Articles | Volume 12, issue 4
https://doi.org/10.5194/esd-12-1115-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-12-1115-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Taxonomies for structuring models for World–Earth systems analysis of the Anthropocene: subsystems, their interactions and social–ecological feedback loops
Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg A31, 14473 Potsdam, Germany
Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 106 91 Stockholm, Sweden
Wolfgang Lucht
Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg A31, 14473 Potsdam, Germany
Department of Geography, Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany
Integrative Research Institute on Transformations of Human-Environment Systems, Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany
Sarah E. Cornell
Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 106 91 Stockholm, Sweden
Jobst Heitzig
Complexity Science, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg A31, 14473 Potsdam, Germany
Wolfram Barfuss
Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg A31, 14473 Potsdam, Germany
Department of Physics, Humboldt University of Berlin, Newtonstr. 15, 12489 Berlin, Germany
Steven J. Lade
Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 106 91 Stockholm, Sweden
Fenner School of Environment and Society, The Australian National University, Building 141, Linnaeus way, Canberra, ACT 2601, Australia
Bolin Centre for Climate Research, Stockholm University, Geoscience Building at Frescati Campus Svante Arrhenius väg 8, 106 91 Stockholm Sweden
Maja Schlüter
Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 106 91 Stockholm, Sweden
Related authors
Max Bechthold, Wolfram Barfuss, André Butz, Jannes Breier, Sara M. Constantino, Jobst Heitzig, Luana Schwarz, Sanam N. Vardag, and Jonathan F. Donges
Earth Syst. Dynam., 16, 1365–1390, https://doi.org/10.5194/esd-16-1365-2025, https://doi.org/10.5194/esd-16-1365-2025, 2025
Short summary
Short summary
Social norms are a major influence on human behaviour. In natural resource use models, norms are often included in a simplistic way leading to “black or white” sustainability outcomes. We find that a dynamic representation of norms, including social groups, determines more nuanced states of the environment in a stylised model of resource use while also defining the success of attempts to manage the system, suggesting the importance of representing both aspects well in coupled models.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
E. Keith Smith, Marc Wiedermann, Jonathan F. Donges, Jobst Heitzig, and Ricarda Winkelmann
Earth Syst. Dynam., 16, 545–564, https://doi.org/10.5194/esd-16-545-2025, https://doi.org/10.5194/esd-16-545-2025, 2025
Short summary
Short summary
Social tipping dynamics have received recent attention as a potential mechanism for effective climate actions – yet how such tipping dynamics could unfold remains largely unquantified. We explore how social tipping processes can develop by enabling necessary conditions (exemplified by climate change concern) and increased perceptions of localized impacts (sea level rise). The likelihood of social tipping varies regionally, mostly along areas with the highest exposure to persistent risks.
Jordan P. Everall, Fabian Tschofenig, Jonathan F. Donges, and Ilona M. Otto
Earth Syst. Dynam., 16, 189–214, https://doi.org/10.5194/esd-16-189-2025, https://doi.org/10.5194/esd-16-189-2025, 2025
Short summary
Short summary
A social tipping process is a large change in a social group that can be started by few people. Does the 80/20 rule apply here? We see if this is the case for human social groups. We find that, if the social conditions allow, change occurs when around 25 % of people engage. While tipping can happen between 10 % and 43 %, most cases tip by 40 %. However, tipping is not guaranteed: when people are resistant, trusted friend groups and context-appropriate messaging help the process along.
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022, https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary
Short summary
The stability of the Greenland Ice Sheet under global warming is crucial. Here, using PISM, we study how the interplay of feedbacks between the ice sheet, the atmosphere and solid Earth affects the long-term response of the Greenland Ice Sheet under constant warming. Our findings suggest four distinct dynamic regimes of the Greenland Ice Sheet on the route to destabilization under global warming – from recovery via quasi-periodic oscillations in ice volume to ice sheet collapse.
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.
