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Abstract. Water storage plays a profound role in the lives of people across the Middle East and North Africa
(MENA) as it is the most water-stressed region worldwide. The lands around the Caspian and Mediterranean seas
are simulated to be very sensitive to future climate warming. Available water capacity depends on hydroclimate
variables such as temperature and precipitation that will depend on socioeconomic pathways and changes in
climate. This work explores changes in both the mean and extreme terrestrial water storage (TWS) under an
unmitigated greenhouse gas (GHG) scenario (SSP5-8.5) and stratospheric aerosol intervention (SAI) designed
to offset GHG-induced warming above 1.5 ◦C and compares both with historical period simulations. Both mean
TWS and extreme TWS are projected to significantly decrease under SSP5-8.5 over the domain, except for the
Arabian Peninsula, particularly in the wetter lands around the Caspian and Mediterranean seas. Relative to global
warming, SAI partially ameliorates the decreased mean TWS in the wet regions, while it has no significant effect
on the increased TWS in drier lands. In the entire domain studied, the mean TWS is larger under SAI than pure
GHG forcing, mainly due to the significant cooling and, in turn, a substantial decrease in evapotranspiration
under SAI relative to SSP5-8.5. Changes in extreme water storage excursions under global warming are reduced
by SAI. Extreme TWS under both future climate scenarios is larger than throughout the historical period across
Iran, Iraq, and the Arabian Peninsula, but the response of the more continental eastern North Africa hyper-arid
climate is different from the neighboring dry lands. In the latter case, we note a reduction in the mean TWS trend
under both GHG and SAI scenarios, with extreme TWS values also showing a decline compared to historical
conditions.

1 Introduction

The Middle East and North Africa (MENA), with 6 % of
the world’s population, are currently among the most water-
stressed regions worldwide (Fragaszy et al., 2020). The
dry climate, intensifying droughts, increasing population,
and water over-extraction, particularly across the Middle

East (World Bank, 2018), make it home to 12 of the 17
most water-stressed countries on the planet (Hofste et al.,
2019). Water availability is crucial for sanitation (Reiter et
al., 2004), economic activity (UNESCO, 2003), ecosystems
(Shiklomanov and Rodda, 2003), and hydrological systems
(Mooney et al., 2005).
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The MENA region has the largest expected economic
losses from climate-related water scarcity, robustly esti-
mated at 6 %–14 % of gross domestic product (GDP) by
2050 (World Bank, 2018). MENA’s terrestrial water storage
(TWS) is being intensively extracted and may act as a flash
point for conflict (Famiglietti, 2014). TWS incorporates all
water on the land surface (snow, ice, water stored in the veg-
etation, rivers, and lake water) and in the subsurface (soil
moisture and groundwater). Beyond anthropogenic activities,
natural climate variability such as drought frequency affects
water storage and agriculture, which then impacts food se-
curity (Fragaszy et al., 2020). The Middle East is especially
prone to severe and sustained droughts due to its location in
the descending limb of the Hadley circulation and associated
dry and semiarid climate (Barlow et al., 2016). The 1998–
2012 14-year period was the worst drought in the past 900
years (Cook et al., 2016). Because the saturated vapor pres-
sure of air is largely controlled by temperature, any change
in temperature, as well as precipitation, substantially affects
(Konapala et al., 2020; Ajjur and Al-Ghamdi, 2021; Hobeichi
et al., 2022) the water storage capacity available to supply
the increasing water demand in the region (Lian, 2021). The
MENA region, having both low precipitation and high evap-
oration, is very vulnerable to climate change (Giorgi, 2006;
Lelieveld et al., 2012; Tabari and Willems, 2018; Zittis et al.,
2019). MENA water storage is therefore particularly sensi-
tive to any perturbation of the water cycle imposed by global
warming.

GHG warming has already adversely affected water re-
sources in the MENA region (Wang et al., 2018) and is sim-
ulated to intensify water competition between states (Arnell,
1999) in the future. Although global warming is expected to
increase precipitation and soil moisture across MENA (Cook
et al., 2020), it will decrease runoff and groundwater recharge
by larger amounts (Milly et al., 2005; Shaban, 2008; Sup-
pan et al., 2008). Using the GHG emission scenario A1B
simulated by nine CMIP3-class climate models, Droogers
et al. (2012) projected that 22 % of the future annual water
shortage, 199 km3 in 2050 in MENA, will be due to global
warming. A total of 17 global climate models from Cou-
pled Model Intercomparison Project Phase 6 (CMIP6) un-
der SSP5-8.5 simulate a significant increase in precipitation
(+0.05 to 0.3± 0.1 mm d−1) over the southeastern Sahara in
North Africa (NA) by the end of the century (Arjdal et al.,
2023). They also projected that the total soil moisture would
increase over southern Sahara under the SSP5-8.5 (6 % to
20 %) and SSP2-4.5 (4 % to 14 %). Based on TWS data
from eight global climate models participating in CMIP6, a
broad part of the dry MENA region tends to be wetter under
SSP5-8.5 over 2071–2100 (Xiong et al., 2022). GHG-driven
groundwater storage depletion in the Middle East during the
21st century will far exceed that during the 20th century due
to the increased evapotranspiration (ET) and reduced volume
of snowmelt (Wu et al., 2020).

Although MENA’s adjacent densely populated region, the
Mediterranean, has a better water storage state, it is pro-
jected to substantially suffer from reduced water availabil-
ity under future GHG climate scenarios (Lionello et al.,
2006). This is due to both projected significant decreases
in rainfall (MedECC, 2020) and large increases in demand
for irrigation water by the end of the 21st century (Fader
et al., 2016). The precipitation and water availability in the
Mediterranean region, to the northwest of the MENA, is also
projected to be highly sensitive to global warming, particu-
larly regarding water availability (Lionello et al., 2006), hav-
ing the largest differences in the water availability between
1.5 and 2 ◦C warming scenarios globally (Schleussner et al.,
2016). Global warming decreases Mediterranean groundwa-
ter recharge according to simulations under the IPCC A2
and B2 scenarios simulated using ECHAM4 and HadCM3
models (Döll and Flörke, 2005). Runoff is decreased by
10 %–30 % according to 12 models such as CCSM3 and
ECHAM5/MPI-OM (Milly et al., 2005), and soil moisture
z scores (obtained by taking the difference from the average
and then dividing it by the standard deviation of the time se-
ries from the baseline period) are decreased by −1 to −4
in warm seasons according to simulations under SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Cook et al., 2020). Water
availability in turn is lowered by 8 %–28 % for a warming of
2 ◦C as simulated by 11 CMIP5-class models by Schleussner
et al. (2016). Likewise, Döll et al. (2018) found a strong dry-
ing in the Mediterranean region under global warming since
the largest precipitation decreases worldwide were simu-
lated in this region under SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 scenarios (Cook et al., 2020). CMIP5 model re-
sults also confirm that global warming (RCP2.6 and RCP6.0)
substantially decreases the TWS in the Mediterranean by
the middle (2030–2059) to late (2070–2099) 21st century
(Pokhrel et al., 2021).

