Articles | Volume 15, issue 1
https://doi.org/10.5194/esd-15-91-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-15-91-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Future water storage changes over the Mediterranean, Middle East, and North Africa in response to global warming and stratospheric aerosol intervention
Abolfazl Rezaei
CORRESPONDING AUTHOR
Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
Khalil Karami
Institut für Meteorologie, Stephanstraße 3, 04103 Leipzig, Germany
Simone Tilmes
National Center for Atmospheric Research, Boulder, CO, USA
John C. Moore
Arctic Centre, University of Lapland, Rovaniemi, 96101, Finland
Related authors
Seyed Vahid Mousavi, Khalil Karami, Simone Tilmes, Helene Muri, Lili Xia, and Abolfazl Rezaei
Atmos. Chem. Phys., 23, 10677–10695, https://doi.org/10.5194/acp-23-10677-2023, https://doi.org/10.5194/acp-23-10677-2023, 2023
Short summary
Short summary
Understanding atmospheric dust changes in the Middle East and North Africa (MENA) region under future climate scenarios is essential. By injecting sulfate aerosols into the stratosphere, stratospheric aerosol injection (SAI) geoengineering reflects some of the incoming sunlight back to space. This study shows that the MENA region would experience lower dust concentration under both SAI and RCP8.5 scenarios compared to the current climate (CTL) by the end of the century.
Abolfazl Rezaei, Khalil Karami, Simone Tilmes, and John C. Moore
Atmos. Chem. Phys., 23, 5835–5850, https://doi.org/10.5194/acp-23-5835-2023, https://doi.org/10.5194/acp-23-5835-2023, 2023
Short summary
Short summary
Teleconnection patterns are important characteristics of the climate system; well-known examples include the El Niño and La Niña events driven from the tropical Pacific. We examined how spatiotemporal patterns that arise in the Pacific and Atlantic oceans behave under stratospheric aerosol geoengineering and greenhouse gas (GHG)-induced warming. In general, geoengineering reverses trends; however, the changes in decadal oscillation for the AMO, NAO, and PDO imposed by GHG are not suppressed.
Masoud Saatsaz and Aboulfazl Rezaie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-173, https://doi.org/10.5194/hess-2021-173, 2021
Manuscript not accepted for further review
Short summary
Short summary
In Iran, as a water-scared country, water resources development has been consistently challenging. Iranians have long practiced various managing strategies based on the region's geo-climatological features, needs, tools, available resources (surface water and groundwater), political stability, economic power, and socio-cultural characteristics. This article explains how ancient Iranians confronted various water-related problems and how they tackled these restrictions.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2604, https://doi.org/10.5194/egusphere-2024-2604, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Novel aerosol hygroscopicity analysis of CAMP2Ex field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Yiliang Ma, Liyun Zhao, Rupert Gladstone, Thomas Zwinger, Michael Wolovick, and John C. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2024-1102, https://doi.org/10.5194/egusphere-2024-1102, 2024
Short summary
Short summary
Totten Glacier in Antarctica holds a sea level potential of 3.85 m. Basal sliding and sub-shelf melt rate have important impact on ice sheet dynamics. We simulate the evolution of Totten Glacier using an ice flow model with different basal sliding parameterizations as well as sub-shelf melt rates to quantify their effect on the projections. We found the modelled glacier retreat and mass loss is sensitive to the choice of basal sliding parameterizations and maximal sub-shelf melt rate.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Anton Laakso, Daniele Visioni, Ulrike Niemeier, Simone Tilmes, and Harri Kokkola
Earth Syst. Dynam., 15, 405–427, https://doi.org/10.5194/esd-15-405-2024, https://doi.org/10.5194/esd-15-405-2024, 2024
Short summary
Short summary
This study is the second in a two-part series in which we explore the dependency of the impacts of stratospheric sulfur injections on both the model employed and the strategy of injection utilized. The study uncovers uncertainties associated with these techniques to cool climate, highlighting how the simulated climate impacts are dependent on both the selected model and the magnitude of the injections. We also show that estimating precipitation impacts of aerosol injection is a complex task.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024, https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary
Short summary
This study uses a premier Earth system model to evaluate a new desert dust emission scheme proposed in our companion paper. We show that our scheme accounts for more dust emission physics, hence matching better against observations than other existing dust emission schemes do. Our scheme's dust emissions also couple tightly with meteorology, hence likely improving the modeled dust sensitivity to climate change. We believe this work is vital for improving dust representation in climate models.
Yan Huang, Liyun Zhao, Michael Wolovick, Yiliang Ma, and John C. Moore
The Cryosphere, 18, 103–119, https://doi.org/10.5194/tc-18-103-2024, https://doi.org/10.5194/tc-18-103-2024, 2024
Short summary
Short summary
Geothermal heat flux (GHF) is an important factor affecting the basal thermal environment of an ice sheet and crucial for its dynamics. But it is poorly defined for the Antarctic ice sheet. We simulate the basal temperature and basal melting rate with eight different GHF datasets. We use specularity content as a two-sided constraint to discriminate between local wet or dry basal conditions. Two medium-magnitude GHF distribution maps rank well, showing that most of the inland bed area is frozen.
Chencheng Shen, John C. Moore, Heri Kuswanto, and Liyun Zhao
Earth Syst. Dynam., 14, 1317–1332, https://doi.org/10.5194/esd-14-1317-2023, https://doi.org/10.5194/esd-14-1317-2023, 2023
Short summary
Short summary
The Indonesia Throughflow is an important pathway connecting the Pacific and Indian oceans and is part of a wind-driven circulation that is expected to reduce under greenhouse gas forcing. Solar dimming and sulfate aerosol injection geoengineering may reverse this effect. But stratospheric sulfate aerosols affect winds more than simply ``shading the sun''; they cause a reduction in water transport similar to that we simulate for a scenario with unabated greenhouse gas emissions.
Simone Tilmes, Michael J. Mills, Yunqian Zhu, Charles G. Bardeen, Francis Vitt, Pengfei Yu, David Fillmore, Xiaohong Liu, Brian Toon, and Terry Deshler
Geosci. Model Dev., 16, 6087–6125, https://doi.org/10.5194/gmd-16-6087-2023, https://doi.org/10.5194/gmd-16-6087-2023, 2023
Short summary
Short summary
We implemented an alternative aerosol scheme in the high- and low-top model versions of the Community Earth System Model Version 2 (CESM2) with a more detailed description of tropospheric and stratospheric aerosol size distributions than the existing aerosol model. This development enables the comparison of different aerosol schemes with different complexity in the same model framework. It identifies improvements compared to a range of observations in both the troposphere and stratosphere.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Yunqian Zhu, Robert W. Portmann, Douglas Kinnison, Owen Brian Toon, Luis Millán, Jun Zhang, Holger Vömel, Simone Tilmes, Charles G. Bardeen, Xinyue Wang, Stephanie Evan, William J. Randel, and Karen H. Rosenlof
Atmos. Chem. Phys., 23, 13355–13367, https://doi.org/10.5194/acp-23-13355-2023, https://doi.org/10.5194/acp-23-13355-2023, 2023
Short summary
Short summary
The 2022 Hunga Tonga eruption injected a large amount of water into the stratosphere. Ozone depletion was observed inside the volcanic plume. Chlorine and water vapor injected by this eruption exceeded the normal range, which made the ozone chemistry during this event occur at a higher temperature than polar ozone depletion. Unlike polar ozone chemistry where chlorine nitrate is more important, hypochlorous acid plays a large role in the in-plume chlorine balance and heterogeneous processes.
Seyed Vahid Mousavi, Khalil Karami, Simone Tilmes, Helene Muri, Lili Xia, and Abolfazl Rezaei
Atmos. Chem. Phys., 23, 10677–10695, https://doi.org/10.5194/acp-23-10677-2023, https://doi.org/10.5194/acp-23-10677-2023, 2023
Short summary
Short summary
Understanding atmospheric dust changes in the Middle East and North Africa (MENA) region under future climate scenarios is essential. By injecting sulfate aerosols into the stratosphere, stratospheric aerosol injection (SAI) geoengineering reflects some of the incoming sunlight back to space. This study shows that the MENA region would experience lower dust concentration under both SAI and RCP8.5 scenarios compared to the current climate (CTL) by the end of the century.
Jun Wang, John C. Moore, and Liyun Zhao
Earth Syst. Dynam., 14, 989–1013, https://doi.org/10.5194/esd-14-989-2023, https://doi.org/10.5194/esd-14-989-2023, 2023
Short summary
Short summary
Apparent temperatures and PM2.5 pollution depend on humidity and wind speed in addition to surface temperature and impact human health and comfort. Apparent temperatures will reach dangerous levels more commonly in the future because of water vapor pressure rises and lower expected wind speeds, but these will also drive changes in PM2.5. Solar geoengineering can significantly reduce the frequency of extreme events relative to modest and especially
business-as-usualgreenhouse scenarios.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Abolfazl Rezaei, Khalil Karami, Simone Tilmes, and John C. Moore
Atmos. Chem. Phys., 23, 5835–5850, https://doi.org/10.5194/acp-23-5835-2023, https://doi.org/10.5194/acp-23-5835-2023, 2023
Short summary
Short summary
Teleconnection patterns are important characteristics of the climate system; well-known examples include the El Niño and La Niña events driven from the tropical Pacific. We examined how spatiotemporal patterns that arise in the Pacific and Atlantic oceans behave under stratospheric aerosol geoengineering and greenhouse gas (GHG)-induced warming. In general, geoengineering reverses trends; however, the changes in decadal oscillation for the AMO, NAO, and PDO imposed by GHG are not suppressed.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Yangxin Chen, Duoying Ji, Qian Zhang, John C. Moore, Olivier Boucher, Andy Jones, Thibaut Lurton, Michael J. Mills, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Earth Syst. Dynam., 14, 55–79, https://doi.org/10.5194/esd-14-55-2023, https://doi.org/10.5194/esd-14-55-2023, 2023
Short summary
Short summary
Solar geoengineering has been proposed as a way of counteracting the warming effects of increasing greenhouse gases by reflecting solar radiation. This work shows that solar geoengineering can slow down the northern-high-latitude permafrost degradation but cannot preserve the permafrost ecosystem as that under a climate of the same warming level without solar geoengineering.
Aobo Liu, John C. Moore, and Yating Chen
Earth Syst. Dynam., 14, 39–53, https://doi.org/10.5194/esd-14-39-2023, https://doi.org/10.5194/esd-14-39-2023, 2023
Short summary
Short summary
Permafrost thaws and releases carbon (C) as the Arctic warms. Most earth system models (ESMs) have poor estimates of C stored now, so their future C losses are much lower than using the permafrost C model with climate inputs from six ESMs. Bias-corrected soil temperatures and plant productivity plus geoengineering lowering global temperatures from a no-mitigation baseline scenario to a moderate emissions level keep C in the soil worth about USD 0–70 (mean 20) trillion in climate damages by 2100.
Jun Wang, John C. Moore, Liyun Zhao, Chao Yue, and Zhenhua Di
Earth Syst. Dynam., 13, 1625–1640, https://doi.org/10.5194/esd-13-1625-2022, https://doi.org/10.5194/esd-13-1625-2022, 2022
Short summary
Short summary
We examine how geoengineering using aerosols in the atmosphere might impact urban climate in the greater Beijing region containing over 50 million people. Climate models have too coarse resolutions to resolve regional variations well, so we compare two workarounds for this – an expensive physical model and a cheaper statistical method. The statistical method generally gives a reasonable representation of climate and has limited resolution and a different seasonality from the physical model.
