2017. Our study concludes that heat and salt accumulation around 1000 m depth are likely to be important for polynya formation. The heat is mixed upward to the surface where it is able to melt the sea ice and, thus, create a polynya. How often the polynya forms depends largely on the variation in the time of the heat and salt accumulation.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021, https://doi.org/10.5194/npg-28-43-2021, 2021
Short summary
Short summary
Fluid parcels transported in complicated flows often contain subsets of particles that stay close over finite time intervals. We propose a new method for detecting finite-time coherent sets based on the density-based clustering technique of ordering points to identify the clustering structure (OPTICS). Unlike previous methods, our method has an intrinsic notion of coherent sets at different spatial scales. OPTICS is readily implemented in the SciPy sklearn package, making it easy to use.
Carine G. van der Boog, J. Otto Koetsier, Henk A. Dijkstra, Julie D. Pietrzak, and Caroline A. Katsman
Earth Syst. Sci. Data, 13, 43–61, https://doi.org/10.5194/essd-13-43-2021, https://doi.org/10.5194/essd-13-43-2021, 2021
Short summary
Short summary
Thermohaline staircases are stepped structures in the ocean that contain enhanced diapycnal salt and heat transport. In this study, we present a global dataset of thermohaline staircases derived from 487 493 observations of Argo profiling floats and Ice-Tethered Profilers using a novel detection algorithm.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 16, 1443–1457, https://doi.org/10.5194/os-16-1443-2020, https://doi.org/10.5194/os-16-1443-2020, 2020
Short summary
Short summary
During the mid-1970s and quite recently in 2017, a large open-water area appeared in the Antarctic sea-ice pack, the so-called Maud Rise polynya. From several model studies, the reoccurrence time of this polynya seems arbitrary. In this study, we address the reoccurrence time of the polynya using a high-resolution climate model. We find a preferred multidecadal return time in polynya formation. The return time of the polynya is associated with a large-scale ocean mode in the Southern Ocean.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020, https://doi.org/10.5194/npg-27-501-2020, 2020
Short summary
Short summary
The surface transport of heat, nutrients and plastic in the North Atlantic Ocean is organized into large-scale flow structures. We propose a new and simple method to detect such features in ocean drifter data sets by identifying groups of trajectories with similar dynamical behaviour using network theory. We successfully detect well-known regions such as the Subpolar and Subtropical gyres, the Western Boundary Current region and the Caribbean Sea.
René M. van Westen and Henk A. Dijkstra
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-33, https://doi.org/10.5194/os-2020-33, 2020
Revised manuscript not accepted
Short summary
Short summary
In 2016 and 2017, an open-water area emerged within the Antarctic sea-ice pack, the so-called Maud Rise polynya. The opening of the sea ice has been linked to intense winter storms. In this study, we investigate another important contributor to polynya formation by analysing subsurface static instabilities. These static instabilities initiate subsurface convection near Maud Rise. We conclude that apart from winter storms, subsurface convection plays an important role in polynya formation.
Ann Kristin Klose, René M. van Westen, and Henk A. Dijkstra
Ocean Sci., 16, 435–449, https://doi.org/10.5194/os-16-435-2020, https://doi.org/10.5194/os-16-435-2020, 2020
Short summary
Short summary
We give an explanation of the decadal timescale path variations in the Kuroshio Current in the North Pacific based on highly detailed climate
model simulations.
Carine G. van der Boog, Julie D. Pietrzak, Henk A. Dijkstra, Nils Brüggemann, René M. van Westen, Rebecca K. James, Tjeerd J. Bouma, Riccardo E. M. Riva, D. Cornelis Slobbe, Roland Klees, Marcel Zijlema, and Caroline A. Katsman
Ocean Sci., 15, 1419–1437, https://doi.org/10.5194/os-15-1419-2019, https://doi.org/10.5194/os-15-1419-2019, 2019
Short summary
Short summary
We use a model of the Caribbean Sea to study how coastal upwelling along Venezuela impacts the evolution of energetic anticyclonic eddies. We show that the anticyclones grow by the advection of the cold upwelling filaments. These filaments increase the density gradient and vertical shear of the anticyclones. Furthermore, we show that stronger upwelling results in stronger eddies, while model simulations with weaker upwelling contain weaker eddies.
Henk A. Dijkstra
Nonlin. Processes Geophys., 26, 359–369, https://doi.org/10.5194/npg-26-359-2019, https://doi.org/10.5194/npg-26-359-2019, 2019
Short summary
Short summary
I provide a personal view on the role of bifurcation analysis of climate models in the development of a theory of variability in the climate system. By outlining the state of the art of the methodology and by discussing what has been done and what has been learned from a hierarchy of models, I will argue that there are low-order phenomena of climate variability, such as El Niño and the Atlantic Multidecadal Oscillation.
John O'Connor, Maria J. Santos, Karin T. Rebel, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 23, 3917–3931, https://doi.org/10.5194/hess-23-3917-2019, https://doi.org/10.5194/hess-23-3917-2019, 2019
Short summary
Short summary
The Amazon rainforest has undergone extensive land use change, which greatly reduces the rate of evapotranspiration. Forest with deep roots is replaced by agriculture with shallow roots. The difference in rooting depth can greatly reduce access to water, especially during the dry season. However, large areas of the Amazon have a sufficiently shallow water table that may provide access for agriculture. We used remote sensing observations to compare the impact of deep and shallow water tables.
Juan-Manuel Sayol, Henk Dijkstra, and Caroline Katsman
Ocean Sci., 15, 1033–1053, https://doi.org/10.5194/os-15-1033-2019, https://doi.org/10.5194/os-15-1033-2019, 2019
Short summary
Short summary
This work uses high-resolution ocean model data to quantify the sinking of waters in the subpolar North Atlantic. The largest amount of sinking is found at the depth of maximum AMOC at 45° N below the mixed layer depth, and 90 % of the sinking occurs near the boundaries in the first 250 km off the shelf. The characteristics of the sinking (total amount, seasonal variability, and vertical structure) vary largely according to the region considered, revealing a complex picture for the sinking.