If global mean surface temperature rises to exceed
1.5 ◦C above the pre-industrial mean temperature, severe
global consequences and societal problems can be ex-
pected (Masson-Delmotte, 2022). Solar radiation modifica-
tion (SRM), a form of intervention to cool the climate by
reflecting sunlight, has been proposed as a potential method
of limiting global temperature rises and the associated im-
pacts of increased GHG emissions. SRM may be the only
way to keep or reduce surface temperatures to 1.5 ◦C given
the reality of the GHG mitigation measures that have been
agreed upon to date (MacMartin et al., 2022). Simulations
have shown that a 2 % decrease in total solar irradiance
roughly offsets global warming due to a doubling of CO2
concentrations, and continuous injections of 10–18 Tg SO2
per year would lead to a cooling of about 1 ◦C after several
years (WMO, 2022). This is consistent with observed surface
cooling after large volcanic eruptions, such as the 1991 Mt.
Pinatubo eruption, which produced cooling of about 0.3 ◦C
over a 2–3-year period (e.g., IPCC, 2021).
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Many global climate models have simulated SRM in the
form of stratospheric aerosol intervention (SAI). Model stud-
ies include the Stratospheric Aerosol Geoengineering Large
Ensemble Project GLENS (e.g., Cheng et al., 2019; Simp-
son et al., 2019; Abiodun et al., 2021), the Geoengineering
Model Intercomparison Project (Kravitz et al., 2013; Tilmes
et al., 2013), and others (e.g., Bala et al., 2008; Jones et al.,
2018; Muthyala et al., 2018). Compared with global warm-
ing, SAI decreases mean global precipitation (Govindasamy
and Caldeira, 2000; Bala et al., 2008; Robock et al., 2008;
Cheng et al., 2019; Simpson et al., 2019) as well as both the
intensity and frequency of precipitation extremes caused by
GHG-induced climate change (Tilmes et al., 2013; Muthyala
et al., 2018). The study by Dagon and Schrag (2016) is a rare
article that focuses on the spatial variability of runoff and soil
moisture responses to SRM. Although solar geoengineering
weakens the global hydrologic cycle (e.g., Bala et al., 2008;
Tilmes et al., 2013; Ricke et al., 2023), its regional impacts
are method- and strategy-dependent (Ricke et al., 2023) with
potentially substantial changes in the regional precipitation
patterns (Ricke et al., 2010; Tilmes et al., 2013, 2020; Crook
et al., 2015; Dagon and Schrag, 2016). While differences
in temperature fields vary relatively smoothly with radiative
forcing, precipitation patterns are far more variable, being
dependent on atmosphere–ocean–land surface coupling on a
wide range of spatial and temporal scales. Furthermore, SAI
simulations rely on many model-specific details and param-
eterizations that tend to produce larger across-model differ-
ences than simulations using simpler forms of SRM (Visioni
et al., 2021). While SAI may counteract the annual mean wa-
ter availability changes over land forced by GHG, it is not
easy to offset the regional consequences, especially in the
hydrological cycle, such as the Amazonian drying trend and
its reduced precipitation, evaporation, and precipitation mi-
nus evaporation (Jones et al., 2018).

Although the MENA region and the adjacent Mediter-
ranean region are known to be a “hot spot” for climatic
change (Giorgi and Lionello, 2008; Bucchignani et al.,
2018), little has been done regarding potential changes in
TWS across MENA, especially under SRM climates. This
study fills that knowledge gap and explores the changes that
may occur in TWS under (i) a high-GHG-emissions sce-
nario and (ii) the same GHG scenario combined with SAI
designed to globally neutralize the GHG radiative forcing,
and it (iii) compares both future climates with historical con-
ditions (1985–2014) across the Mediterranean, Middle East,
and NA.

2 Data and methods

2.1 Study area

The study area is composed of MENA and southern Europe
to its north including the Caspian and Mediterranean seas.
MENA covers the large region from Morocco in the west to

Iran in the east, containing all the Maghreb and the Middle
Eastern countries from 15 to 45◦ N latitude and from 20◦W
to 63◦ E longitude (Fig. 1). As well as being a water-stressed
region, MENA is a worldwide hot spot for exacerbated ex-
treme temperatures, aridity conditions, and drought (Giorgi
and Lionello, 2008; Bucchignani et al., 2018). According to
the Köppen climate classification system (Peel et al., 2007),
MENA broadly has a hot and arid climate except for the
coastal regions and highlands. Most of NA has a desert cli-
mate and 90 % is covered by the Sahara. The 2 m air temper-
ature rises to 50 ◦C in summertime, while the annual mean
precipitation is less than 25 mm (Faour et al., 2016). The
arid steppe climate predominates in Morocco, Algeria, and
Tunisia with cold winters (Faour et al., 2016) except for the
Atlas Mountains, which are cooler and wetter (annual mean
precipitation of ∼ 500 mm).

Across the Middle East, the largest amount of precipita-
tion falls in four main regions: the coastal eastern Mediter-
ranean Sea, the southern coast of the Caspian Sea, the west-
ern sides of the Zagros Mountains across Iran and Iraq, and
the southern tip of the Arabian Peninsula. The Middle East
also contains several major deserts having little to no pre-
cipitation: the Lut and Kavir deserts in the southeastern and
north–central regions in Iran, the Arabian Desert, the Syr-
ian Desert, and the Negev in the southeastern corner of the
Mediterranean Sea. Middle East precipitation often origi-
nates from moisture coming from the west over the Mediter-
ranean Sea (Evans and Smith, 2006). The Red Sea and the
Persian Gulf are also source regions for the heaviest precipi-
tations across the area.

The Mediterranean area has mild wet winters and warm to
hot dry summers, as well as a complicated morphology, ow-
ing to the many steep orogenic structures and distinct basins
and gulfs, along with islands and peninsulas of various sizes
(Lionello et al., 2006).