Haoran Kang, Liyun Zhao, Michael Wolovick, and John C. Moore
The Cryosphere, 16, 3619–3633, https://doi.org/10.5194/tc-16-3619-2022, https://doi.org/10.5194/tc-16-3619-2022, 2022
Short summary
Short summary
Basal thermal conditions are important to ice dynamics and sensitive to geothermal heat flux (GHF). We estimate basal thermal conditions of the Lambert–Amery Glacier system with six GHF maps. Recent GHFs inverted from aerial geomagnetic observations produce a larger warm-based area and match the observed subglacial lakes better than the other GHFs. The modelled basal melt rate is 10 to hundreds of millimetres per year in fast-flowing glaciers feeding the Amery Ice Shelf and smaller inland.
Mari R. Tye, Katherine Dagon, Maria J. Molina, Jadwiga H. Richter, Daniele Visioni, Ben Kravitz, and Simone Tilmes
Earth Syst. Dynam., 13, 1233–1257, https://doi.org/10.5194/esd-13-1233-2022, https://doi.org/10.5194/esd-13-1233-2022, 2022
Short summary
Short summary
We examined the potential effect of stratospheric aerosol injection (SAI) on extreme temperature and precipitation. SAI may cause daytime temperatures to cool but nighttime to warm. Daytime cooling may occur in all seasons across the globe, with the largest decreases in summer. In contrast, nighttime warming may be greatest at high latitudes in winter. SAI may reduce the frequency and intensity of extreme rainfall. The combined changes may exacerbate drying over parts of the global south.
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022, https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Short summary
We use data from six Earth system models to estimate Atlantic meridional overturning circulation (AMOC) changes and its drivers under four different solar geoengineering methods. Solar dimming seems relatively more effective than marine cloud brightening or stratospheric aerosol injection at reversing greenhouse-gas-driven declines in AMOC. Geoengineering-induced AMOC amelioration is due to better maintenance of air–sea temperature differences and reduced loss of Arctic summer sea ice.
Simone Tilmes, Daniele Visioni, Andy Jones, James Haywood, Roland Séférian, Pierre Nabat, Olivier Boucher, Ewa Monica Bednarz, and Ulrike Niemeier
Atmos. Chem. Phys., 22, 4557–4579, https://doi.org/10.5194/acp-22-4557-2022, https://doi.org/10.5194/acp-22-4557-2022, 2022
Short summary
Short summary
This study assesses the impacts of climate interventions, using stratospheric sulfate aerosol and solar dimming on stratospheric ozone, based on three Earth system models with interactive stratospheric chemistry. The climate interventions have been applied to a high emission (baseline) scenario in order to reach global surface temperatures of a medium emission scenario. We find significant increases and decreases in total column ozone, depending on regions and seasons.
Andy Jones, Jim M. Haywood, Adam A. Scaife, Olivier Boucher, Matthew Henry, Ben Kravitz, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Roland Séférian, Simone Tilmes, and Daniele Visioni
Atmos. Chem. Phys., 22, 2999–3016, https://doi.org/10.5194/acp-22-2999-2022, https://doi.org/10.5194/acp-22-2999-2022, 2022
Short summary
Short summary
Simulations by six Earth-system models of geoengineering by introducing sulfuric acid aerosols into the tropical stratosphere are compared. A robust impact on the northern wintertime North Atlantic Oscillation is found, exacerbating precipitation reduction over parts of southern Europe. In contrast, the models show no consistency with regard to impacts on the Quasi-Biennial Oscillation, although results do indicate a risk that the oscillation could become locked into a permanent westerly phase.
Daniele Visioni, Simone Tilmes, Charles Bardeen, Michael Mills, Douglas G. MacMartin, Ben Kravitz, and Jadwiga H. Richter
Atmos. Chem. Phys., 22, 1739–1756, https://doi.org/10.5194/acp-22-1739-2022, https://doi.org/10.5194/acp-22-1739-2022, 2022
Short summary
Short summary
Aerosols are simulated in a simplified way in climate models: in the model analyzed here, they are represented in every grid as described by three simple logarithmic distributions, mixing all different species together. The size can evolve when new particles are formed, particles merge together to create a larger one or particles are deposited to the surface. This approximation normally works fairly well. Here we show however that when large amounts of sulfate are simulated, there are problems.
Nicholas A. Davis, Patrick Callaghan, Isla R. Simpson, and Simone Tilmes
Atmos. Chem. Phys., 22, 197–214, https://doi.org/10.5194/acp-22-197-2022, https://doi.org/10.5194/acp-22-197-2022, 2022
Short summary
Short summary
Specified dynamics schemes attempt to constrain the atmospheric circulation in a climate model to isolate the role of transport in chemical variability, evaluate model physics, and interpret field campaign observations. We show that the specified dynamics scheme in CESM2 erroneously suppresses convection and induces circulation errors that project onto errors in tracers, even using the most optimal settings. Development of a more sophisticated scheme is necessary for future progress.
Anton Laakso, Ulrike Niemeier, Daniele Visioni, Simone Tilmes, and Harri Kokkola
Atmos. Chem. Phys., 22, 93–118, https://doi.org/10.5194/acp-22-93-2022, https://doi.org/10.5194/acp-22-93-2022, 2022
Short summary
Short summary
The use of different spatio-temporal sulfur injection strategies with different magnitudes to create an artificial reflective aerosol layer to cool the climate is studied using sectional and modal aerosol schemes in a climate model. There are significant differences in the results depending on the aerosol microphysical module used. Different spatio-temporal injection strategies have a significant impact on the magnitude and zonal distribution of radiative forcing and atmospheric dynamics.
Chao Yue, Louise Steffensen Schmidt, Liyun Zhao, Michael Wolovick, and John C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-318, https://doi.org/10.5194/tc-2021-318, 2021
Revised manuscript not accepted
Short summary
Short summary
We use the ice sheet model PISM to estimate Vatnajökull mass balance under solar geoengineering. We find that Stratospheric aerosol injection at the rate of 5 Tg yr−1 reduces ice cap mass loss by 4 percentage points relative to the RCP4.5 scenario. Dynamic mass loss is a significant component of mass balance, but insensitive to climate forcing.
Thierno Doumbia, Claire Granier, Nellie Elguindi, Idir Bouarar, Sabine Darras, Guy Brasseur, Benjamin Gaubert, Yiming Liu, Xiaoqin Shi, Trissevgeni Stavrakou, Simone Tilmes, Forrest Lacey, Adrien Deroubaix, and Tao Wang
Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021, https://doi.org/10.5194/essd-13-4191-2021, 2021
Short summary
Short summary
Most countries around the world have implemented control measures to combat the spread of the COVID-19 pandemic, resulting in significant changes in economic and personal activities. We developed the CONFORM (COvid-19 adjustmeNt Factors fOR eMissions) dataset to account for changes in emissions during lockdowns. This dataset was created with the intention of being directly applicable to existing global and regional inventories used in chemical transport models.
Daniele Visioni, Douglas G. MacMartin, Ben Kravitz, Olivier Boucher, Andy Jones, Thibaut Lurton, Michou Martine, Michael J. Mills, Pierre Nabat, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-10039-2021, https://doi.org/10.5194/acp-21-10039-2021, 2021
Short summary
Short summary
A new set of simulations is used to investigate commonalities, differences and sources of uncertainty when simulating the injection of SO2 in the stratosphere in order to mitigate the effects of climate change (solar geoengineering). The models differ in how they simulate the aerosols and how they spread around the stratosphere, resulting in differences in projected regional impacts. Overall, however, the models agree that aerosols have the potential to mitigate the warming produced by GHGs.
Masoud Saatsaz and Aboulfazl Rezaie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-173, https://doi.org/10.5194/hess-2021-173, 2021
Manuscript not accepted for further review
Short summary
Short summary
In Iran, as a water-scared country, water resources development has been consistently challenging. Iranians have long practiced various managing strategies based on the region's geo-climatological features, needs, tools, available resources (surface water and groundwater), political stability, economic power, and socio-cultural characteristics. This article explains how ancient Iranians confronted various water-related problems and how they tackled these restrictions.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Sabino Piazzolla, Gabriele Pfister, Rajesh Kumar, Carl Drews, Simone Tilmes, Louisa Emmons, and Matthew Johnson
Atmos. Chem. Phys., 21, 6129–6153, https://doi.org/10.5194/acp-21-6129-2021, https://doi.org/10.5194/acp-21-6129-2021, 2021
Short summary
Short summary
The tropospheric ozone lidar at the JPL Table Mountain Facility (TMF) was used to investigate the impact of Los Angeles (LA) Basin pollution transport and stratospheric intrusions in the planetary boundary layer on the San Gabriel Mountains. The results of this study indicate a dominant role of the LA Basin pollution on days when high ozone levels were observed at TMF (March–October period).
Ben Kravitz, Douglas G. MacMartin, Daniele Visioni, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Andy Jones, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Alan Robock, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 4231–4247, https://doi.org/10.5194/acp-21-4231-2021, https://doi.org/10.5194/acp-21-4231-2021, 2021
Short summary
Short summary
This study investigates multi-model response to idealized geoengineering (high CO2 with solar reduction) across two different generations of climate models. We find that, with the exception of a few cases, the results are unchanged between the different generations. This gives us confidence that broad conclusions about the response to idealized geoengineering are robust.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Simone Tilmes, Rebecca H. Schwantes, Michael J. Mills, Pedro Campuzano-Jost, Weiwei Hu, Rahul A. Zaveri, Richard C. Easter, Balwinder Singh, Zheng Lu, Christiane Schulz, Johannes Schneider, John E. Shilling, Armin Wisthaler, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 3395–3425, https://doi.org/10.5194/acp-21-3395-2021, https://doi.org/10.5194/acp-21-3395-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is a major component of submicron particulate matter, but there are a lot of uncertainties in the future prediction of SOA. We used CESM 2.1 to investigate future IEPOX SOA concentration changes. The explicit chemistry predicted substantial changes in IEPOX SOA depending on the future scenario, but the parameterization predicted weak changes due to simplified chemistry, which shows the importance of correct physicochemical dependencies in future SOA prediction.
Sabine Robrecht, Bärbel Vogel, Simone Tilmes, and Rolf Müller
Atmos. Chem. Phys., 21, 2427–2455, https://doi.org/10.5194/acp-21-2427-2021, https://doi.org/10.5194/acp-21-2427-2021, 2021
Short summary
Short summary
Column ozone protects life on Earth from radiation damage. Stratospheric chlorine compounds cause immense ozone loss in polar winter. Whether similar loss processes can occur in the lower stratosphere above North America today or in future is a matter of debate. We show that these ozone loss processes are very unlikely today or in future independently of whether sulfate geoengineering is applied and that less than 0.1 % of column ozone would be destroyed by this process in any future scenario.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Augustin Mortier, Jonas Gliß, Michael Schulz, Wenche Aas, Elisabeth Andrews, Huisheng Bian, Mian Chin, Paul Ginoux, Jenny Hand, Brent Holben, Hua Zhang, Zak Kipling, Alf Kirkevåg, Paolo Laj, Thibault Lurton, Gunnar Myhre, David Neubauer, Dirk Olivié, Knut von Salzen, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 20, 13355–13378, https://doi.org/10.5194/acp-20-13355-2020, https://doi.org/10.5194/acp-20-13355-2020, 2020
Short summary
Short summary
We present a multiparameter analysis of the aerosol trends over the last 2 decades in the different regions of the world. In most of the regions, ground-based observations show a decrease in aerosol content in both the total atmospheric column and at the surface. The use of climate models, assessed against these observations, reveals however an increase in the total aerosol load, which is not seen with the sole use of observation due to partial coverage in space and time.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 20, 13011–13022, https://doi.org/10.5194/acp-20-13011-2020, https://doi.org/10.5194/acp-20-13011-2020, 2020
Short summary
Short summary
Decadal trends and variations in OH are critical for understanding atmospheric CH4 evolution. We quantify the impacts of OH trends and variations on the CH4 budget by conducting CH4 inversions on a decadal scale with an ensemble of OH fields. We find the negative OH anomalies due to enhanced fires can reduce the optimized CH4 emissions by up to 10 Tg yr−1 during El Niño years and the positive OH trend from 1986 to 2010 results in a ∼ 23 Tg yr−1 additional increase in optimized CH4 emissions.