Koen G. Helwegen, Claudia E. Wieners, Jason E. Frank, and Henk A. Dijkstra
Earth Syst. Dynam., 10, 453–472, https://doi.org/10.5194/esd-10-453-2019, https://doi.org/10.5194/esd-10-453-2019, 2019
Short summary
Short summary
We use the climate-economy model DICE to perform a cost–benefit analysis of sulfate geoengineering, i.e. producing a thin artificial sulfate haze in the higher atmosphere to reflect some sunlight and cool the Earth.
We find that geoengineering can increase future welfare by reducing global warming, and should be taken seriously as a policy option, but it can only complement, not replace, carbon emission reduction. The best policy is to combine CO2 emission reduction with modest geoengineering.
Rémon M. Saaltink, Maria Barciela-Rial, Thijs van Kessel, Stefan C. Dekker, Hugo J. de Boer, Claire Chassange, Jasper Griffioen, Martin J. Wassen, and Johan C. Winterwerp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-194, https://doi.org/10.5194/hess-2019-194, 2019
Revised manuscript not accepted
Short summary
Short summary
This paper focusses on exploring an alternative approach that uses natural processes, rather than a technological solution, to speed up drainage of soft sediment. In a controlled column experiment, we studied how Phragmites australis can act as an ecological engineer that enhances drainage. The presented results provide information needed for predictive modelling of plants as ecological engineers to speed up soil forming processes in the construction of wetlands with soft cohesive sediment.
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Mark M. Dekker, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1243–1260, https://doi.org/10.5194/esd-9-1243-2018, https://doi.org/10.5194/esd-9-1243-2018, 2018
Short summary
Short summary
We introduce a framework of cascading tipping, i.e. a sequence of abrupt transitions occurring because a transition in one system affects the background conditions of another system. Using bifurcation theory, various types of these events are considered and early warning indicators are suggested. An illustration of such an event is found in a conceptual model, coupling the North Atlantic Ocean with the equatorial Pacific. This demonstrates the possibility of events such as this in nature.
Matthias Aengenheyster, Qing Yi Feng, Frederick van der Ploeg, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1085–1095, https://doi.org/10.5194/esd-9-1085-2018, https://doi.org/10.5194/esd-9-1085-2018, 2018
Short summary
Short summary
We determine the point of no return (PNR) for climate change, which is the latest year to take action to reduce greenhouse gases to stay, with a certain probability, within thresholds set by the Paris Agreement. For a 67 % probability and a 2 K threshold, the PNR is the year 2035 when the share of renewable energy rises by 2 % per year. We show the impact on the PNR of the speed by which emissions are cut, the risk tolerance, climate uncertainties and the potential for negative emissions.
Femke J. M. M. Nijsse and Henk A. Dijkstra
Earth Syst. Dynam., 9, 999–1012, https://doi.org/10.5194/esd-9-999-2018, https://doi.org/10.5194/esd-9-999-2018, 2018
Short summary
Short summary
State-of-the-art climate models sometimes differ in their prediction of key aspects of climate change. The technique of
emergent constraintsuses observations of current climate to improve those predictions, using relationships between different climate models. Our paper first classifies the different uses of the technique, and continues with proposing a mathematical justification for their use. We also highlight when the application of emergent constraints might give biased predictions.
Peter D. Nooteboom, Qing Yi Feng, Cristóbal López, Emilio Hernández-García, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 969–983, https://doi.org/10.5194/esd-9-969-2018, https://doi.org/10.5194/esd-9-969-2018, 2018
Short summary
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Maarten C. Braakhekke, Karin T. Rebel, Stefan C. Dekker, Benjamin Smith, Arthur H. W. Beusen, and Martin J. Wassen
Earth Syst. Dynam., 8, 1121–1139, https://doi.org/10.5194/esd-8-1121-2017, https://doi.org/10.5194/esd-8-1121-2017, 2017
Short summary
Short summary
Nitrogen input in natural ecosystems usually has a positive effect on plant growth. However, too much N causes N leaching, which contributes to water pollution. Using a global model we estimated that N leaching from natural lands has increased by 73 % during the 20th century, mainly due to rising N deposition from the atmosphere caused by emissions from fossil fuels and agriculture. Climate change and increasing CO2 concentration had positive and negative effects (respectively) on N leaching.
Inti Pelupessy, Ben van Werkhoven, Arjen van Elteren, Jan Viebahn, Adam Candy, Simon Portegies Zwart, and Henk Dijkstra
Geosci. Model Dev., 10, 3167–3187, https://doi.org/10.5194/gmd-10-3167-2017, https://doi.org/10.5194/gmd-10-3167-2017, 2017
Short summary
Short summary
Researchers from the Netherlands present OMUSE, a software package
developed from core technology originating in the astrophysical
community. Using OMUSE, oceanographic and climate researchers can
develop numerical models of the ocean and the interactions between
different parts of the ocean and the atmosphere. This provides a novel
way to investigate, for example, the local effects of climate change on
the ocean. OMUSE is freely available as open-source software.
Brenda C. van Zalinge, Qing Yi Feng, Matthias Aengenheyster, and Henk A. Dijkstra
Earth Syst. Dynam., 8, 707–717, https://doi.org/10.5194/esd-8-707-2017, https://doi.org/10.5194/esd-8-707-2017, 2017
Short summary
Short summary
The increase in atmospheric greenhouse gases (GHGs) is one of the main causes for the increase in global mean surface temperature. There is no good quantitative measure to determine when it is
too lateto start reducing GHGs in order to avoid dangerous anthropogenic interference. We develop a method for determining a so-called point of no return (PNR) for several GHG emission scenarios. The innovative element in this approach is the applicability to high-dimensional climate models.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, H. E. Bal, F. Seinstra, B. van Werkhoven, J. Maassen, and M. van Meersbergen
Ocean Sci., 13, 47–60, https://doi.org/10.5194/os-13-47-2017, https://doi.org/10.5194/os-13-47-2017, 2017
Short summary
Short summary
An important contribution to future changes in regional sea level extremes is due to the changes in intrinsic ocean variability, in particular ocean eddies. Here, we study a scenario of future dynamic sea level (DSL) extremes using a strongly eddying version of the Parallel Ocean Program. Changes in 10-year return time DSL extremes are very inhomogeneous over the globe and are related to changes in ocean currents and corresponding regional shifts in ocean eddy pathways.