Max Bechthold, Wolfram Barfuss, André Butz, Jannes Breier, Sara M. Constantino, Jobst Heitzig, Luana Schwarz, Sanam N. Vardag, and Jonathan F. Donges
Earth Syst. Dynam., 16, 1365–1390, https://doi.org/10.5194/esd-16-1365-2025, https://doi.org/10.5194/esd-16-1365-2025, 2025
Short summary
Short summary
Social norms are a major influence on human behaviour. In natural resource use models, norms are often included in a simplistic way leading to “black or white” sustainability outcomes. We find that a dynamic representation of norms, including social groups, determines more nuanced states of the environment in a stylised model of resource use while also defining the success of attempts to manage the system, suggesting the importance of representing both aspects well in coupled models.
Hannah Zoller, Steven J. Lade, C. Kendra Gotangco Gonzales, Ingo Fetzer, Nitin Chaudhary, and Juan C. Rocha
EGUsphere, https://doi.org/10.5194/egusphere-2025-3341, https://doi.org/10.5194/egusphere-2025-3341, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
In order to assess the full impact of local human pressures on critical Earth system processes, it is crucial to take account of their biophysical interplay. We provide spatially resolved world maps of interaction strength between the processes of change in carbon dioxide concentration, natural vegetation cover, and surface water runoff. A comparison of the resulting global pattern to established natural partitions of the Earth reveals the risks of current aggregation approaches.
Arne Tobian, Sarah Cornell, Ingo Fetzer, Dieter Gerten, and Johan Rockström
EGUsphere, https://doi.org/10.5194/egusphere-2025-2202, https://doi.org/10.5194/egusphere-2025-2202, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The land use change reallocation tool LUCATOO enables the creation of future land use change scenario datasets tailored to specific requirements in model study applications. Its usability is demonstrated in the planetary boundaries interaction context. Being written in the programming language R and made openly accessible, LUCATOO can be easily adapted to be employed in contexts other than the planetary boundaries framework.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
E. Keith Smith, Marc Wiedermann, Jonathan F. Donges, Jobst Heitzig, and Ricarda Winkelmann
Earth Syst. Dynam., 16, 545–564, https://doi.org/10.5194/esd-16-545-2025, https://doi.org/10.5194/esd-16-545-2025, 2025
Short summary
Short summary
Social tipping dynamics have received recent attention as a potential mechanism for effective climate actions – yet how such tipping dynamics could unfold remains largely unquantified. We explore how social tipping processes can develop by enabling necessary conditions (exemplified by climate change concern) and increased perceptions of localized impacts (sea level rise). The likelihood of social tipping varies regionally, mostly along areas with the highest exposure to persistent risks.
Jordan P. Everall, Fabian Tschofenig, Jonathan F. Donges, and Ilona M. Otto
Earth Syst. Dynam., 16, 189–214, https://doi.org/10.5194/esd-16-189-2025, https://doi.org/10.5194/esd-16-189-2025, 2025
Short summary
Short summary
A social tipping process is a large change in a social group that can be started by few people. Does the 80/20 rule apply here? We see if this is the case for human social groups. We find that, if the social conditions allow, change occurs when around 25 % of people engage. While tipping can happen between 10 % and 43 %, most cases tip by 40 %. However, tipping is not guaranteed: when people are resistant, trusted friend groups and context-appropriate messaging help the process along.
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022, https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary
Short summary
The stability of the Greenland Ice Sheet under global warming is crucial. Here, using PISM, we study how the interplay of feedbacks between the ice sheet, the atmosphere and solid Earth affects the long-term response of the Greenland Ice Sheet under constant warming. Our findings suggest four distinct dynamic regimes of the Greenland Ice Sheet on the route to destabilization under global warming – from recovery via quasi-periodic oscillations in ice volume to ice sheet collapse.