David S. Stevenson, Alcide Zhao, Vaishali Naik, Fiona M. O'Connor, Simone Tilmes, Guang Zeng, Lee T. Murray, William J. Collins, Paul T. Griffiths, Sungbo Shim, Larry W. Horowitz, Lori T. Sentman, and Louisa Emmons
Atmos. Chem. Phys., 20, 12905–12920, https://doi.org/10.5194/acp-20-12905-2020, https://doi.org/10.5194/acp-20-12905-2020, 2020
Short summary
Short summary
We present historical trends in atmospheric oxidizing capacity (OC) since 1850 from the latest generation of global climate models and compare these with estimates from measurements. OC controls levels of many key reactive gases, including methane (CH4). We find small model trends up to 1980, then increases of about 9 % up to 2014, disagreeing with (uncertain) measurement-based trends. Major drivers of OC trends are emissions of CH4, NOx, and CO; these will be important for future CH4 trends.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
Short summary
We present an updated projection of Antarctic ozone hole recovery using an ensemble of chemistry–climate models. To do so, we employ a method, more advanced and skilful than the current multi-model mean standard, which is applicable to other ensemble analyses. It calculates the performance and similarity of the models, which we then use to weight the model. Calculating model similarity allows us to account for models which are constructed from similar components.
Yangyang Xu, Lei Lin, Simone Tilmes, Katherine Dagon, Lili Xia, Chenrui Diao, Wei Cheng, Zhili Wang, Isla Simpson, and Lorna Burnell
Earth Syst. Dynam., 11, 673–695, https://doi.org/10.5194/esd-11-673-2020, https://doi.org/10.5194/esd-11-673-2020, 2020
Short summary
Short summary
Two geoengineering schemes to mitigate global warming, (a) capturing atmospheric CO2 and (b) injecting stratospheric sulfur gas, are compared. Based on two sets of large-ensemble model experiments, we show that sulfur injection will effectively mitigate projected terrestrial drying over the Americas, and the mitigation benefit will emerge more quickly than with carbon capture. Innovative means of sulfur injection should continue to be explored as one potential low-cost climate solution.
Ulrike Niemeier, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 20, 8975–8987, https://doi.org/10.5194/acp-20-8975-2020, https://doi.org/10.5194/acp-20-8975-2020, 2020
Short summary
Short summary
Artificial injections of SO2 into the tropical stratosphere show an impact on the quasi-biennial oscillation (QBO). Different numerical models show only qualitatively but not quantitatively consistent impacts. We show for two models that the response of the QBO is similar when a similar stratospheric heating rate is induced by SO2 injections of different amounts. The reason is very different vertical advection in the two models resulting in different aerosol burden and heating of the aerosols.
Simone Tilmes, Douglas G. MacMartin, Jan T. M. Lenaerts, Leo van Kampenhout, Laura Muntjewerf, Lili Xia, Cheryl S. Harrison, Kristen M. Krumhardt, Michael J. Mills, Ben Kravitz, and Alan Robock
Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020, https://doi.org/10.5194/esd-11-579-2020, 2020
Short summary
Short summary
This paper introduces new geoengineering model experiments as part of a larger model intercomparison effort, using reflective particles to block some of the incoming solar radiation to reach surface temperature targets. Outcomes of these applications are contrasted based on a high greenhouse gas emission pathway and a pathway with strong mitigation and negative emissions after 2040. We compare quantities that matter for societal and ecosystem impacts between the different scenarios.
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
Alma Hodzic, Pedro Campuzano-Jost, Huisheng Bian, Mian Chin, Peter R. Colarco, Douglas A. Day, Karl D. Froyd, Bernd Heinold, Duseong S. Jo, Joseph M. Katich, John K. Kodros, Benjamin A. Nault, Jeffrey R. Pierce, Eric Ray, Jacob Schacht, Gregory P. Schill, Jason C. Schroder, Joshua P. Schwarz, Donna T. Sueper, Ina Tegen, Simone Tilmes, Kostas Tsigaridis, Pengfei Yu, and Jose L. Jimenez
Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, https://doi.org/10.5194/acp-20-4607-2020, 2020
Short summary
Short summary
Organic aerosol (OA) is a key source of uncertainty in aerosol climate effects. We present the first pole-to-pole OA characterization during the NASA Atmospheric Tomography aircraft mission. OA has a strong seasonal and zonal variability, with the highest levels in summer and over fire-influenced regions and the lowest ones in the southern high latitudes. We show that global models predict the OA distribution well but not the relative contribution of OA emissions vs. chemical production.
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Xiaoran Guo, Liyun Zhao, Rupert M. Gladstone, Sainan Sun, and John C. Moore
The Cryosphere, 13, 3139–3153, https://doi.org/10.5194/tc-13-3139-2019, https://doi.org/10.5194/tc-13-3139-2019, 2019
Elizabeth Asher, Rebecca S. Hornbrook, Britton B. Stephens, Doug Kinnison, Eric J. Morgan, Ralph F. Keeling, Elliot L. Atlas, Sue M. Schauffler, Simone Tilmes, Eric A. Kort, Martin S. Hoecker-Martínez, Matt C. Long, Jean-François Lamarque, Alfonso Saiz-Lopez, Kathryn McKain, Colm Sweeney, Alan J. Hills, and Eric C. Apel
Atmos. Chem. Phys., 19, 14071–14090, https://doi.org/10.5194/acp-19-14071-2019, https://doi.org/10.5194/acp-19-14071-2019, 2019
Short summary
Short summary
Halogenated organic trace gases, which are a source of reactive halogens to the atmosphere, exert a disproportionately large influence on atmospheric chemistry and climate. This paper reports novel aircraft observations of halogenated compounds over the Southern Ocean in summer and evaluates hypothesized regional sources and emissions of these trace gases through their relationships to additional aircraft observations.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Wenxiu Sun, Peter Hess, Gang Chen, and Simone Tilmes
Atmos. Chem. Phys., 19, 12917–12933, https://doi.org/10.5194/acp-19-12917-2019, https://doi.org/10.5194/acp-19-12917-2019, 2019
Short summary
Short summary
Using both observations and a chemistry climate–model we establish that in most locations changes in the waviness of the 500 hPa flow field, as measured by the local anticyclonic wave activity (AWA), explain a significant fraction of the interannual variability in surface ozone over the United States. In addition, we find that the change in AWA in a future climate (circa 2100) is predicted to cause a change in surface ozone ranging between –6 ppb and 6 ppb.
Ohad Harari, Chaim I. Garfinkel, Shlomi Ziskin Ziv, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, Fiona M. O'Connor, and Sean Davis
Atmos. Chem. Phys., 19, 9253–9268, https://doi.org/10.5194/acp-19-9253-2019, https://doi.org/10.5194/acp-19-9253-2019, 2019
Short summary
Short summary
Ozone depletion in the Antarctic has been shown to influence surface conditions, but the effects of ozone depletion in the Arctic on surface climate are unclear. We show that Arctic ozone does influence surface climate in both polar regions and tropical regions, though the proximate cause of these surface impacts is not yet clear.
Huang Yang, Darryn W. Waugh, Clara Orbe, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, Patrick Jöckel, Susan E. Strahan, Kane A. Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019, https://doi.org/10.5194/acp-19-5511-2019, 2019
Short summary
Short summary
We evaluate the performance of a suite of models in simulating the large-scale transport from the northern midlatitudes to the Arctic using a CO-like idealized tracer. We find a large multi-model spread of the Arctic concentration of this CO-like tracer that is well correlated with the differences in the location of the midlatitude jet as well as the northern Hadley Cell edge. Our results suggest the Hadley Cell is key and zonal-mean transport by surface meridional flow needs better constraint.
Rupert M. Gladstone, Yuwei Xia, and John Moore
The Cryosphere, 12, 3605–3615, https://doi.org/10.5194/tc-12-3605-2018, https://doi.org/10.5194/tc-12-3605-2018, 2018
Short summary
Short summary
Computer models for the simulation of marine ice sheets (ice sheets resting on bedrock below sea level) historically show poor numerical convergence for grounding line (the boundary between grounded and floating parts of the ice sheet) movement. We have further characterised the nature of the numerical problems leading to poor convergence and highlighted implications for the design of computer experiments that test grounding line movement.
Laura E. Revell, Andrea Stenke, Fiona Tummon, Aryeh Feinberg, Eugene Rozanov, Thomas Peter, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Neal Butchart, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, Robyn Schofield, Kane Stone, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 16155–16172, https://doi.org/10.5194/acp-18-16155-2018, https://doi.org/10.5194/acp-18-16155-2018, 2018
Short summary
Short summary
Global models such as those participating in the Chemistry-Climate Model Initiative (CCMI) consistently simulate biases in tropospheric ozone compared with observations. We performed an advanced statistical analysis with one of the CCMI models to understand the cause of the bias. We found that emissions of ozone precursor gases are the dominant driver of the bias, implying either that the emissions are too large, or that the way in which the model handles emissions needs to be improved.
Liren Wei, Duoying Ji, Chiyuan Miao, Helene Muri, and John C. Moore
Atmos. Chem. Phys., 18, 16033–16050, https://doi.org/10.5194/acp-18-16033-2018, https://doi.org/10.5194/acp-18-16033-2018, 2018
Short summary
Short summary
We analyzed streamflow and flood frequency under the stratospheric aerosol geoengineering scenario simulated by climate models. Stratospheric aerosol geoengineering appears to reduce flood risk in most regions, but the overall effects are largely determined by the large-scale geographic pattern. Over the Amazon, stratospheric aerosol geoengineering ameliorates the drying trend here under a future warming climate.
Xinyi Dong, Joshua S. Fu, Qingzhao Zhu, Jian Sun, Jiani Tan, Terry Keating, Takashi Sekiya, Kengo Sudo, Louisa Emmons, Simone Tilmes, Jan Eiof Jonson, Michael Schulz, Huisheng Bian, Mian Chin, Yanko Davila, Daven Henze, Toshihiko Takemura, Anna Maria Katarina Benedictow, and Kan Huang
Atmos. Chem. Phys., 18, 15581–15600, https://doi.org/10.5194/acp-18-15581-2018, https://doi.org/10.5194/acp-18-15581-2018, 2018
Short summary
Short summary
We have applied the HTAP phase II multi-model data to investigate the long-range transport impacts on surface concentration and column density of PM from Europe and Russia, Belarus, and Ukraine to eastern Asia, with a special focus on the long-range transport contribution during haze episodes in China. We found that long-range transport plays a more important role in elevating the background concentration of surface PM during the haze days.
Daniele Visioni, Giovanni Pitari, Glauco di Genova, Simone Tilmes, and Irene Cionni
Atmos. Chem. Phys., 18, 14867–14887, https://doi.org/10.5194/acp-18-14867-2018, https://doi.org/10.5194/acp-18-14867-2018, 2018
Short summary
Short summary
Many side effects of sulfate geoengineering have to be analyzed before the world can even consider deploying this method of solar radiation management. In particular, we show that ice clouds in the upper troposphere are modified by a sulfate injection, producing a change that (by allowing for more planetary radiation to escape to space) would produce a further cooling. This might be important when considering the necessary amount of sulfate that needs to be injected to achieve a certain target.
Benjamin Brown-Steiner, Noelle E. Selin, Ronald Prinn, Simone Tilmes, Louisa Emmons, Jean-François Lamarque, and Philip Cameron-Smith
Geosci. Model Dev., 11, 4155–4174, https://doi.org/10.5194/gmd-11-4155-2018, https://doi.org/10.5194/gmd-11-4155-2018, 2018
Short summary
Short summary
We conduct three simulations of atmospheric chemistry using chemical mechanisms of different levels of complexity and compare their results to observations. We explore situations in which the simplified mechanisms match the output of the most complex mechanism, as well as when they diverge. We investigate how concurrent utilization of chemical mechanisms of different complexities can further our atmospheric-chemistry understanding at various scales and give some strategies for future research.