Rémon Saaltink, Stefan C. Dekker, Jasper Griffioen, and Martin J. Wassen
Biogeosciences, 13, 4945–4957, https://doi.org/10.5194/bg-13-4945-2016, https://doi.org/10.5194/bg-13-4945-2016, 2016
Short summary
Short summary
We identified biogeochemical plant–soil feedback processes that occur when oxidation, drying and modification by plants alter sediment conditions. Wetland construction in Markermeer (a lake in the Netherlands) is used as a case study. Natural processes will be utilized during and after construction to accelerate ecosystem development. We conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineer.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Stefan C. Dekker, Margriet Groenendijk, Ben B. B. Booth, Chris Huntingford, and Peter M. Cox
Earth Syst. Dynam., 7, 525–533, https://doi.org/10.5194/esd-7-525-2016, https://doi.org/10.5194/esd-7-525-2016, 2016
Short summary
Short summary
Our analysis allows us to infer maps of changing plant water-use efficiency (WUE) for 1901–2010, using atmospheric observations of temperature, humidity and CO2. Our estimated increase in global WUE is consistent with the tree-ring and eddy covariance data, but much larger than the historical WUE increases simulated by Earth System Models (ESMs). We therefore conclude that the effects of increasing CO2 on plant WUE are significantly underestimated in the latest climate projections.
Zun Yin, Stefan C. Dekker, Bart J. J. M. van den Hurk, and Henk A. Dijkstra
Biogeosciences, 13, 3343–3357, https://doi.org/10.5194/bg-13-3343-2016, https://doi.org/10.5194/bg-13-3343-2016, 2016
Short summary
Short summary
Bimodality is found in aboveground biomass and mean annual shortwave radiation in West Africa, which is a strong evidence of alternative stable states. The condition with low biomass and low radiation is demonstrated under which ecosystem state can shift between savanna and forest states. Moreover, climatic indicators have different prediction confidences to different land cover types. A new method is proposed to predict potential land cover change with a combination of climatic indicators.
Patrick W. Bogaart, Ype van der Velde, Steve W. Lyon, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 20, 1413–1432, https://doi.org/10.5194/hess-20-1413-2016, https://doi.org/10.5194/hess-20-1413-2016, 2016
Short summary
Short summary
We analyse how stream discharge declines after rain storms. This "recession" behaviour contains information about the capacity of the catchment to hold or release water. Looking at many rivers in Sweden, we were able to link distinct recession regimes to land use and catchment characteristics. Trends in recession behaviour are found to correspond to intensifying agriculture and extensive reforestation. We conclude that both humans and nature reorganizes the soil in order to enhance efficiency.
Qing Yi Feng, Ruggero Vasile, Marc Segond, Avi Gozolchiani, Yang Wang, Markus Abel, Shilomo Havlin, Armin Bunde, and Henk A. Dijkstra
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2015-273, https://doi.org/10.5194/gmd-2015-273, 2016
Revised manuscript not accepted
Short summary
Short summary
We present the toolbox ClimateLearn to tackle problems in climate prediction using machine learning techniques and climate network analysis. Because spatial temporal information on climate variability can be efficiently represented by complex network measures, such data are considered here as input to the machine-learning algorithms. As an example, the toolbox is applied to the prediction of the occurrence and the development of El Niño in the equatorial Pacific.
H. Ihshaish, A. Tantet, J. C. M. Dijkzeul, and H. A. Dijkstra
Geosci. Model Dev., 8, 3321–3331, https://doi.org/10.5194/gmd-8-3321-2015, https://doi.org/10.5194/gmd-8-3321-2015, 2015
Short summary
Short summary
Par@Graph, a software toolbox to reconstruct and analyze large-scale complex climate networks. It exposes parallelism on distributed-memory computing platforms to enable the construction of massive networks from large number of time series based on the calculation of common statistical similarity measures between them. Providing additionally parallel graph algorithms to enable fast calculation of important and common properties of the generated networks on SMP machines.
J. Mao, K. G. J. Nierop, M. Rietkerk, and S. C. Dekker
SOIL, 1, 411–425, https://doi.org/10.5194/soil-1-411-2015, https://doi.org/10.5194/soil-1-411-2015, 2015
Short summary
Short summary
In this study we show how soil water repellency (SWR) is linked to the quantity and quality of SWR markers in soils mainly derived from vegetation. To predict the SWR of topsoils, we find the strongest relationship with ester-bound alcohols, and for subsoils with root-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids. From this we conclude that, overall, roots influence SWR more strongly than leaves and subsequently SWR markers derived from roots predict SWR better.
M. Baudena, S. C. Dekker, P. M. van Bodegom, B. Cuesta, S. I. Higgins, V. Lehsten, C. H. Reick, M. Rietkerk, S. Scheiter, Z. Yin, M. A. Zavala, and V. Brovkin
Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, https://doi.org/10.5194/bg-12-1833-2015, 2015
L. Hahn-Woernle, H. A. Dijkstra, and H. J. Van der Woerd
Ocean Sci., 10, 993–1011, https://doi.org/10.5194/os-10-993-2014, https://doi.org/10.5194/os-10-993-2014, 2014
Short summary
Short summary
Measured vertical mixing profiles are applied to a 1-D phytoplankton model. Results show that shifts in vertical mixing are able to induce a transition from an upper chlorophyll maximum to a deep one and vice versa. Furthermore, a clear correlation between the surface phytoplankton concentration and mixing-induced nutrient flux is found for nutrient-limited cases. This result suggests that characteristics of the vertical mixing could be determined from the surface phytoplankton concentration.