David I. Armstrong McKay, Sarah E. Cornell, Katherine Richardson, and Johan Rockström
Earth Syst. Dynam., 12, 797–818, https://doi.org/10.5194/esd-12-797-2021, https://doi.org/10.5194/esd-12-797-2021, 2021
Short summary
Short summary
We use an Earth system model with two new ocean ecosystem features (plankton size traits and temperature-sensitive nutrient recycling) to revaluate the effect of climate change on sinking organic carbon (the
biological pump) and the ocean carbon sink. These features lead to contrary pump responses to warming, with a combined effect of a smaller sink despite a more resilient pump. These results show the importance of including ecological dynamics in models for understanding climate feedbacks.
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Sebastian H. R. Rosier, Ronja Reese, Jonathan F. Donges, Jan De Rydt, G. Hilmar Gudmundsson, and Ricarda Winkelmann
The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, https://doi.org/10.5194/tc-15-1501-2021, 2021
Short summary
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.
Cited articles
Anderies, J. M., Carpenter, S., Steffen, W., and Rockström, J.: The
topology of non-linear global carbon dynamics: from tipping points to
planetary boundaries, Environ. Res. Lett., 8, 044048, https://doi.org/10.1088/1748-9326/8/4/044048, 2013. a
Arneth, A., Brown, C., and Rounsevell, M.: Global models of human
decision-making for land-based mitigation and adaptation assessment,
Nat. Clim. Change, 4, 550–557, 2014. a
Arrow, K. J., Cropper, M. L., Gollier, C., Groom, B., Heal, G. M., Newell,
R. G., Nordhaus, W. D., Pindyck, R. S., Pizer, W. A., Portney, P. R.,
Sterner, T., Tol, R. S. J., and Weitzman, M. L.: How Should Benefits and
Costs Be Discounted in an Intergenerational Context?, The Views of an Expert Panel (December 19, 2013). Resources for the Future Discussion Paper No. 12–53, https://doi.org/10.2139/ssrn.2199511, 2013. a
Barfuss, W., Donges, J. F., Wiedermann, M., and Lucht, W.: Sustainable use of renewable resources in a stylized social–ecological network model under heterogeneous resource distribution, Earth Syst. Dynam., 8, 255–264, https://doi.org/10.5194/esd-8-255-2017, 2017. a, b
Barfuss, W., Donges, J. F., Lade, S. J., and Kurths, J.: When optimization for governing human-environment tipping elements is neither sustainable nor safe, Nat. Commun., 9, 1–10, 2018. a
Barfuss, W., Donges, J. F., Vasconcelos, V. V., Kurths, J., and Levin, S. A.:
Caring for the future can turn tragedy into comedy for long-term collective
action under risk of collapse, P. Natl. Acad. Sci. USA, 117, 12915–12922, 2020. a
Barros, V., Field, C., Dokken, D., Mastrandrea, M., Mach, K., Bilir, T.,
Chatterjee, M., Ebi, K., Estrada, Y., Genova, R., Girma, B., Kissel, E.,
Levy, A., MacCracken, S., Mastrandrea, P., and White, L. (Eds.): Climate
Change 2014: Impacts, Adaptation, and Vulnerability, in: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2014. a, b, c
Bienabe, E. and Hearne, R. R.: Public preferences for biodiversity conservation and scenic beauty within a framework of environmental services payments, Forest Policy Econ., 9, 335–348, 2006. a
Biggs, R., Schlüter, M., Biggs, D., Bohensky, E. L., BurnSilver, S., Cundill, G., Dakos, V., Daw, T. M., Evans, L. S., Kotschy, K., Leitch, A. M., Meek, C., Quinlan, A., Raudsepp-Hearne, C., Robards, M. D., Schoon, M. L., Schultz, L., and West, P. C.: Toward