Based on its full range of climate types, we divided the
study area into six subregions (R1 to R6) to explore the
changes in hydroclimate variables under both global warm-
ing and SAI scenarios (Fig. 1). The regions R1 to R6 respec-
tively refer to the lands around the Caspian Sea, eastern Mid-
dle East (largely containing Iran and Iraq), Mediterranean
area, Arabian Peninsula, eastern NA, and western NA. The
simulated present-day climatology (1985–2014) of each re-
gion for different hydrological quantities is summarized in
Table 1. Potential evapotranspiration (ET) is the amount of
evaporation that would occur if a sufficient water source were
available. The Thornthwaite method was used to calculate
the potential ET based on the monthly mean temperature and
latitude data for each grid. Evaporation from both soil and
canopy and transpiration are summed up to obtain the real
ET, which is the quantity of water actually removed from a
surface by evaporation and transpiration. The lands around
the Caspian and Mediterranean seas with a cooler climate
have the highest precipitation and real ET, while more conti-
nental eastern NA with hyper-arid climate (with annual pre-
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Figure 1. MENA annual precipitation map during the historical period. Regions R1 to R6 largely refer to the lands around the Caspian
Sea, the eastern Middle East (largely containing Iran and Iraq), the Mediterranean area, Arabian Peninsula, eastern North Africa (NA), and
western NA, respectively.

cipitation less than 100 mm) has the lowest precipitation, real
ET, soil moisture, and TWS. The lands around the Caspian
Sea have the highest soil moisture and TWS. More continen-
tal refers to an area with characteristics that are typical of
continental climates and is less influenced by the moderating
effects of nearby oceans.

2.2 Model simulations and scenarios

We examined the data from the NCAR Community Earth
System Model version 2–Whole Atmosphere Community
Climate Model Version 6 (CESM2(WACCM6)) that simu-
lated the CMIP6 (Eyring et al., 2016) scenarios. CESM2
ranks among the top nine models known for their ac-
curacy in simulating global precipitation patterns based
on the Hellinger distance metric, which compares the bi-
variate empirical densities of CESM2 with those of 34
CMIP6 models against historical precipitation data sourced
from the Global Precipitation Climatology Centre (GPCC)
(Abdelmoaty et al., 2021). CESM2 has precipitation bi-
ases about 20 % lower than CESM1 (Danabasoglu et al.,
2020). CESM2(WACCM6) has an interactive stratospheric
aerosol treatment (Danabasoglu et al., 2020) that is consistent
with observations (Mills et al., 2016). For global terrestrial
ET, CESM2(WACCM6) ranked as the second-best model
among 19 CMIP6 models (Wang et al., 2021). Furthermore,
CESM2(WACCM6) reproduced the observed global land
carbon trends remarkably well (Danabasoglu et al., 2020)
and includes a full ocean model (Parallel Ocean Program
version 2, POP2) to simulate the response of stratospheric
aerosol change in the climate.

CESM2 also demonstrates satisfactory performance in
simulating historical climate conditions within the study
area. In the evaluation by Babaousmail et al. (2021), which
assessed 15 CMIP6 models in replicating monthly rainfall

patterns spanning 1951 to 2014 in NA, CESM2(WACCM6)
emerged as one of the top-performing models. It accurately
captured rainfall peaks across the region, albeit with a slight
overestimation (ranging from 5 to 10 mm month−1) in the
southern areas and a slight underestimation (ranging from 0
to 20 mm month−1) in the northern regions. Despite these mi-
nor deviations, CESM2(WACCM6) was recognized as one
of the models that can simulate precipitation patterns well
across NA, achieving a Taylor skill score of 0.62. Evalua-
tion of CESM2(WACCM6) across the Mediterranean coasts
placed it at the 9th and 17th positions out of 31 CMIP6
models for its performance in simulating temperature and
precipitation (Bağçaci et al., 2021). Furthermore, when it
comes to simulating precipitation relative to observational
data for northeastern Iran during the period of 1987–2005,
CESM2 stood out as the top-performing model among six
CMIP6 models (Zamani et al., 2020). Assessing the repre-
sentation of spatial and temporal variations in historical pre-
cipitation from 1980 to 2014 across Africa and the Arabian
Peninsula, the CMIP6 multi-mean ensemble (inclusive of
CESM2(WACCM6)) demonstrated reasonable performance,
as highlighted in Nooni et al. (2023).

The SAI simulation we use (SSP5-8.5-SAI) is designed
to employ SAI together with the high-GHG-emissions sce-
nario, SSP5-8.5, with the target of limiting mean global tem-
peratures to 1.5 ◦C above pre-industrial (1850–1900) condi-
tions (Tilmes et al., 2020). Under SSP5-8.5 forcing, Tilmes
et al. (2020) projected that this threshold is exceeded around
the year 2020 in CESM2(WACCM6). The atmospheric com-
ponent of CESM2(WACCM6) has a resolution of 1.25◦ in
longitude and 0.9◦ in latitude. The experiment injects SO2
at 180◦ longitude at four predefined latitudes (30◦ N, 30◦ S,
15◦ N, and 15◦ S) at around 25 km at 15◦ N/S and around
22 km at 30◦ N/S as suggested by Tilmes et al. (2018) us-
ing a feedback control algorithm to maintain not just the
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Table 1. The medians of precipitation, temperature, real evapotranspiration (ET), soil moisture, terrestrial water storage (TWS), and potential
ET over each region (R1 to R6, see Fig. 1) during the historical period according to the model outputs. The results for global warming and
SAI are further shown in Table S1.

Region R1 R2 R3 R4 R5 R6

Precipitation (mm yr−1) 321 182 479 78 48 112
Temperature (◦C) 14.2 20.5 17.2 27.0 23.7 25.3
Real ET (mm yr−1) 419 187 388 72 50 112
Soil moisture (kg m−2) 1846 1771 1572 1353 1155 1287
TWS (kg m−2) 2091 1776 1623 1358 1167 1313
Potential ET (mm month−1) 74 123 74 210 143 185

global mean temperature, but also the interhemispheric and
Equator-to-pole temperature gradients (Tilmes et al., 2020).
For SSP5-8.5-SAI, most of the sulfur mass was injected at
15◦ S, with some at 15◦ N and 30◦ S and very little at 30◦ N.
We used the monthly TWS (the sum of snow water equiva-
lent and soil moisture; Wu et al., 2021), precipitation, tem-
perature, water evaporation from soil and canopy, transpira-
tion, soil moisture, and leaf area index (LAI) data from all
five ensemble members (r1 to r5) of the SSP5-8.5 scenario
and the three available ensemble members (1–3) of SSP5-
8.5-SAI. The results for variables other than TWS are shown
in the Supplement. For the historical period, we used all three
available realizations (r1 to r3) from CESM2(WACCM6).
For the anomaly analysis relative to historical conditions and
the multiple linear regression models, we used the first three
ensembles of SSP5-8.5, consistent with the three available
historical members. We compare the GHG and SAI scenar-
ios over 2071–2100 with the 1985–2014 historical period.

We focused on the historical period from 1985 to 2014
rather than the entire historical dataset spanning from 1850
to 2100 for several reasons. Firstly, recent historical climate
data may exhibit less uncertainty, given that additional mete-
orological stations with improved data quality are available
to be used for model calibrations (Zhang et al., 2020). Sec-
ondly, this selected historical period offers valuable insights
into the observable impacts of climate change, which are
highly pertinent to present-day societal and environmental
challenges. These insights are of utmost importance to pol-
icymakers and communities alike. Thirdly, the chosen his-
torical 30-year time period aligns with the 30-year periods
considered for the GHG emissions and SAI scenarios, ensur-
ing consistency in our statistical analysis. We focus on the
2071–2100 future period because the anticipated changes in
TWS driven by GHG emissions are expected to be more pro-
nounced during this time frame (Pokhrel et al., 2021). Fur-
thermore, the SAI forcing is strongest in the later period of
the simulation and is expected to produce a more significant
result.