B. J. Dermody, R. P. H. van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. van der Velde, M. F. P. Bierkens, M. J. Wassen, and S. C. Dekker
Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, https://doi.org/10.5194/hess-18-5025-2014, 2014
Short summary
Short summary
Our virtual water network of the Roman World shows that virtual water trade and irrigation provided the Romans with resilience to interannual climate variability. Virtual water trade enabled the Romans to meet food demands from regions with a surplus. Irrigation provided stable water supplies for agriculture, particularly in large river catchments. However, virtual water trade also stimulated urbanization and population growth, which eroded Roman resilience to climate variability over time.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, B. van Werkhoven, H. E. Bal, F. Seinstra, J. Maassen, and M. van Meersbergen
Ocean Sci., 10, 881–891, https://doi.org/10.5194/os-10-881-2014, https://doi.org/10.5194/os-10-881-2014, 2014
Short summary
Short summary
Regional sea surface height (SSH) changes due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated with a high- and low-resolution model. A rapid decrease of the AMOC in the high-resolution version induces shorter return times of several specific regional and coastal extremes in North Atlantic SSH than in the low-resolution version. This effect is caused by a change in main eddy pathways associated with a change in separation latitude of the Gulf Stream.
D. Le Bars, J. V. Durgadoo, H. A. Dijkstra, A. Biastoch, and W. P. M. De Ruijter
Ocean Sci., 10, 601–609, https://doi.org/10.5194/os-10-601-2014, https://doi.org/10.5194/os-10-601-2014, 2014
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Geosci. Model Dev., 7, 821–845, https://doi.org/10.5194/gmd-7-821-2014, https://doi.org/10.5194/gmd-7-821-2014, 2014
G. Sgubin, S. Pierini, and H. A. Dijkstra
Ocean Sci., 10, 201–213, https://doi.org/10.5194/os-10-201-2014, https://doi.org/10.5194/os-10-201-2014, 2014
A. Tantet and H. A. Dijkstra
Earth Syst. Dynam., 5, 1–14, https://doi.org/10.5194/esd-5-1-2014, https://doi.org/10.5194/esd-5-1-2014, 2014
A. A. Cimatoribus, S. Drijfhout, and H. A. Dijkstra
Ocean Sci. Discuss., https://doi.org/10.5194/osd-10-2461-2013, https://doi.org/10.5194/osd-10-2461-2013, 2013
Preprint withdrawn
A. S. von der Heydt, A. Nnafie, and H. A. Dijkstra
Clim. Past, 7, 903–915, https://doi.org/10.5194/cp-7-903-2011, https://doi.org/10.5194/cp-7-903-2011, 2011
M. Tigchelaar, A. S. von der Heydt, and H. A. Dijkstra
Clim. Past, 7, 235–247, https://doi.org/10.5194/cp-7-235-2011, https://doi.org/10.5194/cp-7-235-2011, 2011
J. O. Sewall, R. S. W. van de Wal, K. van der Zwan, C. van Oosterhout, H. A. Dijkstra, and C. R. Scotese
Clim. Past, 3, 647–657, https://doi.org/10.5194/cp-3-647-2007, https://doi.org/10.5194/cp-3-647-2007, 2007
Related subject area
Earth system interactions with the biosphere: ecosystems
Opening Pandora's box: reducing global circulation model uncertainty in Australian simulations of the carbon cycle
Persistent La Niñas drive joint soybean harvest failures in North and South America
Spatiotemporal changes in the boreal forest in Siberia over the period 1985–2015 against the background of climate change
Downscaling of climate change scenarios for a high-resolution, site-specific assessment of drought stress risk for two viticultural regions with heterogeneous landscapes
Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning
Widespread greening suggests increased dry-season plant water availability in the Rio Santa valley, Peruvian Andes
Spatiotemporal patterns and drivers of terrestrial dissolved organic carbon (DOC) leaching into the European river network
Impacts of compound hot–dry extremes on US soybean yields
Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019
Modelling forest ruin due to climate hazards
Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts
Diverging land-use projections cause large variability in their impacts on ecosystems and related indicators for ecosystem services
Impacts of land use change and elevated CO2 on the interannual variations and seasonal cycles of gross primary productivity in China
Investigating the applicability of emergent constraints
Tidal impacts on primary production in the North Sea
Global vegetation variability and its response to elevated CO2, global warming, and climate variability – a study using the offline SSiB4/TRIFFID model and satellite data
Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling
Contrasting terrestrial carbon cycle responses to the 1997/98 and 2015/16 extreme El Niño events
Low-frequency variability in North Sea and Baltic Sea identified through simulations with the 3-D coupled physical–biogeochemical model ECOSMO
Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change
Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain
Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations
Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest
Establishment and maintenance of regulating ecosystem services in a dryland area of central Asia, illustrated using the Kökyar Protection Forest, Aksu, NW China, as an example
Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators
The impact of land cover generated by a dynamic vegetation model on climate over east Asia in present and possible future climate
Critical impacts of global warming on land ecosystems
The influence of vegetation dynamics on anthropogenic climate change
Quantifying the thermodynamic entropy budget of the land surface: is this useful?
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Raed Hamed, Sem Vijverberg, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 14, 255–272, https://doi.org/10.5194/esd-14-255-2023, https://doi.org/10.5194/esd-14-255-2023, 2023
Short summary
Short summary
Spatially compounding soy harvest failures can have important global impacts. Using causal networks, we show that soy yields are predominately driven by summer soil moisture conditions in North and South America. Summer soil moisture is affected by antecedent soil moisture and by remote extra-tropical SST patterns in both hemispheres. Both of these soil moisture drivers are again influenced by ENSO. Our results highlight physical pathways by which ENSO can drive spatially compounding impacts.
Wenxue Fu, Lei Tian, Yu Tao, Mingyang Li, and Huadong Guo
Earth Syst. Dynam., 14, 223–239, https://doi.org/10.5194/esd-14-223-2023, https://doi.org/10.5194/esd-14-223-2023, 2023
Short summary
Short summary
Climate change has been proven to be an indisputable fact and to be occurring at a faster rate in boreal forest areas. The results of this paper show that boreal forest coverage has shown an increasing trend in the past 3 decades, and the area of broad-leaved forests has increased more rapidly than that of coniferous forests. In addition, temperature rather than precipitation is the main climate factor that is driving change.