principles for enhancing the resilience of ecosystem services,
Annu. Rev. Env. Resour., 37, 421–448, 2012. a, b
Boysen, L. R., Lucht, W., and Gerten, D.: Trade-offs for food production,
nature conservation and climate limit the terrestrial carbon dioxide removal
potential, Global Change Biol., 23, 4303–4317, 2017. a
Brondizio, E. S., O'Brien, K., Bai, X., Biermann, F., Steffen, W., Berkhout, F., Cudennec, C., Lemos, M. C., Wolfe, A., Palma-Oliveira, J., and Chen, C.-T. A.:
Re-conceptualizing the Anthropocene: A call for collaboration,
Glob. Environ. Change, 39, 318–327, 2016. a
Brugger, J., Feulner, G., and Petri, S.: Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the
Cretaceous, Geophys. Res. Lett., 44, 419–427, 2017. a
Brundtland, G. H.: Report of the World Commission on Environment and
Development: Our common future, United Nations, New York, 374 pp., 1987. a
Budyko, M. I., Ronov, A. B., and Yanshin, A. L.: History of the Earth's
atmosphere, Springer, Berlin, Germany, 1987. a
Calder, M., Craig, C., Culley, D., de Cani, R., Donnelly, C. A., Douglas, R., Edmonds, B., Gascoigne, J., Gilbert, N., Hargrove, C., Hinds, D., Lane, D. C., Mitchell, D., Pavey, G., Robertson, D., Rosewell, B., Sherwin, S., Walport, M., and Wilson, A.: Computational
modelling for decision-making: where, why, what, who and how,
Roy. Soc. Open Sci., 5, 172096, https://doi.org/10.1098/rsos.172096, 2018. a
Calvin, K. and Bond-Lamberty, B.: Integrated human-earth system
modeling-state of the science and future directions, Environ. Res. Lett., 13, 063006, https://doi.org/10.1088/1748-9326/aac642, 2018. a, b
Caminade, C., Kovats, S., Rocklov, J., Tompkins, A. M., Morse, A. P.,
Colón-González, F. J., Stenlund, H., Martens, P., and Lloyd, S. J.:
Impact of climate change on global malaria distribution, P. Natl. Acad. Sci. USA, 111, 3286–3291, 2014. a
Castellano, C., Fortunato, S., and Loreto, V.: Statistical physics of social
dynamics, Rev. Mod. Phys., 81, 591–646, https://doi.org/10.1103/RevModPhys.81.591, 2009. a
Charney, J., Quirk, W. J., Chow, S.-H., and Kornfield, J.: A comparative study of the effects of albedo change on drought in semi-arid regions, J. Atmos. Sci., 34, 1366–1385, 1977. a
Colding, J. and Folke, C.: Social taboos: “invisible” systems of local
resource management and biological conservation, Ecol. Appl., 11,
584–600, 2001. a
Crutzen, P. J.: Geology of mankind, Nature, 415, p. 23, https://doi.org/10.1038/415023a, 2002. a
Cumming, G. S. and Peterson, G. D.: Unifying research on social-ecological
resilience and collapse, Trends Ecol. Evol., 32, 695–713, 2017. a
Dearing, J. A., Wang, R., Zhang, K., Dyke, J. G., Haberl, H., Hossain, Md. S., Langdon, P. G., Lenton, T. M., Raworth, K., Brown, S., Carstensen, J., Cole, M. J., Cornell, S. E., Dawson, T. P., Doncaster, C. P., Eigenbrod, F., Flörke, M., Jeffers, E., Mackay, A. W., Nykvist, B., and Poppy, G. M.: Safe and just
operating spaces for regional social-ecological systems, Glob. Environ. Change, 28, 227–238, 2014. a
Di Baldassarre, G., Martinez, F., Kalantari, Z., and Viglione, A.: Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation, Earth Syst. Dynam., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, 2017. a
Donges, J. F., Donner, R. V., Marwan, N., Breitenbach, S. F. M., Rehfeld, K., and Kurths, J.: Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns, Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, 2015. a