2.3 Return periods

We are interested in climate extremes, not only changes in
means. Therefore, we examine how the frequency of events
of some particular levels is likely to change under differ-
ent scenarios. We use the generalized extreme value (GEV)
distribution function to estimate the probability distribution
function of the TWS extremes. A return period is an esti-
mated average time between events such as floods or river
discharge flows. It is calculated by generating the 95 %
normal-approximate confidence intervals in accordance with
the mean and variance of the variable (here TWS).

The GEV probability density and cumulative distribution
functions are defined as (Gilleland, 2020)

g(z)=
1
σ
t(z)1+ξ e−t(z);

G(z)= e−t(z); t(z)=

{ {
1+ ξ

(
z−µ
σ

)}−1/ξ
, ξ 6= 0

e
−

(
z−µ
σ

)
, ξ = 0.

(1)

For ξ 6= 0, we have t(z)1+ξ
=
{
1+ ξ

(
z−µ
σ

)}−(1+1/ξ )
and for

ξ = 0, the z domain restricted to ξ
(
z−µ
σ

)
>−1. The GEV

distribution is parameterized using ξ , µ, and σ , which are
the shape, location, and scale parameters, respectively, and
analogous to the skewness, mean, and standard deviation. We
assume that the GEV is the valid distribution function for
variables z1, . . .,zn representing the annual maximum return
TWS levels, where the quantiles of the distribution function
give the return levels, zp. The return levels are the solutions
to G(zp)= 1−p, which yields (Gilleland, 2020)

zp =

{
µ− σ

ξ
[1−{− ln(1−p)}−ξ ] for ξ 6= 0

µ− σ ln{− ln(1−p)} for ξ = 0,
(2)

where p is probability corresponding to zp. The return period
is obtained as

return period (i)= 1/(1− cdf(i)), (3)

where cdf is the cumulative distribution function. We also
calculated the 95 % asymptotic lower and upper confidence
intervals based on the Kolmogorov–Smirnov statistic (Dok-
sum and Sievers, 1976). We used the concatenated TWS
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anomaly data for the historical period, high-GHG-emissions,
and SAI scenarios to analyze the return periods. As an exam-
ple, the relationship between empirical quantiles and model
quantiles as well as the probability density versus quantiles
for regions R2 and R5 are shown in Figs. S1 and S2 in the
Supplement.

2.4 Multiple linear regression (MLR) model

We want to analyze how the primary driving climate fields
(surface air temperature, precipitation, ET, and LAI – i.e.,
vegetation coverage) for TWS vary spatially and among the
different scenarios (Zhang et al., 2022). We use a simple mul-
tiple linear regression (MLR) model with TWS as the depen-
dent variable (Y ) for each ensemble member in each region.
The following procedures were conducted.

i. The variable clustering (VARCLUS) procedure was em-
ployed to thoroughly assess collinearity among the vari-
ables. VARCLUS is a method that effectively segregates
a set of numeric variables into disjoint or hierarchical
clusters, each characterized by a linear combination of
the variables within the cluster (Sarle, 1990). The cri-
terion is that when the proportion of the variance ex-
plained by a cluster is larger than 0.8, it is advisable to
select one variable from that cluster. Based on the re-
sults obtained from VARCLUS (Figs. S3 and S4), we
made specific decisions to enhance the robustness of
our analysis. For instance, we identified strong corre-
lations exceeding 0.9 between potential ET and temper-
ature (Tables S2–S13), as well as between soil moisture
and TWS in all cases (except for the eastern NA (R5)
in Tables S2–S13). Consequently, we chose to exclude
potential ET and soil moisture from our analysis due
to their high levels of correlation with temperature and
TWS, respectively.

ii. A linear regression model was considered with potential
independent variables (X): temperature, precipitation,
real ET, and LAI. We conducted a temporal autocorrela-
tion analysis on all these independent variables for each
model. This analysis was carried out using the autocor-
relation function at a 95 % confidence level. In all re-
gions (except R4), the autocorrelation results indicated
that the lags at the first and second months were statis-
tically significant, while the third month lag was almost
nonsignificant. Therefore, we modified the MLR model
to include information from the 2 preceding months in
these regions. However, in region R4, we observed dif-
ferent patterns. In this region, both real ET and temper-
ature significantly depended on their respective condi-
tions from the 2 previous months, while precipitation
did not show this effect. Moreover, LAI in R4 exhibited
dependencies on the first 3 and 4 preceding months un-
der the SSP5-8.5 and SSP5-8.5-SAI scenarios, respec-

tively. Consequently, we incorporated specific lagged
months for each variable in R4.

iii. The outliers were identified using the Bonferroni p
values (i.e., Bonferroni correlation) and then removed.
Bonferroni correlation is a modification for p val-
ues when several dependent or independent statistical
tests are being accomplished concurrently on a single
dataset. A Bonferroni correction divides the critical p
value by the number of comparisons being made (Bland
and Altman, 1995). The number of outlier data points
excluded varies from zero to 5 (over the 700 point) in
the 36 models.

iv. The final model was fitted after removing the outliers.
In all regions and scenarios, the MLR models are sta-
tistically significant at the 95 % level. The variance ex-
plained (R2) varies from around 0.3 in the dry southern
MENA to 0.89 and 0.96 in the wetter lands around the
Caspian and Mediterranean seas.

v. The relative “importance” of the variables for TWS
in the final model was assessed using the Lindeman,
Merenda, and Gold (LMG) method (Lindeman et al.,
1980), where the fractional variance accounted for is
determined as the independent variable-order average
over average contributions in models of different sizes.
The LMG method considers the average contributions
of each variable across different model sizes and then
averages these averages to provide a more robust mea-
sure of variable importance. The LMG can be defined
as (Grömping, 2007) follows.

LMG(xk)=
1
p!

∑
Permutation

seqR2({xk} |r) (4)

where seqR2({xk} |Sk(r)) = R2({xk} ∪
Sk(r))−R2(Sk(r)) and R2(S)=
Model SS(model with regressors in set S)

Total SS . Orders have the
same Sk(r)= S summarize into a single summand, we
therefore can re-write Eq. (4):

LMG(xk)=
1
p!