Marco Hofmann, Claudia Volosciuk, Martin Dubrovský, Douglas Maraun, and Hans R. Schultz
Earth Syst. Dynam., 13, 911–934, https://doi.org/10.5194/esd-13-911-2022, https://doi.org/10.5194/esd-13-911-2022, 2022
Short summary
Short summary
We modelled water budget developments of viticultural growing regions on the spatial scale of individual vineyard plots with respect to landscape features like the available water capacity of the soils, slope, and aspect of the sites. We used an ensemble of climate simulations and focused on the occurrence of drought stress. The results show a high bandwidth of projected changes where the risk of potential drought stress becomes more apparent in steep-slope regions.
Markku Viitasalo and Erik Bonsdorff
Earth Syst. Dynam., 13, 711–747, https://doi.org/10.5194/esd-13-711-2022, https://doi.org/10.5194/esd-13-711-2022, 2022
Short summary
Short summary
Climate change has multiple effects on Baltic Sea species, communities and ecosystem functioning. Effects on species distribution, eutrophication and trophic interactions are expected. We review these effects, identify knowledge gaps and draw conclusions based on recent (2010–2021) field, experimental and modelling research. An extensive summary table is compiled to highlight the multifaceted impacts of climate-change-driven processes in the Baltic Sea.
Lorenz Hänchen, Cornelia Klein, Fabien Maussion, Wolfgang Gurgiser, Pierluigi Calanca, and Georg Wohlfahrt
Earth Syst. Dynam., 13, 595–611, https://doi.org/10.5194/esd-13-595-2022, https://doi.org/10.5194/esd-13-595-2022, 2022
Short summary
Short summary
To date, farmers' perceptions of hydrological changes do not match analysis of meteorological data. In contrast to rainfall data, we find greening of vegetation, indicating increased water availability in the past decades. The start of the season is highly variable, making farmers' perceptions comprehensible. We show that the El Niño–Southern Oscillation has complex effects on vegetation seasonality but does not drive the greening we observe. Improved onset forecasts could help local farmers.
Céline Gommet, Ronny Lauerwald, Philippe Ciais, Bertrand Guenet, Haicheng Zhang, and Pierre Regnier
Earth Syst. Dynam., 13, 393–418, https://doi.org/10.5194/esd-13-393-2022, https://doi.org/10.5194/esd-13-393-2022, 2022
Short summary
Short summary
Dissolved organic carbon (DOC) leaching from soils into river networks is an important component of the land carbon (C) budget, but its spatiotemporal variation is not yet fully constrained. We use a land surface model to simulate the present-day land C budget at the European scale, including leaching of DOC from the soil. We found average leaching of 14.3 Tg C yr−1 (0.6 % of terrestrial net primary production) with seasonal variations. We determine runoff and temperature to be the main drivers.
Raed Hamed, Anne F. Van Loon, Jeroen Aerts, and Dim Coumou
Earth Syst. Dynam., 12, 1371–1391, https://doi.org/10.5194/esd-12-1371-2021, https://doi.org/10.5194/esd-12-1371-2021, 2021
Short summary
Short summary
Soy yields in the US are affected by climate variability. We identify the main within-season climate drivers and highlight potential compound events and associated agricultural impacts. Our results show that soy yields are most negatively influenced by the combination of high temperature and low soil moisture during the summer crop reproductive period. Furthermore, we highlight the role of temperature and moisture coupling across the year in generating these hot–dry extremes and linked impacts.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Pascal Yiou and Nicolas Viovy
Earth Syst. Dynam., 12, 997–1013, https://doi.org/10.5194/esd-12-997-2021, https://doi.org/10.5194/esd-12-997-2021, 2021
Short summary
Short summary
This paper presents a model of tree ruin as a response to drought hazards. This model is inspired by a standard model of ruin in the insurance industry. We illustrate how ruin can occur in present-day conditions and the sensitivity of ruin and time to ruin to hazard statistical properties. We also show how tree strategies to cope with hazards can affect their long-term reserves and the probability of ruin.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Weidong Guo, Sanaa Hobeichi, and Peter R. Briggs
Earth Syst. Dynam., 12, 919–938, https://doi.org/10.5194/esd-12-919-2021, https://doi.org/10.5194/esd-12-919-2021, 2021
Short summary
Short summary
Groundwater can buffer the impacts of drought and heatwaves on ecosystems, which is often neglected in model studies. Using a land surface model with groundwater, we explained how groundwater sustains transpiration and eases heat pressure on plants in heatwaves during multi-year droughts. Our results showed the groundwater’s influences diminish as drought extends and are regulated by plant physiology. We suggest neglecting groundwater in models may overstate projected future heatwave intensity.
Anita D. Bayer, Richard Fuchs, Reinhard Mey, Andreas Krause, Peter H. Verburg, Peter Anthoni, and Almut Arneth
Earth Syst. Dynam., 12, 327–351, https://doi.org/10.5194/esd-12-327-2021, https://doi.org/10.5194/esd-12-327-2021, 2021
Short summary
Short summary
Many projections of future land-use/-cover exist. We evaluate a number of these and determine the variability they cause in ecosystems and their services. We found that projections differ a lot in regional patterns, with some patterns being at least questionable in a historical context. Across ecosystem service indicators, resulting variability until 2040 was highest in crop production. Results emphasize that such variability should be acknowledged in assessments of future ecosystem provisions.