Donges, J. F., Heitzig, J., Barfuss, W., Wiedermann, M., Kassel, J. A., Kittel, T., Kolb, J. J., Kolster, T., Müller-Hansen, F., Otto, I. M., Zimmerer, K. B., and Lucht, W.: Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework, Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, 2020. a, b, c, d, e, f
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S.,
Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B.,
Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx,
J. (Eds.): Climate Change 2014: Mitigation of Climate Change, in: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, USA, 2014. a, b, c, d
Farmer, J. D. and Foley, D.: The economy needs agent-based modelling, Nature,
460, 685–686, 2009. a
Fischer-Kowalski, M.: On the history of industrial metabolism, in:
Perspectives on Industrial Ecology, edited by: Bourg, D., Erkman, S., and Chirac, J., Routledge, London, 35–45, 2003. a
Fischer-Kowalski, M. and Haberl, H.: Metabolism and colonization, Modes of
production and the physical exchange between societies and nature,
Innovation-Abingdon, 6, 415–442, 1993. a
Fischer-Kowalski, M. and Hüttler, W.: Society's metabolism,
J. Ind. Ecol., 2, 107–136, 1998. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of Climate Models, in: Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, USA, 741–866, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Flato, G. M.: Earth system models: an overview, WIRES. Clim. Change, 2, 783–800, 2011. a
Folke, C.: Resilience: The emergence of a perspective for social-ecological
systems analyses, Glob. Environ. Change, 16, 253–267, 2006. a
Folke, C., Jansson, Å., Rockström, J., Olsson, P., Carpenter, S. R., Chapin, F. S., Crépin, A.-S., Daily, G., Danell, K., Ebbesson, J., Elmqvist, T., Galaz, V., Moberg, F., Nilsson, M., Österblom, H., Ostrom, E., Persson, Å., Peterson, G., Polasky, S., Steffen, W., Walker, B., and Westley, F.: Reconnecting to the biosphere, AMBIO, 40, 719–738, 2011. a, b
Folke, C., Biggs, R., Norström, A. V., Reyers, B., and Rockström, J.:
Social-ecological resilience and biosphere-based sustainability science,
Ecol. Soc., 21, 41, https://doi.org/10.5751/ES-08748-210341, 2016. a
Gabriel, M.: Warum es die Welt nicht gibt, Ullstein, Berlin, 270 pp., 2013. a
Gaines, S. D., White, C., Carr, M. H., and Palumbi, S. R.: Designing marine
reserve networks for both conservation and fisheries management, P. Natl. Acad. Sci. USA, 107, 18286–18293, 2010. a
Ganopolski, A., Winkelmann, R., and Schellnhuber, H. J.: Critical
insolation-CO2 relation for diagnosing past and future glacial inception, Nature, 529, 200–203, 2016. a
Garrett, T. J.: Long-run evolution of the global economy – Part 2: Hindcasts of innovation and growth, Earth Syst. Dynam., 6, 673–688, https://doi.org/10.5194/esd-6-673-2015, 2015. a
Gerten, D., Schönfeld, M., and Schauberger, B.: On deeper human dimensions in Earth system analysis and modelling, Earth Syst. Dynam., 9, 849–863, https://doi.org/10.5194/esd-9-849-2018, 2018. a
Gregory, J. M., Jones, C., Cadule, P., and Friedlingstein, P.: Quantifying
carbon cycle feedbacks, J. Climate, 22, 5232–5250, 2009. a
Haff, P. K.: Technology and human purpose: the problem of solids transport on the Earth's surface, Earth Syst. Dynam., 3, 149–156, https://doi.org/10.5194/esd-3-149-2012, 2012. a, b