∑
S⊆{x1,...,xp}\{xk}

n(S)

!(p− n(S)− 1)!seqR2({xk} |S) (5)

LMG has been recommended by Johnson and LeBre-
ton (2004) and Grömping (2007) since it uses both direct ef-
fects and impacts adjusted for other regressors in the model.
As the considered variables may be correlated with each
other, when a new predictor is added to a model that already
contains other predictors, its impact can be influenced by the
presence of those other variables. The LMG method takes
into account these interactions and adjusts the variable’s con-
tribution to reflect its unique impact while considering the
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Figure 2. The TWS anomaly relative to the TWS averaged over the historical period across MENA and the lands around the Caspian and
Mediterranean seas under global warming without (SSP5-8.5) and with SAI (SSP5-8.5-SAI). (a–f) Regions R1 to R6, respectively. Shading
in each curve shows the across-ensemble range. The dashed line crossing the y axis at zero in each subplot is the ensemble mean of TWS
over the historical period (1985–2014).

effects of other regressors. Importance is a unitless variable
and the sum of all independent variable importance’s in each
model equals the model’s explained variance. Here we use
all three ensemble members separately to estimate the ro-
bustness of the importance estimates.

3 Results

3.1 Mean terrestrial water storage (TWS) changes due
to GHG and SAI

In this section, we present the projected changes in TWS
across MENA and the lands around the Caspian and Mediter-
ranean seas. We discuss trends in the TWS anomalies rel-
ative to TWS averaged over the historical period (1985–
2014) in response to both GHG (SSP5-8.5) forcing and to
GHG+SAI. Figure 2 illustrates the original TWS anoma-
lies, while Fig. S5 exclusively presents the long-term com-
ponent, providing a clearer understanding of the changes un-
der climate scenarios. The positive and negative anomalies
in these figures refer to increasing and decreasing TWS, re-
spectively. The trend decreases in the northern parts (R1 and
R3) and eastern NA (R5) with a hyper-arid climate but rises
in the Arabian Peninsula (R4) and western NA (R6) under
both GHG and SAI scenarios, particularly over the latter part
of the 21st century. In all regions, the SAI climate TWS is
higher than SSP5-8.5 or at least lies in the across-range of
SSP5-8.5 towards the end of the century, especially in R2
and R5 (Figs. 2 and S5). The TWS difference between SAI

and global warming in region R2, particularly over the latter
part of the 21st century, is greater relative to the rest of the
domain. The TWS change is smaller in the hyper-arid eastern
NA (R5) than the other regions under both climate scenarios.

Figure 3 depicts the TWS differences between the histori-
cal (1985–2014) and future climate scenarios over the 2071–
2100 period. Consistent with the above findings, Figs. 3b and
S6a–c show that the TWS response to GHG forcing in the
wet regions around the Caspian (R1) and Mediterranean (R3)
seas is simulated as declining, while across the (semi)arid
MENA region, particularly in central Iran (R2), the Arabian
Peninsula (R4), and the southern portions of NA (R5 and
R6), there is a positive trend. Under global warming, the
largest decrease in TWS occurs around the Caspian (particu-
larly in the east) and the Mediterranean (except for its north),
while its most robust increase happens in the southern mar-
gins of NA and the eastern parts of the Arabian Peninsula.
SAI (Figs. 3c and S6d–f) partially counteracts the changes
imposed by the increased GHG emission, particularly in the
wetter lands around the Caspian and Mediterranean seas,
which are simulated as experiencing TWS decrease under
global warming. Temporal ensemble mean TWS due to GHG
forcing (Fig. 3b) is only partially reversed by SAI (Fig. 3d),
and the water storage shortfall is not fully canceled out by the
intervention (Fig. 3c, d). However, simulated TWS in Iran
and the southern half of MENA has greater water storage un-
der SAI relative to the historical period (Fig. 3c).
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Figure 3. Ensemble mean maps of TWS (kg m−2) across the studied domain in the historical climate (a) over 1985–2014 and their projected
future changes in the 2071–2100 period under the SSP5-85 GHG scenario (SSP5-8.5 minus historical in panel b and GHG+SAI minus
historical in c). The extent to which the SAI impacts the TWS changes imposed by global warming is further shown (SSP5-8.5-SAI minus
SSP5-8.5 in d). Hatched areas show where all ensemble members agree on the sign of the changes.

In Fig. 4, we compare how simulated TWS statistical
distributions vary between scenarios for each region. Mean
TWS significantly (p < 0.05) decreases in the wetter lands
around the Caspian (R1) and Mediterranean (R3) seas to the
north (3.7 %–5.2 % on area average), while it significantly in-
creases in the dry region of the Arabian Peninsula (5.6 %) in
response to GHG warming. SAI, on the whole, partially re-
verses the projected changes in TWS from increasing GHG
concentrations toward its historical values. Interestingly, SAI
overcompensates for the TWS changes imposed by the high
GHG forcing in Iran and Iraq (R2) where this region shows
no significant change under GHG emissions (Fig. 4b). SAI
also has an amplifying effect in R5 and a slight overcompen-
sation in R6, but its impact is statistically insignificant.

We also compared the changes in TWS with changes in
precipitation, temperature, real ET, soil moisture, and poten-
tial ET over each region under both global warming and SAI
scenarios (Figs. S7 to S10). The TWS decreasing patterns
under both SSP5-8.5 and SSP5-8.5-SAI scenarios across the
entire study area are similar to soil moisture change patterns
(Figs. S7 and S9) but are more widespread than precipita-
tion under global warming (Fig. S9). Notably, in the Mediter-
ranean and the dry MENA region, the soil moisture variabil-
ity accounts for the dominant component of TWS variability
(Pokhrel et al., 2021). However, decreased TWS is seen be-
yond the regions of reduced precipitation (Fig. S9), from be-
yond the Mediterranean and Atlantic coasts to include Syria,

Iraq, and the lands around the Caspian Sea as well as to a
wide portion of NA (Fig. 3). These include places where pre-
cipitation is either increasing or shows no significant change,
consistent with results reported by Cook et al. (2020).

In summary, our findings show that the SSP5-8.5-SAI sce-
nario has a potential to partially offset the significant changes
in mean TWS imposed by SSP5-8.5 over the entire MENA.
While SAI (Fig. 3d) succeeded in reversing mean TWS
deficits in the wetter lands around the Caspian and Mediter-
ranean seas driven by the GHG SSP5-8.5 scenario (Fig. 3b),
it did not fully cancel out the TWS deficits (Figs. 3c, 4a, c).
However, in the dry MENA regions (Fig. 3d), particularly
Iran (containing the Lut desert in the southeastern region
and the Kavir desert in the north–central region), Iraq, and
the Arabian Peninsula (housing the Arabian Desert), SAI re-
sulted in higher mean water storage relative to the historical
period (Figs. 3c and 4).