Michael J. Wolovick and John C. Moore
The Cryosphere, 12, 2955–2967, https://doi.org/10.5194/tc-12-2955-2018, https://doi.org/10.5194/tc-12-2955-2018, 2018
Short summary
Short summary
In this paper, we explore the possibility of using locally targeted geoengineering to slow the rate of an ice sheet collapse. We find that an intervention as big as existing large civil engineering projects could have a 30 % probability of stopping an ice sheet collapse, while larger interventions have better odds of success. With more research to improve upon the simple designs we considered, it may be possible to perfect a design that was both achievable and had good odds of success.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Jiani Tan, Joshua S. Fu, Frank Dentener, Jian Sun, Louisa Emmons, Simone Tilmes, Johannes Flemming, Toshihiko Takemura, Huisheng Bian, Qingzhao Zhu, Cheng-En Yang, and Terry Keating
Atmos. Chem. Phys., 18, 12223–12240, https://doi.org/10.5194/acp-18-12223-2018, https://doi.org/10.5194/acp-18-12223-2018, 2018
Short summary
Short summary
Have contributions of hemispheric air pollution to deposition at global scale been overlooked in the past years? How do we assess the critical load for the acid deposition when we look for the demand of forest and crop? This study highlights the significant impact of hemispheric transport on deposition in coastal regions, open ocean and low-emission regions. Further research is proposed for improving ecosystem and human health in these regions, with regards to the enhanced hemispheric transport.
Pakawat Phalitnonkiat, Peter G. M. Hess, Mircea D. Grigoriu, Gennady Samorodnitsky, Wenxiu Sun, Ellie Beaudry, Simone Tilmes, Makato Deushi, Beatrice Josse, David Plummer, and Kengo Sudo
Atmos. Chem. Phys., 18, 11927–11948, https://doi.org/10.5194/acp-18-11927-2018, https://doi.org/10.5194/acp-18-11927-2018, 2018
Short summary
Short summary
The co-occurrence of heat waves and pollution events and the resulting high mortality rates emphasize the importance of the co-occurrence of pollution and temperature extremes. We analyze ozone and temperature extremes and their joint occurrence over the United States during the summer months (JJA) in measurement data and in model simulations of the present and future climates.
Peter J. Irvine, David W. Keith, and John Moore
The Cryosphere, 12, 2501–2513, https://doi.org/10.5194/tc-12-2501-2018, https://doi.org/10.5194/tc-12-2501-2018, 2018
Short summary
Short summary
Stratospheric aerosol geoengineering, a form of solar geoengineering, is a proposal to add a reflective layer of aerosol to the upper atmosphere. This would reduce sea level rise by slowing the melting of ice on land and the thermal expansion of the oceans. However, there is considerable uncertainty about its potential efficacy. This article highlights key uncertainties in the sea level response to solar geoengineering and recommends approaches to address these in future work.
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
Short summary
We examine extreme temperature and precipitation under climate-model-simulated solar dimming and stratospheric aerosol injection geoengineering schemes. Both types of geoengineering lead to lower minimum temperatures at higher latitudes and greater cooling of minimum temperatures and maximum temperatures over land compared with oceans. Stratospheric aerosol injection is more effective in reducing tropical extreme precipitation, while solar dimming is more effective over extra-tropical regions.
Qin Wang, John C. Moore, and Duoying Ji
Atmos. Chem. Phys., 18, 9173–9188, https://doi.org/10.5194/acp-18-9173-2018, https://doi.org/10.5194/acp-18-9173-2018, 2018
Short summary
Short summary
(1) Genesis potential and ventilation indices are assessed in 6 ESMs running RCP4.5 and G4, in 6 tropical cyclone genesis basins.
(2) Genesis potential is reasonably well parameterized by simple surface temperature, but other factors are important in different basins and models such as relative humidity and wind shear.
(3) The Northern Hemisphere basins behave rather differently from the southern ones, and these dominate TC statistics. G4 leads to significantly fewer TCs globally than RCP4.5.
Steven T. Turnock, Oliver Wild, Frank J. Dentener, Yanko Davila, Louisa K. Emmons, Johannes Flemming, Gerd A. Folberth, Daven K. Henze, Jan E. Jonson, Terry J. Keating, Sudo Kengo, Meiyun Lin, Marianne Lund, Simone Tilmes, and Fiona M. O'Connor
Atmos. Chem. Phys., 18, 8953–8978, https://doi.org/10.5194/acp-18-8953-2018, https://doi.org/10.5194/acp-18-8953-2018, 2018
Short summary
Short summary
A simple parameterisation was developed in this study to provide a rapid assessment of the impacts and uncertainties associated with future emission control strategies by predicting changes to surface ozone air quality and near-term climate forcing of ozone. Future emissions scenarios based on currently implemented legislation are shown to worsen surface ozone air quality and enhance near-term climate warming, with changes in methane becoming increasingly important in the future.
Anboyu Guo, John C. Moore, and Duoying Ji
Atmos. Chem. Phys., 18, 8689–8706, https://doi.org/10.5194/acp-18-8689-2018, https://doi.org/10.5194/acp-18-8689-2018, 2018
Short summary
Short summary
This is an examination of both the zonal and meridional tropical circulations under G1 geoengineering using eight ESMs. Drivers of the changes are examined, with meridional temperature gradient being the dominant factor. The Hadley circulation is changed under G1 differently for each hemisphere, but changes are small compared with abrupt4xCO2. Changes in the Walker circulation are subtle but potentially important in some regions, and ENSO impacts circulations only slightly differently under G1.
Benjamin Brown-Steiner, Noelle E. Selin, Ronald G. Prinn, Erwan Monier, Simone Tilmes, Louisa Emmons, and Fernando Garcia-Menendez
Atmos. Chem. Phys., 18, 8373–8388, https://doi.org/10.5194/acp-18-8373-2018, https://doi.org/10.5194/acp-18-8373-2018, 2018
Short summary
Short summary
Detecting signals in observations and simulations of atmospheric chemistry is difficult due to the underlying variability in the chemistry, meteorology, and climatology. Here we examine the scale dependence of ozone variability and explore strategies for reducing or averaging this variability and thereby enhancing ozone signal detection capabilities. We find that 10–15 years of temporal averaging, and some level of spatial averaging, reduces the risk of overconfidence in ozone signals.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Xiaokang Wu, Huang Yang, Darryn W. Waugh, Clara Orbe, Simone Tilmes, and Jean-Francois Lamarque
Atmos. Chem. Phys., 18, 7439–7452, https://doi.org/10.5194/acp-18-7439-2018, https://doi.org/10.5194/acp-18-7439-2018, 2018
Short summary
Short summary
The seasonal and interannual variability of transport times from northern mid-latitudes into the southern hemisphere is examined using simulations of
agetracers. The largest variability occurs near the surface close to the tropical convergence zones, but the peak is further south and there is a smaller tropical–extratropical contrast for tracers with more rapid loss. Hence the variability of trace gases in the southern extratropics will vary with their chemical lifetime.
Clara Orbe, Huang Yang, Darryn W. Waugh, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, John F. Scinocca, Beatrice Josse, Virginie Marecal, Patrick Jöckel, Luke D. Oman, Susan E. Strahan, Makoto Deushi, Taichu Y. Tanaka, Kohei Yoshida, Hideharu Akiyoshi, Yousuke Yamashita, Andreas Stenke, Laura Revell, Timofei Sukhodolov, Eugene Rozanov, Giovanni Pitari, Daniele Visioni, Kane A. Stone, Robyn Schofield, and Antara Banerjee
Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018, https://doi.org/10.5194/acp-18-7217-2018, 2018
Short summary
Short summary
In this study we compare a few atmospheric transport properties among several numerical models that are used to study the influence of atmospheric chemistry on climate. We show that there are large differences among models in terms of the timescales that connect the Northern Hemisphere midlatitudes, where greenhouse gases and ozone-depleting substances are emitted, to the Southern Hemisphere. Our results may have important implications for how models represent atmospheric composition.
Jiani Tan, Joshua S. Fu, Frank Dentener, Jian Sun, Louisa Emmons, Simone Tilmes, Kengo Sudo, Johannes Flemming, Jan Eiof Jonson, Sylvie Gravel, Huisheng Bian, Yanko Davila, Daven K. Henze, Marianne T. Lund, Tom Kucsera, Toshihiko Takemura, and Terry Keating
Atmos. Chem. Phys., 18, 6847–6866, https://doi.org/10.5194/acp-18-6847-2018, https://doi.org/10.5194/acp-18-6847-2018, 2018
Short summary
Short summary
We study the distributions of sulfur and nitrogen deposition, which are associated with current environmental issues such as formation of acid rain and ecosystem eutrophication and result in widespread problems such as loss of environmental diversity, harming the crop yield and even food insecurity. According to our study, both the amount and distribution of sulfate and nitrogen deposition have changed significantly in the last decade, particularly in East Asia, South Asia and Southeast Asia.
Liyun Zhao, John C. Moore, Bo Sun, Xueyuan Tang, and Xiaoran Guo
The Cryosphere, 12, 1651–1663, https://doi.org/10.5194/tc-12-1651-2018, https://doi.org/10.5194/tc-12-1651-2018, 2018
Short summary
Short summary
We investigate the age–depth profile to be expected of the ongoing deep ice coring at Kunlun station, Dome A, using the depth-varying anisotropic fabric suggested by the recent polarimetric measurements in a three-dimensional, thermo-mechanically coupled full-Stokes model. The model results suggest that the age of the deep ice at Kunlun is 649–831 ka, and there are large regions where 1-million-year-old ice may be found 200 m above the bedrock within 5–6 km of the Kunlun station.
Yongmei Gong, Thomas Zwinger, Jan Åström, Bas Altena, Thomas Schellenberger, Rupert Gladstone, and John C. Moore
The Cryosphere, 12, 1563–1577, https://doi.org/10.5194/tc-12-1563-2018, https://doi.org/10.5194/tc-12-1563-2018, 2018
Short summary
Short summary
In this study we apply a discrete element model capable of simulating ice fracturing. A microscopic-scale discrete process is applied in addition to a continuum ice dynamics model to investigate the mechanisms facilitated by basal meltwater production, surface meltwater and ice crack opening, for the surge in Basin 3, Austfonna ice cap. The discrete element model is used to locate the ice cracks that can penetrate though the full thickness of the glacier and deliver surface water to the bed.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Sainan Sun, Stephen L. Cornford, John C. Moore, Rupert Gladstone, and Liyun Zhao
The Cryosphere, 11, 2543–2554, https://doi.org/10.5194/tc-11-2543-2017, https://doi.org/10.5194/tc-11-2543-2017, 2017
Short summary
Short summary
The buttressing effect of the floating ice shelves is diminished by the fracture process. We developed a continuum damage mechanics model component of the ice sheet model to simulate the process. The model is tested on an ideal marine ice sheet geometry. We find that behavior of the simulated marine ice sheet is sensitive to fracture processes on the ice shelf, and the stiffness of ice around the grounding line is essential to ice sheet evolution.
Lili Xia, Peer J. Nowack, Simone Tilmes, and Alan Robock
Atmos. Chem. Phys., 17, 11913–11928, https://doi.org/10.5194/acp-17-11913-2017, https://doi.org/10.5194/acp-17-11913-2017, 2017
Short summary
Short summary
Ozone is a key air pollutant. We model two geoengineering schemes, stratospheric sulfur injection and solar irradiance reduction, to compare their impacts on atmospheric ozone concentrations. With the nearly identical global mean surface temperature reduction, solar dimming increases global average surface ozone concentration, while sulfate injection decreases it. This difference is due to different stratosphere–troposphere exchange of ozone and tropospheric ozone chemistry in the two scenarios.