Hamilton, C.: Getting the Anthropocene so wrong, The Anthropocene Review, 2,
102–107, 2015. a
Harfoot, M. B., Newbold, T., Tittensor, D. P., Emmott, S., Hutton, J.,
Lyutsarev, V., Smith, M. J., Scharlemann, J. P., and Purves, D. W.: Emergent
global patterns of ecosystem structure and function from a mechanistic
general ecosystem model, PLoS Biol., 12, e1001841, https://doi.org/10.1371/journal.pbio.1001841, 2014. a
Heck, V., Donges, J. F., and Lucht, W.: Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal, Earth Syst. Dynam., 7, 783–796, https://doi.org/10.5194/esd-7-783-2016, 2016. a, b, c
Heitzig, J. and Donges, J.: pycopandiscount v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.4704936, 2021. a
Heitzig, J., Kittel, T., Donges, J. F., and Molkenthin, N.: Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth system, Earth Syst. Dynam., 7, 21–50, https://doi.org/10.5194/esd-7-21-2016, 2016. a
Heitzig, J., Barfuss, W., and Donges, J. F.: A thought experiment on
sustainable management of the earth system, Sustainability-Basel, 10, 1947, https://doi.org/10.3390/su10061947, 2018. a
Herrmann-Pillath, C.: The art of co-creation: An intervention in the philosophy of ecological economics, Ecol. Econ., 169, 106526, https://doi.org/10.1016/j.ecolecon.2019.106526, 2020. a
Jarvis, A. J., Jarvis, S. J., and Hewitt, C. N.: Resource acquisition, distribution and end-use efficiencies and the growth of industrial society, Earth Syst. Dynam., 6, 689–702, https://doi.org/10.5194/esd-6-689-2015, 2015. a
Jax, K., Barton, D. N., Chan, K. M. A., de Groot, R., Doyle, U., Eser, U., Görg, C., Gómez-Baggethun, E., Griewald, Y., Haber, W., Haines-Young, R., Heink, U., Jahn, T., Joosten, H., Kerschbaumer, L., Korn, H., Luck, G. W., Matzdorf, B., Muraca, B., Neßhöver, C., Norton, B., Ott, K., Potschin, M., Rauschmayer, F., von Haaren, C., and Wichmann, S.:
Ecosystem services and ethics, Ecol. Econ., 93, 260–268, 2013. a
Kates, R. W., Clark, W. C., Corell, R., Hall, J. M., Jaeger, C. C., Lowe, I.,
McCarthy, J. J., Schellnhuber, H. J., Bolin, B., Dickson, N. M., Faucheux,
S., Gallopin, G. C., Grübler, A., Huntley, B., Jäger, J., Jodha,
N. S., Kasperson, R. E., Mabogunje, A., Matson, P., Mooney, H., Moore III, B., O'Riordan, T., and Svedin, U.: Sustainability Science, Science, 292, 641–642, https://doi.org/10.1126/science.1059386, 2001. a
Keys, P. W. and Wang-Erlandsson, L.: On the social dynamics of moisture recycling, Earth Syst. Dynam., 9, 829–847, https://doi.org/10.5194/esd-9-829-2018, 2018. a
Kleidon, A.: Thermodynamic foundations of the Earth system, Cambridge
University Press, Cambridge, UK, 2016. a
Lade, S. J., Niiranen, S., Hentati-Sundberg, J., Blenckner, T., Boonstra,
W. J., Orach, K., Quaas, M. F., Österblom, H., and Schlüter, M.: An
empirical model of the Baltic Sea reveals the importance of social dynamics
for ecological regime shifts, P. Natl. Acad. Sci. USA, 112, 11120–11125, 2015. a, b
Lade, S. J., Donges, J. F., Fetzer, I., Anderies, J. M., Beer, C., Cornell, S. E., Gasser, T., Norberg, J., Richardson, K., Rockström, J., and Steffen, W.: Analytically tractable climate–carbon cycle feedbacks under 21st century anthropogenic forcing, Earth Syst. Dynam., 9, 507–523, https://doi.org/10.5194/esd-9-507-2018, 2018. a