3.2 Changes in extreme TWS

We compared changes in the expected return frequency of
comparatively rare events to those during the historical pe-
riod. Changes in mean conditions discussed so far are clear,
but the changes in extremes display even larger separations
between those expected under pure GHG forcing and the
GHG+SAI scenarios. An increase in the return level or de-
crease in the return period of TWS means that the rare levels
of high water availability increase, while a decrease in re-
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Figure 4. Box-and-whisker plot of the changes in terrestrial wa-
ter storage (TWS) in regions 1 to 6 over 2071–2100 under SSP5-
8.5 and SSP5-8.5-SAI relative to historical conditions (1985–2014).
The titles of subplots refer to the regions. The median for each ex-
periment is denoted by the red line, the upper (75th) and lower
(25th) quartiles by the top and bottom of the box, and ensemble lim-
its by the whisker extents. The positive and negative values in black
are the change percent under SSP5-8.5 and SSP5-8.5-SAI relative
to the median of the historical period data. The three values in green
refer to p values between historical and global warming, historical
and SAI, and global warming and SAI, obtained from a t-test anal-
ysis in which the underlined p values are statistically significant.

turn level for a given period means that rich water availabil-
ity events become rarer. We applied a GEV distribution to the
complete dataset of monthly TWS values without explicitly
setting maximum values in Fig. 5. For comparison, we also
extracted the annual maximum TWS values and provided the
corresponding fitted GEV distribution. Overall, the probabil-
ity densities for both datasets exhibit a high degree of sim-
ilarity across various regions and scenarios (e.g., Figs. S11
and S12). Additionally, the graphs depicting return levels
versus return periods based on annual maximums (Fig. S13)
closely resemble the results obtained from the entire dataset
(Fig. 5). In all cases, the trends are highly similar (compare
Figs. 5 and S13), although it is worth noting that the annual
maximum scenario exhibits slightly wider upper and lower
bounds compared to the entire dataset scenario. We there-
fore focused on the results obtained from the entire dataset.
Figure 5 shows the return levels versus return period curves
with the 95 % lower and upper bands. To determine which
curves (including its upper and lower bounds) are signifi-
cantly different from each other (p values less than 0.05),
we first conducted repeated-measure analysis of variance,
which compares means across one or more variables that are
based on repeated observations, and then performed post hoc
Tukey–Kramer comparisons. The expected return levels ver-

sus return period curves (Fig. 5) decrease in response to both
GHG warming and GHG+SAI in the Caspian and Mediter-
ranean Sea areas (R1 and R3) as well as in the eastern NA
(R5), as a more continental dry land, but increase in the Ara-
bian Peninsula (R4) and western NA (R6). In Iran and Iraq
(R2), SAI leads to a significant increase in expected TWS re-
turn levels relative to both historical conditions and the high-
GHG-emission scenarios (Fig. 5b), while SAI tends to par-
tially counteract the GHG-driven TWS changes in R1, R3,
R4, and R5. Larger TWS levels are expected for the entire
MENA compared with the GHG climate alone, particularly
in Iran, Iraq, and western NA. Nonetheless, compared to the
historical period, the Arabian Peninsula (Fig. 5d) is the re-
gion with the most robust increase in extreme TWS under
both the global warming and SAI scenarios. Extreme TWS
in the neighboring dry land of eastern NA with a hyper-arid
climate is still smaller than the historical conditions.

Table 2 quantitatively compares the differences between
TWS (and its corresponding 95 % lower and upper bounds in
Fig. 5) changes at 30-, 50-, and 100-year return periods under
historical, global warming, and SAI scenarios. Global warm-
ing, on the whole, decreases the TWS extremes (i.e., fewer
wetter conditions) at 30- to 100-year return periods over all
the study areas except for the Arabian Peninsula (R4) and
western NA (R6). The most robust decreases in the extreme
TWS imposed by global warming relative to historical condi-
tions occurring in the lands around Caspian R1 (−108 % on
average over return periods from 30 to 100 years), Mediter-
ranean R3 (−43 % on average), and eastern NA R5 (−89 %
on average) are partially suppressed by SAI. A small increase
in extreme TWS in Iran and Iraq (R2) simulated under GHG
(+15 %) is overcompensated for by SAI (+65 %). Although
SAI decreases the TWS in the Arabian Peninsula (−11 %)
relative to global warming, it still tends to experience the
most robust extreme water storage increases in the future
(+153 %) compared with historical conditions. In western
NA (R6), the SAI simulation slightly intensifies the increased
extreme TWS imposed by high GHG emissions by +27 %.
Although SAI partially compensates for the changes over
most of the study area (positive SSP5-8.5-SAI minus SSP5-
8.5 values in Table 2), on the whole, extreme TWS tends
to increase in the dry regions of Iran and Iraq, the Arabian
Peninsula, and western NA while substantially decreasing in
the wetter lands around the Caspian and Mediterranean seas,
and to lower degrees, in the eastern NA as a more continental
dry land compared with historical conditions.

3.3 Drivers of TWS change

To assess which variables have the most impact on mean
TWS under both global warming and SAI, we fitted an MLR
model to each ensemble member separately in each of the six
regions (Figs. 6 and 7). The most important variable for the
mean TWS under both global warming and SAI scenarios
is region-specific. In the wet lands surrounding the Caspian
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Figure 5. The TWS anomaly return level versus return period using the first three realizations for the historical, SSP5-8.5, and SSP5-
8.5-SAI in regions 1 to 6 (a–f). The two parallel dashed black lines refer to 30- (a, c, e) and 50-year (b, d, f) return periods. Shading in
each curve represents the 95 % upper and lower confidence bands. The three values in red refer to p values between historical and global
warming, historical and SAI, and global warming and SAI, obtained from repeated-measure analysis of variance and post hoc Tukey–Kramer
comparisons in which the underlined p values are statistically significant.

(R1) and Mediterranean (R3) seas, temperature and precipi-
tation are the primary drivers of TWS changes. In contrast,
in the Middle East, characterized by predominantly dry cli-
mates (R2 and R4), vegetation coverage (i.e., LAI) plays a
dominant role. This observation aligns with the fact that tem-
perature limits ET in the wet regions, while in arid and hot
regions, the availability of water for ET is the predominant
limiting factor (Bao et al., 2021). In NA, where TWS changes
are irregular (Fig. 2), temperature holds the greatest signifi-
cance in the eastern regions (R5), while real ET is the pri-
mary driver in the west (R6). Warmer climate enhances the
atmospheric water content over regions and seasons (Cook
et al., 2020) since 1 ◦C warming is accompanied by ∼ 7 %
enhancement in the air water storage capacity (Trenberth,
2011) and, in turn, increases the evaporative demand (Ar-
nell, 1999), and vice versa for cooler conditions. Real ET it-
self is mostly controlled by temperature and available water
for evaporation (i.e., precipitation, soil moisture, and vege-
tation coverage). With just temperature and precipitation as
independent variables, we find that the temperature under

both global warming and SAI is generally more important
for TWS than precipitation over the wet lands around the
Caspian and Mediterranean seas as well as eastern NA. In
contrast, precipitation plays a stronger role in TWS in Iran,
Iraq, and western NA with lower precipitation under both fu-
ture climate scenarios.