Daniele Visioni, Giovanni Pitari, Valentina Aquila, Simone Tilmes, Irene Cionni, Glauco Di Genova, and Eva Mancini
Atmos. Chem. Phys., 17, 11209–11226, https://doi.org/10.5194/acp-17-11209-2017, https://doi.org/10.5194/acp-17-11209-2017, 2017
Short summary
Short summary
Sulfate geoengineering (SG), the sustained injection of SO2 in the lower stratosphere, is being discussed as a way to counterbalance surface warming, mimicking volcanic eruptions. In this paper, we analyse results from two models part of the GeoMIP project in order to understand the effect SG might have on the concentration and lifetime of methane, which acts in the atmosphere as a greenhouse gas. Understanding possible side effects of SG is a crucial step if its viability is to be assessed.
Maria A. Navarro, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Elliot Atlas, Xavier Rodriguez-Lloveras, Douglas Kinnison, Jean-Francois Lamarque, Simone Tilmes, Troy Thornberry, Andrew Rollins, James W. Elkins, Eric J. Hintsa, and Fred L. Moore
Atmos. Chem. Phys., 17, 9917–9930, https://doi.org/10.5194/acp-17-9917-2017, https://doi.org/10.5194/acp-17-9917-2017, 2017
Short summary
Short summary
Inorganic bromine (Bry) plays an important role in ozone layer depletion. Based on aircraft observations of organic bromine species and chemistry simulations, we model the Bry abundances over the Pacific tropical tropopause. Our results show BrO and Br as the dominant species during daytime hours, and BrCl and BrONO2 as the nighttime dominant species over the western and eastern Pacific, respectively. The difference in the partitioning is due to changes in the abundance of O3, NO2, and Cly.
Liyun Zhao, Yi Yang, Wei Cheng, Duoying Ji, and John C. Moore
Atmos. Chem. Phys., 17, 6547–6564, https://doi.org/10.5194/acp-17-6547-2017, https://doi.org/10.5194/acp-17-6547-2017, 2017
Short summary
Short summary
We find stratospheric sulfate aerosol injection geoengineering, G3, can slow shrinkage of high-mountain Asia glaciers by about 50 % by 2069 relative to losses from RCP8.5. The reduction in mean precipitation expected for solar geoengineering is less important than the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering in 2069 leads to temperature rise of 1.3 °C and corresponding increase in glacier volume loss rate.
Hiroki Kashimura, Manabu Abe, Shingo Watanabe, Takashi Sekiya, Duoying Ji, John C. Moore, Jason N. S. Cole, and Ben Kravitz
Atmos. Chem. Phys., 17, 3339–3356, https://doi.org/10.5194/acp-17-3339-2017, https://doi.org/10.5194/acp-17-3339-2017, 2017
Short summary
Short summary
This study analyses shortwave radiation (SW) in the G4 experiment of the Geoengineering Model Intercomparison Project. G4 involves stratospheric injection of 5 Tg yr−1 of SO2 against the RCP4.5 scenario. The global mean forcing of the sulphate geoengineering has an inter-model variablity of −3.6 to −1.6 W m−2, implying a high uncertainty in modelled processes of sulfate aerosols. Changes in water vapour and cloud amounts due to the SO2 injection weaken the forcing at the surface by around 50 %.
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
Rafael P. Fernandez, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 17, 1673–1688, https://doi.org/10.5194/acp-17-1673-2017, https://doi.org/10.5194/acp-17-1673-2017, 2017
Short summary
Short summary
The inclusion of biogenic very-short lived bromine (VSLBr) in a chemistry-climate model produces an expansion of the ozone hole area of ~ 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the reduction of anthropogenic CFCs and halons. The maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSLBr are considered, but does not introduce a significant delay of the modelled ozone return date to 1980 October levels.
Camilla Weum Stjern, Bjørn Hallvard Samset, Gunnar Myhre, Huisheng Bian, Mian Chin, Yanko Davila, Frank Dentener, Louisa Emmons, Johannes Flemming, Amund Søvde Haslerud, Daven Henze, Jan Eiof Jonson, Tom Kucsera, Marianne Tronstad Lund, Michael Schulz, Kengo Sudo, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 16, 13579–13599, https://doi.org/10.5194/acp-16-13579-2016, https://doi.org/10.5194/acp-16-13579-2016, 2016
Short summary
Short summary
Air pollution can reach distant regions through intercontinental transport. Here we first present results from the Hemispheric Transport of Air Pollution Phase 2 exercise, where many models performed the same set of coordinated emission-reduction experiments. We find that mitigations have considerable extra-regional effects, and show that this is particularly true for black carbon emissions, as long-range transport elevates aerosols to higher levels where their radiative influence is stronger.
Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov
The Cryosphere, 10, 1721–1737, https://doi.org/10.5194/tc-10-1721-2016, https://doi.org/10.5194/tc-10-1721-2016, 2016
Short summary
Short summary
The winter snow insulation is a key process for air–soil temperature coupling and is relevant for permafrost simulations. Differences in simulated air–soil temperature relationships and their modulation by climate conditions are found to be related to the snow model physics. Generally, models with better performance apply multilayer snow schemes.
Nicholas A. Davis, Dian J. Seidel, Thomas Birner, Sean M. Davis, and Simone Tilmes
Atmos. Chem. Phys., 16, 10083–10095, https://doi.org/10.5194/acp-16-10083-2016, https://doi.org/10.5194/acp-16-10083-2016, 2016
Short summary
Short summary
In the Hadley cells, air rises at the Equator and sinks over the subtropics, drying the air and creating deserts on land. We investigated simple climate model experiments and found that the Hadley cells expand in response to increasing carbon dioxide. The climate of some models warms more than others, and these models also have greater Hadley cell expansion. This expansion could shift deserts toward more populated areas, with potentially major impacts on water resources and surface climate.
Sarah A. Strode, Helen M. Worden, Megan Damon, Anne R. Douglass, Bryan N. Duncan, Louisa K. Emmons, Jean-Francois Lamarque, Michael Manyin, Luke D. Oman, Jose M. Rodriguez, Susan E. Strahan, and Simone Tilmes
Atmos. Chem. Phys., 16, 7285–7294, https://doi.org/10.5194/acp-16-7285-2016, https://doi.org/10.5194/acp-16-7285-2016, 2016
Short summary
Short summary
We use global models to interpret trends in MOPITT observations of CO. Simulations with time-dependent emissions reproduce the observed trends over the eastern USA and Europe, suggesting that the emissions are reasonable for these regions. The simulations produce a positive trend over eastern China, contrary to the observed negative trend. This may indicate that the assumed emission trend over China is too positive. However, large variability in the overhead ozone column also contributes.
Simone Tilmes, Jean-Francois Lamarque, Louisa K. Emmons, Doug E. Kinnison, Dan Marsh, Rolando R. Garcia, Anne K. Smith, Ryan R. Neely, Andrew Conley, Francis Vitt, Maria Val Martin, Hiroshi Tanimoto, Isobel Simpson, Don R. Blake, and Nicola Blake
Geosci. Model Dev., 9, 1853–1890, https://doi.org/10.5194/gmd-9-1853-2016, https://doi.org/10.5194/gmd-9-1853-2016, 2016
Short summary
Short summary
The state of the art Community Earth System Model, CESM1 CAM4-chem has been used to perform reference and sensitivity simulations as part of the Chemistry Climate Model Initiative (CCMI). Specifics of the model and details regarding the setup of the simulations are described. In additions, the main behavior of the model, including selected chemical species have been evaluated with climatological datasets. This paper is therefore a references for studies that use the provided model results.
L. Xia, A. Robock, S. Tilmes, and R. R. Neely III
Atmos. Chem. Phys., 16, 1479–1489, https://doi.org/10.5194/acp-16-1479-2016, https://doi.org/10.5194/acp-16-1479-2016, 2016
Short summary
Short summary
Climate model simulations show that stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. Enhanced downward diffuse radiation, combined with cooling, could stimulate plants to grow more and absorb more carbon dioxide. This beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about implementation of geoengineering.
X. Liu, P.-L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch
Geosci. Model Dev., 9, 505–522, https://doi.org/10.5194/gmd-9-505-2016, https://doi.org/10.5194/gmd-9-505-2016, 2016
Short summary
Short summary
In this study, we describe and evaluate a new four-mode version of the Modal Aerosol Module (MAM4) in the Community Atmosphere Model version 5 (CAM5). Compared to the current three-mode version of MAM in CAM5, MAM4 significantly improves the simulation of seasonal variation of BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons.
W. Wang, A. Rinke, J. C. Moore, X. Cui, D. Ji, Q. Li, N. Zhang, C. Wang, S. Zhang, D. M. Lawrence, A. D. McGuire, W. Zhang, C. Delire, C. Koven, K. Saito, A. MacDougall, E. Burke, and B. Decharme
The Cryosphere, 10, 287–306, https://doi.org/10.5194/tc-10-287-2016, https://doi.org/10.5194/tc-10-287-2016, 2016
Short summary
Short summary
We use a model-ensemble approach for simulating permafrost on the Tibetan Plateau. We identify the uncertainties across models (state-of-the-art land surface models) and across methods (most commonly used methods to define permafrost).
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
The Cryosphere, 10, 179–192, https://doi.org/10.5194/tc-10-179-2016, https://doi.org/10.5194/tc-10-179-2016, 2016
Short summary
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
J. He, Y. Zhang, S. Tilmes, L. Emmons, J.-F. Lamarque, T. Glotfelty, A. Hodzic, and F. Vitt
Geosci. Model Dev., 8, 3999–4025, https://doi.org/10.5194/gmd-8-3999-2015, https://doi.org/10.5194/gmd-8-3999-2015, 2015
Short summary
Short summary
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major gases compared to aircraft measurements, with better agreement for the NOy profile by CB05_GE. The SOA concentrations of SOA at four sites in CONUS and organic carbon over the IMPROVE sites are better predicted by MOZART-4x. The two simulations result in a global average difference of 0.5W m-2 in simulated shortwave cloud radiative forcing, with up to 13.6W m-2 over subtropical regions.
Y. Zheng, N. Unger, A. Hodzic, L. Emmons, C. Knote, S. Tilmes, J.-F. Lamarque, and P. Yu
Atmos. Chem. Phys., 15, 13487–13506, https://doi.org/10.5194/acp-15-13487-2015, https://doi.org/10.5194/acp-15-13487-2015, 2015
Short summary
Short summary
Nitrogen oxides (NOx) play an important but complex role in secondary organic aerosol (SOA) formation. In this study we update the SOA scheme in a global 3-D chemistry-climate model by implementing a 4-product volatility basis set (VBS) framework with NOx-dependent yields and simplified aging parameterizations. We find that the SOA decrease in response to a 50% reduction in anthropogenic NOx emissions is limited due to the buffering in different chemical pathways.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
M. Gil-Ojeda, M. Navarro-Comas, L. Gómez-Martín, J. A. Adame, A. Saiz-Lopez, C. A. Cuevas, Y. González, O. Puentedura, E. Cuevas, J.-F. Lamarque, D. Kinninson, and S. Tilmes
Atmos. Chem. Phys., 15, 10567–10579, https://doi.org/10.5194/acp-15-10567-2015, https://doi.org/10.5194/acp-15-10567-2015, 2015
Short summary
Short summary
The NO2 seasonal evolution in the free troposphere (FT) has been established for the first time, based on a remote sensing technique (MAXDOAS) and thus avoiding the problems of the local pollution of in situ instruments. A clear seasonality has been found, with background levels of 20-40pptv. Evidence has been found on fast, direct injection of surface air into the free troposphere. This result might have implications on the FT distribution of halogens and other species with marine sources.