Lade, S. J., Haider, L. J., Engström, G., and Schlüter, M.: Resilience offers escape from trapped thinking on poverty alleviation, Science Advances, 3, e1603043, https://doi.org/10.1126/sciadv.1603043, 2017. a
Latour, B.: Facing Gaia: Eight lectures on the new climatic regime, John Polity Press, Cambridge, UK, 327 pp., 2017. a
Lenton, T., Schellnhuber, H., and Szathmary, E.: Climbing the co-evolution
ladder, Nature, 431, 913, https://doi.org/10.1038/431913a, 2004. a, b
Lenton, T. M., Pichler, P.-P., and Weisz, H.: Revolutions in energy input and material cycling in Earth history and human history, Earth Syst. Dynam., 7, 353–370, https://doi.org/10.5194/esd-7-353-2016, 2016. a
Leontief, W. W.: Quantitative input and output relations in the economic
systems of the United States, Rev. Econ. Statistics, 18,
105–125, 1936. a
Lewis-Beck, M. S. and Ratto, M. C.: Economic voting in Latin America: A general model, Elect. Stud., 32, 489–493, 2013. a
Lovelock, J. E.: Geophysiology, the science of Gaia, Rev. Geophys.,
27, 215–222, 1989. a
Lovelock, J. E. and Margulis, L.: Atmospheric homeostasis by and for the
biosphere: the Gaia hypothesis, Tellus, 26, 2–10, 1974. a
Lucht, W. and Pachauri, R.: The mental component of the Earth system, in:
Earth system analysis for sustainability, edited by: Schellnhuber, H.-J.,
Crutzen, P., Clark, W., Claussen, M., and Held, H., Dahlem Workshop Reports,
Cambridge University Press, Cambridge, UK, 341–365, 2004. a
Lutz, W. and Skirbekk, V.: Low fertility in Europe in a global demographic
context, in: Demographic Change and Intergenerational Justice,
Springer, Berlin, Heidelberg, 3–19, 2008. a
Martin, R. and Schlüter, M.: Combining system dynamics and agent-based
modeling to analyze social-ecological interactions – an example from modeling restoration of a shallow lake, Front. Environ. Sci., 3, 66, https://doi.org/10.3389/fenvs.2015.00066, 2015. a, b
Masterson, V., Stedman, R., Enqvist, J., Tengö, M., Giusti, M., Wahl, D.,
and Svedin, U.: The contribution of sense of place to social-ecological
systems research: a review and research agenda, Ecol. Soc., 22, 49, https://doi.org/10.5751/ES-08872-220149, 2017. a
Mengel, M., Nauels, A., Rogelj, J., and Schleussner, C.-F.: Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action, Nat. Commun., 9, 601, https://doi.org/10.1038/s41467-018-02985-8, 2018. a
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon,
U.: Network motifs: simple building blocks of complex networks, Science, 298,
824–827, 2002. a
Morton, T.: Hyperobjects: Philosophy and Ecology after the End of the World, University of Minnesota Press, Minneapolis, 240 pp., 2013. a
Müller-Hansen, F., Schlüter, M., Mäs, M., Donges, J. F., Kolb, J. J., Thonicke, K., and Heitzig, J.: Towards representing human behavior and decision making in Earth system models – an overview of techniques and approaches, Earth Syst. Dynam., 8, 977–1007, https://doi.org/10.5194/esd-8-977-2017, 2017. a, b
National Research Council: Earth System Science: Overview: A Program for
Global Change, Washington, DC, The National Academies Press,
https://doi.org/10.17226/19210, 1986. a, b, c, d
National Research Council: Models in Environmental Regulatory Decision
Making, The National Academies Press, Washington, D.C., USA, 286 pp., https://doi.org/10.17226/11972, 2007. a
Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Lampe, M. V., Lotze-Campen, H., d’Croz, D. M., van Meijl, H., van der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., Tabeau, A., and Willenbockel, D.: Climate