The regression models indicate that TWS is mostly driven
by the combined impacts of changes in vegetation cover-
age, real ET, temperature, and precipitation, consistent with
the fact that precipitation is not the only controlling factor
for water resources (Cook et al., 2014; Wu et al., 2020).
However, the temperature in the Mediterranean area with the
highest precipitation over the entire domain studied plays a
more important role than precipitation, vegetation coverage,
and real ET under both warming and SAI scenarios.

Caution is required when interpreting the relative impor-
tance of results for the arid regions of R4 to R6 as their vari-
ance explained (R2

= 0.3 to 0.52) from the MLR models is
smaller than those (up to 0.89 and 0.96) for the wetter lands
around the Caspian and Mediterranean seas. This, most prob-
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Table 2. The percent differences (%) between the medians of the TWS return level at 30-, 50-, and 100-year return periods using the first three
realizations for the historical, SSP5-8.5, and SSP5-8.5-SAI. Consistently, the value inside the parenthesis represents the percent difference
range values between lower and upper 95 % confidence intervals from different scenarios.

(SSP5-8.5 − historical)/historical · 100 (SSP5-8.5-SAI –
historical)/historical · 100

(SSP5-8.5-SAI –
SSP5-8.5)/historical · 100

Region 30-year 50-year 100-year 30-year 50-year 100-year 30-year 50-year 100-year

R1 −121
(−130,
−113)

−108
(−117,
−100)

−96
(−105,
−88)

−59
(−62, −57)

−55
(−57, −53)

−51
(−53, −49)

61
(56, 68)

53
(48, 60)

45
(40, 52)

R2 8
(6, 11)

15
(12, 17)

22
(20, 24)

73
(66, 81)

65
(58, 73)

57
(50, 65)

64
(55, 75)

50
(41, 60)

34
(25, 46)

R3 −51
(−56, −46)

−43
(−49, −38)

−35
(−42, −29)

−33
(−34, −32)

−30
(−31, −29)

−27
(−28, −26)

18
(14, 24)

13
(8, 20)

8
(2, 16)

R4 170
(163, 178)

163
(157, 169)

160
(155, 164)

173
(158, 191)

153
(138, 170)

132
(117, 150)

4
(−4, 13)

−10
(−19, 1)

−27
(−39, −14)

R5 −102
(−110, −95)

−89
(−96, −82)

−76
(−83, −70)

−25
(−26, −24)

−22
(−23, −21)

−19
(−20, −18)

77
(70, 84)

67
(61, 73)

57
(52, 63)

R6 80
(73, 89)

70
(63, 77)

58
(52, 65)

99
(95, 103)

95
(93, 99)

94
(93, 96)

18
(14, 22)

26
(21, 30)

36
(31, 41)

ably, arises from the arid to hyper-arid climate of R4 to R6
with small and irregular annual precipitation and, in turn, ir-
regular TWS anomaly time series (Fig. 2d, e, f).

4 Discussion

We have analyzed the potential impacts of the unmiti-
gated global warming SSP5-8.5 scenario (GHG) and the
same GHG emissions trajectory with the addition of SAI
(GHG+SAI) on both the mean and extreme water storage
across the lands around the Caspian and Mediterranean seas,
Middle East, and NA. We have used the CESM2(WACCM)
climate model simulations with three realizations of each his-
torical and SSP5-8.5-SAI scenario and five available real-
izations for SSP5-8.5. In response to high GHG emissions
over the 2071–2100 period, the mean TWS decreases in the
wetter regions (i.e., around the Caspian and Mediterranean
seas with mild wet winters and warm to hot dry summers),
in agreement with previous studies based on SSP5-8.5 (e.g.,
Cook et al., 2020; Scanlon et al., 2023), RCP2.6, and RCP4.5
(e.g., Döll et al., 2018), as well as with projections from 11
global hydrological models (Schewe et al., 2014) with glob-
ally forced 2 ◦C warming (Schleussner et al., 2016). Simi-
larly, a decrease in precipitation (Kim and Byun, 2009), sur-
face runoff (Cook et al., 2020), and TWS (Pokhrel et al.,
2021) has been reported across Mediterranean coasts un-
der GHG warming. In contrast, the mean TWS increases or
shows no significant change in the MENA, housing several
major deserts with minimal precipitation. The temporal en-
semble mean TWS increase in the southern MENA is consis-
tent with other climate model simulations showing increased
precipitation and soil moisture in CMIP6 simulations un-

der SSP5-8.5 (Cook et al., 2020) and SSP2-4.5 (Ajjur et al.,
2021; Scanlon et al., 2023). This further aligns with a pro-
jected northward shift of the Intertropical Convergence Zone
(ITCZ) in eastern Africa, mostly during the months of May to
October (Mamalakis et al., 2020), leading to increased mois-
ture transfer to the southern Middle East and NA (Waha et
al., 2017).

Given the prevailing water scarcity challenges in many re-
gions of the Middle East where population growth is a con-
tinuing concern (Oroud, 2008), by mitigating the vulnerabil-
ity to global warming, SAI may offer a potential strategy to
augment the regional water resources across the area, partic-
ularly in the dry regions of Iran (containing the Lut desert
in the southeastern region and the Kavir desert in the north–
central region), Iraq, and the Arabian Peninsula (housing the
Arabian Desert), compared with the pure GHG-forced sce-
nario. Similarity, Jones et al. (2018) found that SAI could ef-
fectively counteract the changes in available water imposed
by global warming on Earth’s lands. Mousavi et al. (2023)
also found that increased soil moisture and enhanced vegeta-
tion coverage would lead to the reduction of dust concentra-
tion in the MEAN region under SAI.

The more robust and widespread deficit in mean TWS
compared to precipitation in the area, which is in line with re-
sults reported by Cook et al. (2020), highlights the profound
roles that other variables or processes have in the increased
ET such as greater atmospheric moisture demand (Dai et
al., 2013, 2018) and greater vegetation water use (Mankin
et al., 2019) owing to warmer conditions under global warm-
ing, consistent with regression model results. According to
MLR model results (Figs. 6 and 7), the projected changes in
TWS were not solely attributable to precipitation; its inter-
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Figure 6. LMG importance plot (Lindeman et al., 1980) of the
four independent variables in the regression for TWS for the global
warming SSP5-8.5 scenario in each region. The bar and range bar
respectively show the ensemble mean importance and the range of
importance from the three ensemble members. The three values in
red in each subplot show the minimum, mean, and maximum vari-
ances explained by models.