Binghao Jia, Xin Luo, Ximing Cai, Atul Jain, Deborah N. Huntzinger, Zhenghui Xie, Ning Zeng, Jiafu Mao, Xiaoying Shi, Akihiko Ito, Yaxing Wei, Hanqin Tian, Benjamin Poulter, Dan Hayes, and Kevin Schaefer
Earth Syst. Dynam., 11, 235–249, https://doi.org/10.5194/esd-11-235-2020, https://doi.org/10.5194/esd-11-235-2020, 2020
Short summary
Short summary
We quantitatively examined the relative contributions of climate change, land
use and land cover change, and elevated CO2 to interannual variations and seasonal cycle amplitude of gross primary productivity (GPP) in China based on multi-model ensemble simulations. The contributions of major subregions to the temporal change in China's total GPP are also presented. This work may help us better understand GPP spatiotemporal patterns and their responses to regional changes and human activities.
Alexander J. Winkler, Ranga B. Myneni, and Victor Brovkin
Earth Syst. Dynam., 10, 501–523, https://doi.org/10.5194/esd-10-501-2019, https://doi.org/10.5194/esd-10-501-2019, 2019
Short summary
Short summary
The concept of
emergent constraintsis a key method to reduce uncertainty in multi-model climate projections using historical simulations and observations. Here, we present an in-depth analysis of the applicability of the method and uncover possible limitations. Key limitations are a lack of comparability (temporal, spatial, and conceptual) between models and observations and the disagreement between models on system dynamics throughout different levels of atmospheric CO2 concentration.
Changjin Zhao, Ute Daewel, and Corinna Schrum
Earth Syst. Dynam., 10, 287–317, https://doi.org/10.5194/esd-10-287-2019, https://doi.org/10.5194/esd-10-287-2019, 2019
Short summary
Short summary
Our study highlights the importance of tides in controlling the spatial and temporal distributions North Sea primary production based on numerical experiments. We identified two different response chains acting in different regions of the North Sea. (i) In the southern shallow areas, strong tidal mixing dilutes phytoplankton concentrations and increases turbidity, thus decreasing NPP. (ii) In the frontal regions, tidal mixing infuses nutrients into the surface mixed layer, thus increasing NPP.
Ye Liu, Yongkang Xue, Glen MacDonald, Peter Cox, and Zhengqiu Zhang
Earth Syst. Dynam., 10, 9–29, https://doi.org/10.5194/esd-10-9-2019, https://doi.org/10.5194/esd-10-9-2019, 2019
Short summary
Short summary
Climate regime shift during the 1980s identified by abrupt change in temperature, precipitation, etc. had a substantial impact on the ecosystem at different scales. Our paper identifies the spatial and temporal characteristics of the effects of climate variability, global warming, and eCO2 on ecosystem trends before and after the shift. We found about 15 % (20 %) of the global land area had enhanced positive trend (trend sign reversed) during the 1980s due to climate regime shift.
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Short summary
Focusing on the usage of integrated models and in situ Earth observatory networks, three challenges are identified to advance understanding of ESD, in particular to strengthen links between biotic and abiotic, and above- and below-ground processes. We propose developing a model platform for interdisciplinary usage, to formalize current network infrastructure based on complementarities and operational synergies, and to extend the reanalysis concept to the ecosystem and critical zone.
Jun Wang, Ning Zeng, Meirong Wang, Fei Jiang, Hengmao Wang, and Ziqiang Jiang
Earth Syst. Dynam., 9, 1–14, https://doi.org/10.5194/esd-9-1-2018, https://doi.org/10.5194/esd-9-1-2018, 2018
Short summary
Short summary
Behaviors of terrestrial ecosystems differ in different El Niños. We analyze terrestrial carbon cycle responses to two extreme El Niños (2015/16 and 1997/98), and find large differences. We find that global land–atmosphere carbon flux anomaly was about 2 times smaller in 2015/16 than in 1997/98 event, without the obvious lagged response. Then we illustrate the climatic and biological mechanisms of the different terrestrial carbon cycle responses in 2015/16 and 1997/98 El Niños regionally.
Ute Daewel and Corinna Schrum
Earth Syst. Dynam., 8, 801–815, https://doi.org/10.5194/esd-8-801-2017, https://doi.org/10.5194/esd-8-801-2017, 2017
Short summary
Short summary
Processes behind observed long-term variations in marine ecosystems are difficult to be deduced from in situ observations only. By statistically analysing a 61-year model simulation for the North Sea and Baltic Sea and additional model scenarios, we identified major modes of variability in the environmental variables and associated those with changes in primary production. We found that the dominant impact on changes in ecosystem productivity was introduced by modulations of the wind fields.
Minchao Wu, Guy Schurgers, Markku Rummukainen, Benjamin Smith, Patrick Samuelsson, Christer Jansson, Joe Siltberg, and Wilhelm May
Earth Syst. Dynam., 7, 627–647, https://doi.org/10.5194/esd-7-627-2016, https://doi.org/10.5194/esd-7-627-2016, 2016
Short summary
Short summary
On Earth, vegetation does not merely adapt to climate but also imposes significant influences on climate with both local and remote effects. In this study we evaluated the role of vegetation in African climate with a regional Earth system model. By the comparison between the experiments with and without dynamic vegetation changes, we found that vegetation can influence climate remotely, resulting in modulating rainfall patterns over Africa.
F. Langerwisch, A. Walz, A. Rammig, B. Tietjen, K. Thonicke, and W. Cramer
Earth Syst. Dynam., 7, 559–582, https://doi.org/10.5194/esd-7-559-2016, https://doi.org/10.5194/esd-7-559-2016, 2016
Short summary
Short summary
In Amazonia, carbon fluxes are considerably influenced by annual flooding. We applied the newly developed model RivCM to several climate change scenarios to estimate potential changes in riverine carbon. We find that climate change causes substantial changes in riverine organic and inorganic carbon, as well as changes in carbon exported to the atmosphere and ocean. Such changes could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean.
Stefan C. Dekker, Margriet Groenendijk, Ben B. B. Booth, Chris Huntingford, and Peter M. Cox
Earth Syst. Dynam., 7, 525–533, https://doi.org/10.5194/esd-7-525-2016, https://doi.org/10.5194/esd-7-525-2016, 2016
Short summary
Short summary
Our analysis allows us to infer maps of changing plant water-use efficiency (WUE) for 1901–2010, using atmospheric observations of temperature, humidity and CO2. Our estimated increase in global WUE is consistent with the tree-ring and eddy covariance data, but much larger than the historical WUE increases simulated by Earth System Models (ESMs). We therefore conclude that the effects of increasing CO2 on plant WUE are significantly underestimated in the latest climate projections.