T. Zwinger, T. Malm, M. Schäfer, R. Stenberg, and J. C. Moore
The Cryosphere, 9, 1415–1426, https://doi.org/10.5194/tc-9-1415-2015, https://doi.org/10.5194/tc-9-1415-2015, 2015
Short summary
Short summary
By deploying a large-scale high-resolution turbulent CFD simulation using the present-day topography of the Scharffenbergbotnen (SBB) valley, we show how the surrounding topography redirects incoming easterly katabatic storm fronts to impact the blue ice areas (BIA) inside the valley, where the snow cover frequently is removed. A further simulation of a reconstructed topography at the Late Glacial Maximum further reveals that the BIA at SBB must have formed after this period.
M. A. Rawlins, A. D. McGuire, J. S. Kimball, P. Dass, D. Lawrence, E. Burke, X. Chen, C. Delire, C. Koven, A. MacDougall, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, P. Ciais, B. Decharme, I. Gouttevin, T. Hajima, D. Ji, G. Krinner, D. P. Lettenmaier, P. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
Biogeosciences, 12, 4385–4405, https://doi.org/10.5194/bg-12-4385-2015, https://doi.org/10.5194/bg-12-4385-2015, 2015
Short summary
Short summary
We used outputs from nine models to better understand land-atmosphere CO2 exchanges across Northern Eurasia over the period 1960-1990. Model estimates were assessed against independent ground and satellite measurements. We find that the models show a weakening of the CO2 sink over time; the models tend to overestimate respiration, causing an underestimate in NEP; the model range in regional NEP is twice the multimodel mean. Residence time for soil carbon decreased, amid a gain in carbon storage.
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, https://doi.org/10.5194/acp-15-6721-2015, 2015
Short summary
Short summary
Eleven 3-D tropospheric chemistry models have been compared and evaluated with observations in the Arctic during the International Polar Year (IPY 2008). Large differences are seen among the models, particularly related to the model chemistry of volatile organic compounds (VOCs) and reactive nitrogen (NOx, PAN, HNO3) partitioning. Consistency among the models in the underestimation of CO, ethane and propane indicates the emission inventory is too low for these compounds.
S. R. Arnold, L. K. Emmons, S. A. Monks, K. S. Law, D. A. Ridley, S. Turquety, S. Tilmes, J. L. Thomas, I. Bouarar, J. Flemming, V. Huijnen, J. Mao, B. N. Duncan, S. Steenrod, Y. Yoshida, J. Langner, and Y. Long
Atmos. Chem. Phys., 15, 6047–6068, https://doi.org/10.5194/acp-15-6047-2015, https://doi.org/10.5194/acp-15-6047-2015, 2015
Short summary
Short summary
The extent to which forest fires produce the air pollutant and greenhouse gas ozone (O3) in the atmosphere at high latitudes in not well understood. We have compared how fire emissions produce O3 and its precursors in several models of atmospheric chemistry. We find enhancements in O3 in air dominated by fires in all models, which increase on average as fire emissions age. We also find that in situ O3 production in the Arctic is sensitive to details of organic chemistry and vertical lifting.
S. Tilmes, J.-F. Lamarque, L. K. Emmons, D. E. Kinnison, P.-L. Ma, X. Liu, S. Ghan, C. Bardeen, S. Arnold, M. Deeter, F. Vitt, T. Ryerson, J. W. Elkins, F. Moore, J. R. Spackman, and M. Val Martin
Geosci. Model Dev., 8, 1395–1426, https://doi.org/10.5194/gmd-8-1395-2015, https://doi.org/10.5194/gmd-8-1395-2015, 2015
Short summary
Short summary
The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric chemistry modeling studies in the troposphere and lower stratosphere.
S. A. Monks, S. R. Arnold, L. K. Emmons, K. S. Law, S. Turquety, B. N. Duncan, J. Flemming, V. Huijnen, S. Tilmes, J. Langner, J. Mao, Y. Long, J. L. Thomas, S. D. Steenrod, J. C. Raut, C. Wilson, M. P. Chipperfield, G. S. Diskin, A. Weinheimer, H. Schlager, and G. Ancellet
Atmos. Chem. Phys., 15, 3575–3603, https://doi.org/10.5194/acp-15-3575-2015, https://doi.org/10.5194/acp-15-3575-2015, 2015
Short summary
Short summary
Multi-model simulations of Arctic CO, O3 and OH are evaluated using observations. Models show highly variable concentrations but the relative importance of emission regions and types is robust across the models, demonstrating the importance of biomass burning as a source. Idealised tracer experiments suggest that some of the model spread is due to variations in simulated transport from Europe in winter and from Asia throughout the year.
M. Val Martin, C. L. Heald, J.-F. Lamarque, S. Tilmes, L. K. Emmons, and B. A. Schichtel
Atmos. Chem. Phys., 15, 2805–2823, https://doi.org/10.5194/acp-15-2805-2015, https://doi.org/10.5194/acp-15-2805-2015, 2015
Short summary
Short summary
We present for the first time the relative effect of climate, emissions, and land use change on ozone and PM25 over the United States, focusing on the national parks. Air quality in 2050 will likely be dominated by emission patterns, but climate and land use changes alone can lead to a substantial increase in air pollution over most of the US, with important implications for O3 air quality, visibility and ecosystem health degradation in the national parks.
S. Tilmes, M. J. Mills, U. Niemeier, H. Schmidt, A. Robock, B. Kravitz, J.-F. Lamarque, G. Pitari, and J. M. English
Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, https://doi.org/10.5194/gmd-8-43-2015, 2015
Short summary
Short summary
A new Geoengineering Model Intercomparison Project (GeoMIP) experiment “G4 specified stratospheric aerosols” (G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments.
A. Saiz-Lopez, R. P. Fernandez, C. Ordóñez, D. E. Kinnison, J. C. Gómez Martín, J.-F. Lamarque, and S. Tilmes
Atmos. Chem. Phys., 14, 13119–13143, https://doi.org/10.5194/acp-14-13119-2014, https://doi.org/10.5194/acp-14-13119-2014, 2014
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
A. Khodayari, S. Tilmes, S. C. Olsen, D. B. Phoenix, D. J. Wuebbles, J.-F. Lamarque, and C.-C. Chen
Atmos. Chem. Phys., 14, 9925–9939, https://doi.org/10.5194/acp-14-9925-2014, https://doi.org/10.5194/acp-14-9925-2014, 2014
D. Ji, L. Wang, J. Feng, Q. Wu, H. Cheng, Q. Zhang, J. Yang, W. Dong, Y. Dai, D. Gong, R.-H. Zhang, X. Wang, J. Liu, J. C. Moore, D. Chen, and M. Zhou
Geosci. Model Dev., 7, 2039–2064, https://doi.org/10.5194/gmd-7-2039-2014, https://doi.org/10.5194/gmd-7-2039-2014, 2014
K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J.-F. Müller, U. Kuhn, P. Stefani, and W. Knorr
Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, https://doi.org/10.5194/acp-14-9317-2014, 2014
S. Sun, S. L. Cornford, Y. Liu, and J. C. Moore
The Cryosphere, 8, 1561–1576, https://doi.org/10.5194/tc-8-1561-2014, https://doi.org/10.5194/tc-8-1561-2014, 2014
R. Gladstone, M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J. C. Moore
The Cryosphere, 8, 1393–1405, https://doi.org/10.5194/tc-8-1393-2014, https://doi.org/10.5194/tc-8-1393-2014, 2014
B. Sun, J. C. Moore, T. Zwinger, L. Zhao, D. Steinhage, X. Tang, D. Zhang, X. Cui, and C. Martín
The Cryosphere, 8, 1121–1128, https://doi.org/10.5194/tc-8-1121-2014, https://doi.org/10.5194/tc-8-1121-2014, 2014
T. Zwinger, M. Schäfer, C. Martín, and J. C. Moore
The Cryosphere, 8, 607–621, https://doi.org/10.5194/tc-8-607-2014, https://doi.org/10.5194/tc-8-607-2014, 2014
J. A. Åström, T. I. Riikilä, T. Tallinen, T. Zwinger, D. Benn, J. C. Moore, and J. Timonen
The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, https://doi.org/10.5194/tc-7-1591-2013, 2013
A. R. Berg, C. L. Heald, K. E. Huff Hartz, A. G. Hallar, A. J. H. Meddens, J. A. Hicke, J.-F. Lamarque, and S. Tilmes
Atmos. Chem. Phys., 13, 3149–3161, https://doi.org/10.5194/acp-13-3149-2013, https://doi.org/10.5194/acp-13-3149-2013, 2013
P. J. Young, A. T. Archibald, K. W. Bowman, J.-F. Lamarque, V. Naik, D. S. Stevenson, S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, L. W. Horowitz, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, R. B. Skeie, D. T. Shindell, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, https://doi.org/10.5194/acp-13-2063-2013, 2013
L. Zhao, L. Tian, T. Zwinger, R. Ding, J. Zong, Q. Ye, and J. C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-145-2013, https://doi.org/10.5194/tcd-7-145-2013, 2013
Revised manuscript not accepted
Z. Zhang and J. C. Moore
Ann. Geophys., 30, 1743–1750, https://doi.org/10.5194/angeo-30-1743-2012, https://doi.org/10.5194/angeo-30-1743-2012, 2012
Cited articles
Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., and Yang, H.: Assessing the impact of climate change on water resources in Iran, Water Resour. Res., 45, W10434, https://doi.org/10.1029/2008WR007615, 2009.
Abdelmoaty, H. M., Papalexiou, S. M., Rajulapati, C. R., and AghaKouchak, A.: Biases beyond the mean in CMIP6 extreme precipitation: A global investigation, Earth's Future, 9, e2021EF002196, https://doi.org/10.1029/2021EF002196, 2021.
Abiodun, B. J., Odoulami, R. C., Sawadogo, W., Oloniyo, O. A., Abatan, A. A., New, M., Lennard, C., Izidine, P., Egbebiyi, T. S., and MacMartin, D. G.: Potential impacts of stratospheric aerosol injection on drought risk managements over major river basins in Africa, Clim. Change, 169, 1–19, https://doi.org/10.1007/s10584-021-03268-w, 2021.
Ajjur, S. B. and Al-Ghamdi, S. G.: Evapotranspiration and water availability response to climate change in the Middle East and North Africa, Clim. Change, 166, 28, https://doi.org/10.1007/s10584-021-03122-z, 2021.
Arjdal, K., Driouech, F., Vignon, E., Chéruy, F., Manzanas, R., Drobinski, P., Chehbouni, A., and Idelkadi, A.: Future of land surface water availability over the Mediterranean basin and North Africa: Analysis and synthesis from the CMIP6 exercise, Atmos. Sci. Lett., 24, e1180, https://doi.org/10.1002/asl.1180, 2023.
Arnell, N. W.: Climate change and global water resources, Glob. Environ. Change, 9, 31–49, https://doi.org/10.1016/S0959-3780(99)00017-5, 1999.
Babaousmail, H., Hou, R., Ayugi, B., Ojara, M., Ngoma, H., Karim, R., Rajasekar, A., and Ongoma, V.: Evaluation of the performance of CMIP6 models in reproducing rainfall patterns over North Africa, Atmosphere, 12, 475, https://doi.org/10.3390/atmos12040475, 2021.
Bağçaci, S. Ç., Yucel, I., Duzenli, E., and Yilmaz, M. T.: Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey, Atmos. Res., 256, 105576, https://doi.org/10.1016/j.atmosres.2021.105576, 2021.
Bala, G., Duffy, P. B., and Taylor, K. E.: Impact of geoengineering schemes on the global hydrological cycle, P. Natl. Acad. Sci. USA, 105, 7664–7669, https://doi.org/10.1073/pnas.0711648105, 2008.