play with other factors, such as vegetation coverage, temper-
ature, and ET, plays a pivotal role. The vegetation coverage
as the primary variable influencing changes in TWS in the
MENA region substantially increases under global warming
(Figs. S14 and S15). It has an important, but often complex
and uncertain, role in surface water content (Lemordant et al.,
2018; Trugman et al., 2018); the denser the vegetation cov-
erage, the higher the evapotranspiration rates. Furthermore,
although precipitation over a broad portion of MENA is low-
ered under SAI relative to global warming, the mean TWS,
in general, increases across a broad portion of the MENA
region in response to the intervention. TWS significantly in-
creases over Iran and Iraq under SAI compared to histori-
cal and global warming (Fig. 4b) as gains in available water
from decreased temperature and, in turn, ET are largely suffi-
cient to compensate for decreased precipitation (Figs. S8 and
S10), signifying that in addition to precipitation, the water
storage also strongly depends on local temperature (Ajjur et
al., 2021). As an example, around the Caspian Sea (R1), al-
though the changes in precipitation imposed by global warm-
ing are simulated to have been fully restored by SAI, the tem-
perature has not, and in turn, the TWS is not fully restored
by SAI. This is consistent with MLR model results (Fig. 7a)
in which, beyond the precipitation, temperature also plays an
important role in TWS across R1. Other studies also found
that changes in precipitation do not necessarily correlate with
changes in surface water due to differences in precipitation
and evaporation responses under SAI (Irvine et al., 2016).

Our findings, on the whole, suggest that the specific SAI
scenario considered here could help water storage in the dry

Figure 7. As in Fig. 6, but for the SSP5-8.5-SAI scenario.

regions (R2, R4, R5, and R6), i.e., leads to higher soil mois-
ture and TWS compared with both the historical conditions
and pure GHG-induced global warming. Likewise, Dagon
and Scharg (2017) documented a rise in mean water avail-
ability and soil moisture during the period of June to Au-
gust in MENA using SolarGeo simulations, consistent with
the significant reduction in daily maximum temperatures and
ET across the Middle East. This works through the com-
bined positive effects of (1) a substantial decrease in tem-
perature and ET over the entire study area compared with
SSP5-8.5 global warming and (2) the increased precipita-
tion in the southern MENA dry regions relative to histori-
cal conditions. The Middle East may therefore benefit from
the water enrichment from climate change through the im-
plementation of solar intervention (Burnell, 2021). However,
the wet and colder regions, particularly around the Mediter-
ranean coasts, may have less water storage compared with
the historical period but more water relative to the GHG sce-
nario due to a significant decrease in ET under SAI. Simpson
et al. (2019) also reported a noteworthy decline of 18.5 % in
available water (precipitation minus evaporation) across the
Mediterranean area under high GHG emissions, while it was
partially reversed (only 5 %) by a decrease in evaporation un-
der SAI.

Although SAI partially compensates for the extreme TWS
changes in most of the study area, aligning with findings
by Jones et al. (2018), the overall extreme TWS trend in-
dicates an increase in dry regions of Iran and Iraq, the Ara-
bian Peninsula, and western NA. Conversely, there is a sub-
stantial decrease in extreme TWS in the wetter lands around
the Caspian and Mediterranean seas and, to lower degrees,
in eastern NA compared to historical conditions. The impli-
cations of our findings under both future climate scenarios
(SSP5-8.5 and SSP5-8.5-SAI) extend beyond hydrology and
water resource management. Changes in TWS have signif-
icant implications for climate adaptation, flood and drought
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risk management, and infrastructure planning. Some dry ar-
eas such as Iran, Iraq, and the Arabian Peninsula are pro-
jected to receive greater extreme TWS under both global
warming and SAI or only SAI, and these regions have histor-
ically suffered from flooding (e.g., Abbaspour et al., 2009;
Ghavidel and Jafari Hombari, 2020; Dezfuli et al., 2021).
The significant increase in extreme TWS enhances their flood
risks. Hence, governments in these regions should plan for
adaptations to water megastructures such as dams on the
large rivers of Karkheh and Karun in western Iran as well as
the Euphrates and Tigris in Iraq, since they have been mostly
designed with historical hydrology in mind.

There are several caveats and caution needed for our re-
sults. First, our findings are based on a single model simula-
tion (CESM2) and a single scenario climate scenario, SSP5-
8.5, with (three available realizations) and without (five avail-
able realizations) SAI. Future studies should consider alter-
native SAI scenarios to explore the sensitivity of our results
to model and scenario choices. The SSP scenarios include
some that clearly portray undesirable futures, especially the
high-emissions SSP5 scenarios and the regional rivalry SSP3
that illustrate the danger of unchecked climate change (Mac-
Martin et al., 2022). There are more caveats for the SAI ex-
periment used here: (1) it deploys in 2020 and therefore does
not simulate any plausible future, and (2) it takes into account
solely the high-emissions scenario SSP5-8.5 that is suitable
for capturing a high “signal” compared to internal variability.
This is useful for understanding the science but inconsistent
with present-day projections of mitigation attempts (Burgess
et al., 2020). However, while the signal is stronger under high
GHG emissions, it is plausible that the directions and patterns
of response would be similar in a lower-emission experiment,
with the magnitude of changes roughly depending on the de-
gree of warming being suppressed by SAI (e.g., MacMartin
et al., 2022).

5 Conclusions

The current study is the first attempt to understand the in-
fluence of GHG emissions and SAI scenarios on both mean
and extreme water storage changes over the lands around the
Caspian and Mediterranean seas, Middle East, and northern
Africa under global warming and SAI scenarios compared to
the historical 1985–2014 conditions. The mean TWS is pro-
jected to decrease across the wetter lands around the Caspian
and Mediterranean seas to the north (3.7 %–5.2 % on aver-
age) but increase over most of the MENA region (up to 5.6 %
over the Arabian Peninsula) that has a drier climate under
high-GHG forcing compared to present-day conditions.

Although the SAI tends to reverse, to a degree, the sig-
nificant changes in TWS revealed by SSP5-8.5 over the en-
tire area, it significantly overcompensates for the slightly re-
duced TWS under the high-GHG scenario in Iran and Iraq.
The MLR model analysis of driving factors suggests that the

impacts of temperature on water storage changes, like precip-
itation, are also important under both high-GHG forcing and
SAI scenarios. Although SAI mostly decreases precipitation
over most of the domain, it is accompanied by higher mean
TWS across the entire study area due to the cooler climate.

Although significant changes in extreme TWS under high
GHG emissions are reduced by SAI, the changes due to fu-
ture climate changes are still large relative to the histori-
cal period across a broad portion of the domain. With SAI,
TWS significantly decreases in the eastern lands around the
Caspian Sea while substantially increasing across the Middle
East regions of Iran, Iraq, and the Arabian Peninsula. This
may increase flood risks since water megastructures have
been mostly designed with historical hydrology in mind. Fi-
nally, the SAI scenario appears to increase accessible water
storage in the dry regions of the Middle East and northern
Africa. The wetter and colder lands around the Caspian and
Mediterranean Sea may have less available water compared
with the historical conditions, although SAI partially amelio-
rates the changes imposed by global warming.
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