M. H. Vermeulen, B. J. Kruijt, T. Hickler, and P. Kabat
Earth Syst. Dynam., 6, 485–503, https://doi.org/10.5194/esd-6-485-2015, https://doi.org/10.5194/esd-6-485-2015, 2015
Short summary
Short summary
We compared a process-based ecosystem model (LPJ-GUESS) with EC measurements to test whether observed interannual variability (IAV) in carbon and water fluxes can be reproduced because it is important to understand the driving mechanisms of IAV. We show that the model's mechanistic process representation for photosynthesis at low temperatures and during drought could be improved, but other process representations are still lacking in order to fully reproduce the observed IAV.
S. Missall, M. Welp, N. Thevs, A. Abliz, and Ü. Halik
Earth Syst. Dynam., 6, 359–373, https://doi.org/10.5194/esd-6-359-2015, https://doi.org/10.5194/esd-6-359-2015, 2015
U. Schickhoff, M. Bobrowski, J. Böhner, B. Bürzle, R. P. Chaudhary, L. Gerlitz, H. Heyken, J. Lange, M. Müller, T. Scholten, N. Schwab, and R. Wedegärtner
Earth Syst. Dynam., 6, 245–265, https://doi.org/10.5194/esd-6-245-2015, https://doi.org/10.5194/esd-6-245-2015, 2015
Short summary
Short summary
Near-natural Himalayan treelines are usually krummholz treelines, which are relatively unresponsive to climate change. Intense recruitment of treeline trees suggests a great potential for future treeline advance. Competitive abilities of tree seedlings within krummholz thickets and dwarf scrub heaths will be a major source of variation in treeline dynamics. Tree growth-climate relationships show mature treeline trees to be responsive in particular to high pre-monsoon temperature trends.
M.-H. Cho, K.-O. Boo, G. M. Martin, J. Lee, and G.-H. Lim
Earth Syst. Dynam., 6, 147–160, https://doi.org/10.5194/esd-6-147-2015, https://doi.org/10.5194/esd-6-147-2015, 2015
S. Ostberg, W. Lucht, S. Schaphoff, and D. Gerten
Earth Syst. Dynam., 4, 347–357, https://doi.org/10.5194/esd-4-347-2013, https://doi.org/10.5194/esd-4-347-2013, 2013
U. Port, V. Brovkin, and M. Claussen
Earth Syst. Dynam., 3, 233–243, https://doi.org/10.5194/esd-3-233-2012, https://doi.org/10.5194/esd-3-233-2012, 2012
N. A. Brunsell, S. J. Schymanski, and A. Kleidon
Earth Syst. Dynam., 2, 87–103, https://doi.org/10.5194/esd-2-87-2011, https://doi.org/10.5194/esd-2-87-2011, 2011
Cited articles
Archibald, S. and Bond, W. J.: Growing tall vs. growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments, Oikos, 102, 3–14, 2003.
Archibald, S., Roy, D. P., Wilgen, V., Brian, W., and Scholes, R. J.: What limits fire? An examination of drivers of burnt area in Southern Africa, Global Change Biol., 15, 613–630, 2009.
Baccini, A., Laporte, N., Goetz, S. J., Sun, M., and Dong, H.: A first map of tropical Africa's above-ground biomass derived from satellite imagery, Environ. Res. Lett., 3, 045011, https://doi.org/10.1088/1748-9326/3/4/045011, 2008.
Baudena, M. and Provenzale, A.: Rainfall intermittency and vegetation feedbacks in drylands, Hydrol. Earth Syst. Sci., 12, 679–689, https://doi.org/10.5194/hess-12-679-2008, 2008.
Baudena, M., D'Andrea, F., and Provenzale, A.: An idealized model for tree–grass coexistence in savannas: the role of lift stage structure and fire disturbances, J. Ecol., 98, 74–80, 2010.
Boone, A., Rosnay, P., Balsamo, G., Beljaars, A., Chopin, F., Decharme, B., Delire, C., Ducharne, A., Gascoin, S., Grippa, M., Guichard, F., Gusev, Y., Harris, P., Jarlan, L., Kergoat, L., Mougin, E., Nasonova, O., Norgaard, A., Orgeval, T., Ottlé, C., Poccard-Leclercq, I., Polcher, J., Sandholt, I., Saux-Picart, S., Taylor, C., and Xue, Y.: The AMMA Land Surface Model Intercomparison Project (ALMIP), B. Am. Meteorol. Soc., 90, 1865–1880, https://doi.org/10.1175/2009BAMS2786.1, 2009.
Boussetta, S., Balsamo, G., Beljaars, A., Panareda, A., Calvet, J. C., Jacobs, C., van den Hurk, B. J. J. M., Viterbo, P., Lafont, S., Dutra, E., Jarlan, L., Balzarolo, M., Papale, D., and van der Werf, G.: Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: Implementation and offline validation, J. Geophys. Res.-Atmos., 118, 5923–5946, https://doi.org/10.1002/jgrd.50488, 2013.
Bucini, G. and Hanan, N. P.: A continental-scale analysis of tree cover in African savannas, Global Ecol. Biogeogr., 16, 593–605, 2007.
Calvet, J. C.: Investigating soil and atmospheric plant water stress using physiological and micrometeorological data, Agr. Forest Meteorol., 103, 229–247, 2000.
Calvet, J. C., Rivalland, V., Picon-Cochard, C., and Guehl, J. M.: Modelling forest transpiration and CO2 fluxes-response to soil moisture stress, Agr. Forest Meteorol., 124, 143–156, 2004.
Cochrane, M. A., Alencar, A., Schulze, M. D., Souza, C. M., Nepstad, D. C., Lefebvre, P., and Davidson, E. A.: Positive feedbacks in the fire dynamic of closed canopy tropical forests, Science, 284, 1832–1835, 1999.