Bao, Y., Duan, L., Liu, T., Tong, X., Wang, G., Lei, H., Zhang, L., and Singh, V. P.: Simulation of evapotranspiration and its components for the mobile dune using an improved dual-source model in semi-arid regions, J. Hydrol., 592, 125796, https://doi.org/10.1016/j.jhydrol.2020.125796, 2021.
Barlow, M., Zaitchik, B., Paz, S., Black, E., Evans, J., and Hoell, A.: A review of drought in the Middle East and southwest Asia, J. Climate, 29, 8547–8574, https://doi.org/10.1175/JCLI-D-13-00692.1, 2016.
Bland, J. M. and Altman, D. G.: Multiple significance tests: the Bonferroni method, BMJ, 310, 170, https://doi.org/10.1136/bmj.310.6973.170, 1995.
Bucchignani, E., Mercogliano, P., Panitz, H. J., and Montesarchio, M.: Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions, Adv. Clim. Change Res., 9, 66–80, https://doi.org/10.1016/j. Accre.2018.01.004, 2018.
Burgess, M. G., Ritchie, J., Shapland, J., and Pielke, R.: IPCC baseline scenarios have over-projected CO2 emissions and economic growth, Environ. Res. Lett., 16, 014016, https://doi.org/10.1088/1748-9326/abcdd2, 2020.
Burnell, L.: Risks to global water resources from geoengineering the climate with solar radiation management (Doctoral dissertation, University of Nottingham), PhD thesis, Item ID: 66269, 2021.
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and 21st century drying, Clim. Dynam., 43, 2607–2627, https://doi.org/10.1007/s00382-014-2075-y, 2014.
Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M., and Cook, E. R.: Spatiotemporal drought variability in the Mediterranean over the last 900 years, J. Geophys. Res.-Atmos., 121, 2060–2074, https://doi.org/10.1002/2015JD023929, 2016.
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., and Anchukaitis, K. J.: Twenty-first century drought projections in the CMIP6 forcing scenarios, Earth's Future, 8, e2019EF001461, https://doi.org/10.1029/2019EF001461, 2020.
Crook, J. A., Jackson, L. S., Osprey, S. M., and Forster, P. M.: A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes, J. Geophys. Res.-Atmos., 120, 9352–9373, https://doi.org/10.1002/2015JD023269, 2015.
Cheng, W., MacMartin, D. G., Dagon, K., Kravitz, B., Tilmes, S., Richter, J. H., Mills, M. J., and Simpson, I. R.: Soil moisture and other hydrological changes in a stratospheric aerosol geoengineering large ensemble, J. Geophys. Res.-Atmos., 124, 12773–12793, https://doi.org/10.1029/2018JD030237, 2019.
Dai, A.: Increasing drought under global warming in observations and models, Nat. Clim. Change, 3, 52–58, https://doi.org/10.1038/nclimate1633, 2013.
Dagon, K. and Schrag, D. P.: Exploring the effects of solar radiation management on water cycling in a coupled land–atmosphere model, J. Climate, 29, 2635–2650, https://doi.org/10.1175/JCLI-D-15-0472.1, 2016.
Dagon, K. and Schrag, D. P.: Regional climate variability under model simulations of solar geoengineering, J. Geophys. Res.-Atmos., 122, 12–106, https://doi.org/10.1002/2017JD027110, 2017.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., Strand, W. G., and Strand, W. G.: The community earth system model version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
Dezfuli, A., Bosilovich, M. G., and Barahona, D.: A dusty atmospheric river brings floods to the Middle East, Geophy. Res. Lett., 48, e2021GL095441, https://doi.org/10.1029/2021GL095441, 2021.
Doksum, K. A. and Sievers, G. L.: Plotting with confidence: Graphical comparisons of two populations, Biometrika, 63, 421–434, https://doi.org/10.2307/2335720, 1976.
Döll, P. and Flörke, M.: Global-Scale Estimation of Diffuse Groundwater Recharge; Institute of Physical Geography, Frankfurt University, Frankfurt am Main, Germany, https://www.uni-frankfurt.de/45217767/FHP_03_Doell_Floerke_2005.pdf (last access: 25 September 2023), 2005.
Döll, P., Trautmann, T., Gerten, D., Schmied, H. M., Ostberg, S., Saaed, F., and Schleussner, C. F.: Risks for the global freshwater system at 1.5 ∘C and 2 ∘C global warming, Environ. Res. Lett., 13, 044038, https://doi.org/10.1088/1748-9326/aab792, 2018.
Droogers, P., Immerzeel, W. W., Terink, W., Hoogeveen, J., Bierkens, M. F. P., van Beek, L. P. H., and Debele, B.: Water resources trends in Middle East and North Africa towards 2050, Hydrol. Earth Syst. Sci., 16, 3101–3114, https://doi.org/10.5194/hess-16-3101-2012, 2012.
Earth System Grid Foundation: United States Department of Energy, [data set], https://esgf-node.llnl.gov/search/cmip6/ (last access: 1 October 2023), 2020.
Evans, J. P. and Smith, R. B.: Water vapor transport and the production of precipitation in the eastern Fertile Crescent, J. Hydrometeorol., 7, 1295–1307, https://doi.org/10.1175/JHM550.1, 2006.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fader, M., Shi, S., von Bloh, W., Bondeau, A., and Cramer, W.: Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements, Hydrol. Earth Syst. Sci., 20, 953–973, https://doi.org/10.5194/hess-20-953-2016, 2016.
Famiglietti, J. S.: The global groundwater crisis, Nat. Clim. Change, 4, 945–948, https://doi.org/10.1038/nclimate2425, 2014.
Faour, G., Mhawej, M., and Fayad, A.: Detecting changes in vegetation trends in the Middle East and North Africa (MENA) region using SPOT vegetation, Cybergeo, Europ. J. Geograph., 779, https://doi.org/10.4000/cybergeo.27620, 2016.
Fragaszy, S. R., Jedd, T., Wall, N., Knutson, C., Fraj, M. B., Bergaoui, K., Svoboda, M., Hayes, M., and McDonnell, R.: Drought Monitoring and Warning System for the Middle East and North Africa, B. Am. Meteorol. Soc., 101, 904–910, https://doi.org/10.1175/BAMS-D-18-0084.1, 2020.
Ghavidel, Y. and Jafari Hombari, F.: Synoptic analysis of unexampled super-heavy rainfall on April 1, 2019, in west of Iran, Nat. Hazards, 104 1567–1580, https://doi.org/10.1007/s11069-020-04232-0, 2020.
Gilleland, E.: Bootstrap methods for statistical inference, Part II: Extreme-value analysis, J. Atmos. Ocean. Tech., 37, 2135–2144, https://doi.org/10.1175/JTECH-D-20-0070.1, 2020.
Giorgi F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean region, Global Planet. Change, 63, 90–104, https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Govindasamy, B. and Caldeira, K.: Geoengineering Earth's radiation balance to mitigate CO2-induced climate change, Geophys. Res. Lett., 27, 2141–2144, https://doi.org/10.1029/1999GL006086, 2000.
Grömping, U.: Relative importance for linear regression in R: the package relaimpo, J. Stat. Softw., 17, 1–27, https://doi.org/10.18637/jss.v017.i01, 2007.
Hobeichi, S., Abramowitz, G., Ukkola, A. M., De Kauwe, M., Pitman, A., Evans, J. P., and Beck, H.: Reconciling historical changes in the hydrological cycle over land, npj Clim. Atmos. Sci., 5, 17, https://doi.org/10.1038/s41612-022-00240-y, 2022.
Hofste, R. W., Reig, P., and Schleifer, L.: 17 countries, home to one-quarter of the world's population, face extremely high water stress, 2019.
Intergovernmental Panel on Climate Change (IPCC): Working Group I Contribution to the Sixth Assessment Report (AR6), Climate Change 2021: The Physical Science Basis, 2021, https://www.ipcc.ch/assessment-report/ar6/ (last access: 5 December 2022), 2021.
Irvine, P. J., Kravitz, B., Lawrence, M. G., and Muri, H.: An overview of the Earth system science of solar geoengineering, Wiley Interdiscip. Rev. Clim. Change, 7, 815–833, https://doi.org/10.1002/wcc.423, 2016.
Johnson, J. W. and LeBreton, J. M.: History and use of relative importance indices in organizational research, Organ. Res. Methods, 7, 238–257, https://doi.org/10.1177/1094428104266510, 2004.
Jones, A. C., Hawcroft, M. K., Haywood, J. M., Jones, A., Guo, X., and Moore, J. C.: Regional climate impacts of stabilizing global warming at 1.5 K using solar geoengineering, Earth's Future, 6, 230–251, https://doi.org/10.1002/2017EF000720, 2018.
Karami, K., Tilmes, S., Muri, H., and Mousavi, S. V.: Storm track changes in the Middle East and North Africa under stratospheric aerosol geoengineering, Geophys. Res. Lett., 47, e2020GL086954, https://doi.org/10.1029/2020GL086954, 2020.
Kim, D. W. and Byun, H. R.: Future pattern of Asian drought under global warming scenario, Theor. Appl. Climatol., 98, 137–150, https://doi.org/10.1016/j.ejrh.2022.101191, 2009.
Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E.: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation, Nat. Commun., 11, 3044, https://doi.org/10.1038/s41467-020-16757-w, 2020.
Kravitz, B., Rasch, P. J., Forster, P. M., Andrews, T., Cole, J. N., Irvine, P. J., Ji, D., Kristjánsson, J. E., Moore, J. C., Muri, H., and Niemeier, U.: An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 118, 13087–13102, https://doi.org/10.1002/2013JD020502, 2013.
Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., Hannides, C., Lange, M. A., Tanarhte, M., Tyrlis, E., and Xoplaki, E.: Climate change and impacts in the Eastern Mediterranean and the Middle East, Clim. Change, 114, 667–687, https://doi.org/10.1016/j.envres.2022.114537, 2012.
Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I., and Scheff, J.: Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2, P. Natl. Acad. Sci. USA, 115, 4093, https://doi.org/10.1073/pnas.1720712115, 2018.
Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L. Z., Huang, J., Sheffield, J., Berg, A. M., Keenan, T. F., and McVicar, T. R.: Multifaceted characteristics of dryland aridity changes in a warming world, Nat. Rev. Earth Environ., 2, 232–250, https://doi.org/10.1038/s43017-021-00144-0, 2021.
Lindeman, R. H., Merenda, P. F., and Gold, R. Z.: Introduction to bivariate and multivariate analysis (No. 04, QA278, L553), Scott Foresman, Glenview, IL, Uniq ID: 5310754, 1980.
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., and Ulbrich, U.: The Mediterranean climate: an overview of the main characteristics and issues, Environ. Earth Sci., 4, 1–26, https://doi.org/10.1016/S1571-9197(06)80003-0, 2006.
MacMartin, D. G., Visioni, D., Kravitz, B., Richter, J. H., Felgenhauer, T., Lee, W. R., Morrow, D. R., Parson, E. A., and Sugiyama, M.: Scenarios for modeling solar radiation modification, P. Natl. Acad. Sci. USA, 119, e2202230119, https://doi.org/10.1073/pnas.2202230119, 2022.
Mamalakis, A., Randerson, J. T., Yu, J. Y., Pritchard, M. S., Magnusdottir, G., Smyth, P., Levine, P. A., Yu, S., and Foufoula-Georgiou, E.: Zonally opposing shifts of the intertropical convergence zone in response to climate change, Nat. Clim. Change, 11, 143–151, https://doi.org/10.1038/s41558-020-00963-x, 2021.
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., and Shukla, P. R.: Global Warming of 1.5 ∘C: IPCC Special Report on Impacts of Global Warming of 1.5 ∘C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press, https://www.ipcc.ch/sr15/ (last access: 20 September 2023), 2022.
MedECC: Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future, in: First Mediterranean Assessment Report, edited by: Cramer, W., Guiot, J., Marini, K., Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, 632 pp., https://doi.org/10.5281/zenodo.4768833, 2020.
Milly, P. C., Dunne, K. A., and Vecchia, A. V.: Global pattern of trends in streamflow and water availability in a changing climate, Nature, 438, 347–350, https://doi.org/10.1038/nature04312, 2005.
Mooney, H., Cropper, A., and Reid, W.: Confronting the human dilemma, Nature, 434, 561–562, https://doi.org/10.1038/434561a, 2005.
Mousavi, S. V., Karami, K., Tilmes, S., Muri, H., Xia, L., and Rezaei, A.: Future dust concentration over the Middle East and North Africa region under global warming and stratospheric aerosol intervention scenarios, Atmos. Chem. Phys., 23, 10677–10695, https://doi.org/10.5194/acp-23-10677-2023, 2023.
Muthyala, R., Bala, G., and Nalam, A.: Regional scale analysis of climate extremes in an SRM geoengineering simulation, Part 1: precipitation extremes, Curr. Sci., 114, 1024–1035, 2018.
National Center for Atmospheric Research (NCAR): Climate Data Gateway at NCAR, [data set], https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.geomip.ssp5.html (last access: 2 October 2023), 2020.
Nooni, I. K., Ogou, F. K., Chaibou, A. A. S., Nakoty, F. M., Gnitou, G. T., and Lu, J.: Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation, Atmosphere, 14, 607, https://doi.org/10.3390/atmos14030607, 2023.
Oroud, I. M.: The Impacts of Climate Change on Water Resources in Jordan, in: Climatic Changes and Water Resources in the Middle East and North Africa, edited by: Zereini, F., and Hötzl, H., Environ. Sci. Eng., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-85047-2_ 10, 2008.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S. N., Grillakis, M., Gudmundsson, L., and Hanasaki, N.: Global terrestrial water storage and drought severity under climate change, Nat. Clim. Change, 11, 226–233, https://doi.org/10.1038/s41558-020-00972-w, 2021.
Ricke, K. L., Morgan, M. G., and Allen, M. R.: Regional climate response to solar-radiation management, Nat. Geosci., 3, 537–541, https://doi.org/10.1038/ngeo915, 2010.
Ricke, K., Wan, J. S., Saenger, M., and Lutsko, N. J.: Hydrological Consequences of Solar Geoengineering, Annu. Rev. Earth Planet Sci., 51, 447–470, https://doi.org/10.1146/annurev-earth-031920-083456, 2023.
Reiter, L., Falk, H., Groat, C., and Coussens, C. M. (Eds): From Source Water to Drinking Water: Workshop Summary (National Academies Press, Washington DC, 2004), https://nap.nationalacademies.org/catalog/11142/from-source-water-to-drinking-water-workshop-summary (last access: 23 September 2023), 2004.
Robock, A., Oman, L., and Stenchikov, G. L.: Regional climate responses to geoengineering with tropical and Arctic SO2 injections, J. Geophys. Res.-Atmos., 113, D16101, https://doi.org/10.1029/2008JD010050, 2008.
Sarle, W.: The VARCLUS Procedure, in: SAS/STAT User's Guide fourth, Vol. 2, 1641–1659, SAS Institute, Inc. http://support.sas.com/documentation/onlinedoc/stathttp://support.sas.com/documentation/onlinedoc/stat (last access: 2 October 2023), 1990.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., ColonGonzalez, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., and Kabat, P.: Multimodel assessment of water scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250, https://doi.org/10.1073/pnas.1222460110, 2014.
Shaban, A.: Impact of Climate Change on Water Resources of Lebanon: Indications of Hydrological Droughts, in: Climatic Changes and Water Resources in the Middle East and North Africa, edited by: Zereini, F. and Hötzl, H., Environ. Sci. Eng., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-85047-2_ 11, 2008.
Shiklomanov, I. A. and Rodda, J. C. (Eds): World Water Resources at the Beginning of the 21st Century (Cambridge Univ. Press, Cambridge, 2003), ISBN 9780521617222, 2003.
Simpson, I. R., Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M., Fasullo, J. J. T., and Pendergrass A. G.: The regional hydroclimate response to stratospheric sulfate geoengineering and the role of stratospheric heating, J. Geophys. Res.-Atmos., 124, 12587–12616, https://doi.org/10.1029/2019JD031093, 2019.
Scanlon, B. R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., Grafton, R. Q., Jobbagy, E., Kebede, S., Kolusu, S. R., and Konikow, L. F.: Global water resources and the role of groundwater in a resilient water future, Nat. Rev. Earth Environ., 4, 87–101, https://doi.org/10.1038/s43017-022-00378-6, 2023.
Schleussner, C.-F., Lissner, T. K., Fischer, E. M., Wohland, J., Perrette, M., Golly, A., Rogelj, J., Childers, K., Schewe, J., Frieler, K., Mengel, M., Hare, W., and Schaeffer, M.: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 ∘C and 2 ∘C, Earth Syst. Dynam., 7, 327–351, https://doi.org/10.5194/esd-7-327-2016, 2016.
Suppan, P., Kunstmann, H., Heckl, A., Rimmer, A.: Impact of Climate Change on Water Availability, in: Climatic Changes and Water Resources in the Middle East and North Africa, edited by: Zereini, F., Hötzl, H., Environ. Sci. Eng., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-85047-2_ 5, 2008.
Tabari, H. and Willems, P.: Seasonally varying footprint of climate change on precipitation in the Middle East, Sci. Rep., 8, 4435, https://doi.org/10.1038/s41598-018-22795-8, 2018.
Tilmes, S., Fasullo, J., Lamarque, J. F., Marsh, D. R., Mills, M., Alterskjaer, K., Muri, H., Kristjánsson, J. E., Boucher, O., Schulz, M., and Cole, J. N.: The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 118, 11–036, https://doi.org/10.1002/jgrd.50868, 2013.
Tilmes, S., Richter, J. H., Mills, M. J., Kravitz, B., MacMartin, D. G., Garcia, R. R., Kinnison, D. E., Lamarque, J. F., Tribbia, J., and Vitt, F.: Effects of different stratospheric SO2 injection altitudes on stratospheric chemistry and dynamics, J. Geophys. Res.-Atmos., 123, 4654–4673, 2018.
Tilmes, S., MacMartin, D. G., Lenaerts, J. T. M., van Kampenhout, L., Muntjewerf, L., Xia, L., Harrison, C. S., Krumhardt, K. M., Mills, M. J., Kravitz, B., and Robock, A.: Reaching 1.5 and 2.0 ∘C global surface temperature targets using stratospheric aerosol geoengineering, Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020, 2020.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Trugman, A. T., Medvigy, D., Mankin, J. S., and Anderegg, W. R. L.: Soil moisture stress as a major driver of carbon cycle uncertainty, Geophys. Res. Lett., 45, 6495–6503, https://doi.org/10.1029/2018GL078131, 2018.
Visioni, D., MacMartin, D. G., Kravitz, B., Boucher, O., Jones, A., Lurton, T., Martine, M., Mills, M. J., Nabat, P., Niemeier, U., Séférian, R., and Tilmes, S.: Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations, Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-10039-2021, 2021.
Waha, K., Krummenauer, L., Adams, S., Aich, V., Baarsch, F., Coumou, D., Fader, M., Hoff, H., Jobbins, G., Marcus, R., and Mengel, M.: Climate change impacts in the Middle East and northern Africa (MENA) region and their implications for vulnerable population groups, Reg. Environ. Change, 17, 1623–1638, https://doi.org/10.1007/s10113-017-1144-2, 2017.
Wang, J., Song, C., Reager, J. T., Yao, F., Famiglietti, J. S., Sheng, Y., MacDonald, G. M., Brun, F., Schmied, H. M., Marston, R. A., and Wada, Y.: Recent global decline in endorheic basin water storages, Nat. Geosci., 11, 926–932, https://doi.org/10.1038/s41561-018-0265-7, 2018.
Wang, Z., Zhan, C., Ning, L., and Guo, H.: Evaluation of global terrestrial evapotranspiration in CMIP6 models, Theor. Appl. Clim., 143, 521–531, https://doi.org/10.1007/s00704-020-03437-4, 2021.
World Bank: Beyond Scarcity: Water Security in the Middle East and North Africa. MENA Development Report, © Washington, DC: World Bank, http://hdl.handle.net/10986/27659 (last access: 6 Octobor 2023), License: CC BY 3.0 IGO, 2018.
Wu, W. Y., Lo, M. H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J. F., Ducharne, A., and Yang, Z. L.: Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers, Nat. Commun., 11, 3710, https://doi.org/10.1038/s41467-020-17581-y, 2020.
Wu, R. J., Lo, M. H., and Scanlon, B. R.: The annual cycle of terrestrial water storage anomalies in CMIP6 models evaluated against GRACE data, J. Climate, 34, 8205–8217, https://doi.org/10.1175/JCLI-D-21-0021.1, 2021.
United Nations Educational Scientific and Cultural Organization, UNESCO: Water for People – Water for Life, The United Nations World Water Development Report (Berghahn Books, Oxford, 2003), https://www.un.org/esa/sustdev/publications/WWDR_english_129556e.pdf (last access: 8 Octobor 2023), 2003.
Xiong, J., Guo, S., Abhishek, Chen, J., and Yin, J.: Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective, Hydrol. Earth Syst. Sci., 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022, 2022.
Zamani, Y., Hashemi Monfared, S. A., Azhdari Moghaddam, M., and Hamidianpour, M.: A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: the case of Northeastern Iran, Theor. Appl. Climatol., 142, 1613–1623, https://doi.org/10.1007/s00704-020-03406-x, 2020.
Zittis, G., Hadjinicolaou, P., Klangidou, M., Proestos, Y., and Lelieveld, J.: A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean, Reg. Environ. Change, 19, 2621–2635, https://doi.org/10.1007/s10113-019-01565-w, 2019.
Zhang, B., Xia, Y., Long, B., Hobbins, M., Zhao, X., Hain, C., Li, Y., and Anderson, M. C.: Evaluation and comparison of multiple evapotranspiration data models over the contiguous United States: Implications for the next phase of NLDAS (NLDAS-Testbed) development, Agr. Forest Meteorol., 280, 107810, https://doi.org/10.1016/j.agrformet.2019.107810, 2020.
Zhang, X., Li, J., Wang, Z., and Dong, Q.: Global hydroclimatic drivers of terrestrial water storage changes in different climates, Catena, 219, 106598, https://doi.org/10.1016/j.catena.2022.106598, 2022.
Chief editor
The authors provided this statement:
Water storage (WS) plays a profound role in the lives of people in the Middle East and North Africa and Mediterranean climate “hot spots”. Simulated is WS changed by greenhouse gas (GHG) warming with and without stratospheric aerosol intervention (SAI). WS significantly increases in the Arabian Peninsula and decreases around the Mediterranean under GHG. While SAI partially ameliorates the GHG impacts, Projected WS increases in dry regions and decreases in wet areas relative to the present climate.
This is an area that is going to continue to receive attention as climate change progresses, and the effects of SAI on this potentially uninhabitable region in the future are of paramount importance.
The authors provided this statement:
Water storage (WS) plays a profound role in the lives of...
Short summary
Water storage (WS) plays a profound role in the lives of people in the Middle East and North Africa as well as Mediterranean climate "hot spots". WS change by greenhouse gas (GHG) warming is simulated with and without stratospheric aerosol intervention (SAI). WS significantly increases in the Arabian Peninsula and decreases around the Mediterranean under GHG. While SAI partially ameliorates GHG impacts, projected WS increases in dry regions and decreases in wet areas relative to present climate.
Water storage (WS) plays a profound role in the lives of people in the Middle East and North...
Altmetrics
Final-revised paper
Preprint