Cox, P. M.: Description of the "TRIFFID" Dynamic Global Vegetation Modeltion model, Hadley Centre, Met Office, Bracknell, Berks, UK, 24, 1–16, 2001.
Grün, B. and Leisch, F.: Fitting finite mixtures of generalized linear regressions in R, Comput. Stat. Data An., 51, 5247–5252, 2007.
Guan, K., Wood, E. F., and Caylor, K. K.: Multi-sensor derivation of regional vegetation fractional cover in Africa, Remote Sens. Environ., 124, 653–665, 2012.
Hanan, N. P., Tredennick, A. T., Prihodko, L., Bucini, G., and Dohn, J.: Analysis of stable states in global savannas: is the CART pulling the horse?, Global Ecol. Biogeogr., 23, 259–263, https://doi.org/10.1111/geb.12122, 2014.
Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Sohlberg, R., Dimiceli, C., and Carroll, M.: Towards an operational MODIS continuous field of percent tree cover algorithm: examples using AVHRR and MODIS data, Remote Sens. Environ., 83, 303–319, 2002.
Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Carroll, M., Dimiceli, C., and Sohlberg, R. A.: Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm, Earth Interact., 7, 1–15, 2003.
Higgins, S. I., Bond, W. J., and Trollope, W. S.: Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna, J. Ecol., 88, 213–229, 2000.
Hirota, M., Holmgren, M., Van Nes, E. H., and Scheffer, M.: Global resilience of tropical forest and savanna to critical transitions, Science, 334, 232–235, 2011.
Konings, A. G., Dekker, S. C., Rietkerk, M., and Katul, G. G.: Drought sensitivity of patterned vegetation determined by rainfall–land surface feedbacks, J. Geophys. Res.-Biogeo., 116, G04008, https://doi.org/10.1029/2011JG001748, 2011.
Mayer, A. L. and Khalyani, A. H.: Grass trumps trees with fire, Science, 334, 188–189, 2011.
Murphy, B. P. and Bowman, D. M. J. S.: What controls the distribution of tropical forest and savanna?, Ecol. Lett., 15, 748–758, 2012.
Oleson, K., Dai, Y., Bonan, G. B., Bosilovich, M., Dickinson, R., Dirmeyer, P., Hoffman, F., Houser, P., Levis, S., Niu, G., Thornton, P., Vertenstein, M., Yang, Z., and Zeng, X.: Technical Description of the Community Land Model (CLM), Tech. rep., University Corporation for Atmospherical Research, https://doi.org/10.5065/D6N877R0, available at: http://nldr.library.ucar.edu/repository/collections/TECH-NOTE-000-000-000-537 (last access: 4 July 2014), 2004.
Pfeiffer, M., Spessa, A., and Kaplan, J. O.: A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0), Geosci. Model Dev., 6, 643–685, https://doi.org/10.5194/gmd-6-643-2013, 2013.
Rietkerk, M., Boerlijst, M. C., van Langevelde, F., HilleRisLambers, R., van de Koppel, J., Kumar, L., Prins, H. H. T., and de Roos, A. M.: Self-organization of vegetation in arid ecosystems, Am. Nat., 160, 524–530, https://doi.org/10.1086/342078, 2002.
Rietkerk, M., Dekker, S. C., de Ruiter, P. C., and van de Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems, Science, 305, 1926–1929, 2004.
Sankaran, M., Hanan, N. P., Scholes, R. J., Ratnam, J., Augustine, D. J., Cade, B. S., Gignoux, J., Higgins, S. I., Le Roux, X., Ludwig, F., Ardo, J., Banyikwa, F., Bronn, A., Bucini, G., Caylor, K. K., Coughenour, M. B., Diouf, A., Ekaya, W., Feral, C. J., February, E. C., Frost, P. G. H., Hiernaux, P., Hrabar, H., Metzger, K. L., Prins, H. H. T., Ringrose, S., Sea, W., Tews, J., Worden, J., and Zambatis, N.: Determinants of woody cover in African savannas, Nature, 438, 846–849, 2005.
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B.: Catastrophic shifts in ecosystems, Nature, 413, 591–596, 2001.
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., Van Nes, E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions, Nature, 461, 53–59, 2009.
Scheiter, S. and Higgins, S. I.: Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach, Global Change Biol., 15, 2224–2246, 2009.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
Staver, A. C. and Levin, S. A.: Integrating theoretical climate and fire effects on savanna and forest systems, Am. Nat., 180, 211–224, 2012.
Staver, A. C., Archibald, S., and Levin, S.: Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states, Ecology, 92, 1063–1072, 2011a.
Staver, A. C., Archibald, S., and Levin, S. A.: The global extent and determinants of savanna and forest as alternative biome states, Science, 334, 230–232, 2011b.
Teuling, A. J., Uijlenhoet, R., and Troch, P. A.: On bimodality in warm season soil moisture observations, Geophys. Res. Lett., 32, L13402, https://doi.org/10.1029/2005GL023223, 2005.
Tilman, D.: Resource competition and community structure, Princeton University Press, Princeton, New Jersey, USA, 1982.
van den Hurk, B. J. J. M., Viterbo, P., Beljaars, A. C. M., and Betts, A. K.: Offline validation of the ERA40 surface scheme, European Centre for Medium-Range Weather Forecasts, ECMWF, Reading, UK, 2000.
Van Nes, E. H., Holmgren, M., Hirota, M., and Scheffer, M.: Response to comment on "Global resilience of tropical forest and Savanna to critical transitions", Science, 336, 541, 2012.
Yin, Z., Dekker, S. C., van den Hurk, B. J. J. M., and Dijkstra, H. A.: Effects of vegetation structure on biomass accumulation in a Balanced Optimality Structure Vegetation Model (BOSVM v1.0), Geosci. Model Dev., 7, 821–845, https://doi.org/10.5194/gmd-7-821-2014, 2014
Altmetrics
Final-revised paper
Preprint