change effects on agriculture: Economic responses to biophysical shocks,
P. Natl. Acad. Sci. USA, 111, 3274–3279, 2014. a
Nitzbon, J., Heitzig, J., and Parlitz, U.: Sustainability, collapse and
oscillations in a simple World-Earth model, Environ. Res. Lett., 12, 074020, https://doi.org/10.1088/1748-9326/aa7581, 2017. a, b
Nordhaus, W. D.: An optimal transition path for controlling greenhouse gases,
Science, 258, 1315–1319, 1992. a
Nordhaus, W. D.: Revisiting the social cost of carbon, P. Natl. Acad. Sci. USA, 114, 1518–1523, https://doi.org/10.1073/pnas.1609244114, 2017. a
Ostrom, E., Janssen, M. A., and Anderies, J. M.: Going beyond panaceas,
P. Natl. Acad. Sci. USA, 104, 15176–15178, 2007. a
Otto, I. M., Donges, J. F., Cremades, R., Bhowmik, A., Hewitt, R. J., Lucht, W., Rockström, J., Allerberger, F., McCaffrey, M., Doe, S. S. P., Lenferna, A., Morán, N., van Vuuren, D. P., and Schellnhuber, H. J.:
Social tipping dynamics for stabilizing Earth's climate by 2050,
P. Natl. Acad. Sci. USA, 117, 2354–2365, 2020a. a, b
Otto, I. M., Wiedermann, M., Cremades, R., Donges, J. F., Auer, C., and Lucht, W.: Human agency in the anthropocene, Ecol. Econ., 167, 106463, https://doi.org/10.1016/j.ecolecon.2019.106463, 2020b. a, b
Perman, R., Ma, Y., McGilvray, J., and Common, M.:: Natural resource and environmental economics, Pearson Education, Harlow, England, 726 pp.
2003. a
Phalan, B. T.: What have we learned from the land sparing-sharing model?,
Sustainability-Basel, 10, 1760, https://doi.org/10.3390/su10061760, 2018. a
Purves, D., Scharlemann, J. P., Harfoot, M., Newbold, T., Tittensor, D. P.,
Hutton, J., and Emmott, S.: Ecosystems: time to model all life on Earth,
Nature, 493, 295–297, https://doi.org/10.1038/493295a, 2013. a, b
Raworth, K.: A safe and just space for humanity: can we live within the
doughnut, Oxfam Policy and Practice: Climate Change and Resilience, Oxfam International, available at: https://oxfamilibrary.openrepository.com/handle/10546/210490?show=full (last access: 24 September 2021), 8, 1–26, 2012. a
Reichler, T. and Kim, J.: How well do coupled models simulate today's climate?, B. Am. Meteorol. Soc., 89, 303–311, 2008. a
Renn, J.: The Evolution of Knowledge: Rethinking Science in the Anthropocene,
HoST-Journal of History of Science and Technology, 12, 1–22, 2018. a
Robinson, D. T., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C. M., Brown, D. G., Kettner, A., Lemmen, C., O'Neill, B. C., Janssen, M., Pugh, T. A. M., Rabin, S. S., Rounsevell, M., Syvitski, J. P., Ullah, I., and Verburg, P. H.: Modelling feedbacks between human and natural processes in the land system, Earth Syst. Dynam., 9, 895–914, https://doi.org/10.5194/esd-9-895-2018, 2018. a
Rocha, J. C., Peterson, G. D., and Biggs, R.: Regime shifts in the
Anthropocene: drivers, risks, and resilience, PLoS One, 10, e0134639, https://doi.org/10.1371/journal.pone.0134639, 2015. a
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., and Foley, J. A.: A safe operating space for humanity, Nature, 461, 472–475,
2009a. a, b, c
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S. I., Lambin, E., Lenton, T., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R., Fabry, V., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., and Foley, J.: Planetary Boundaries: Exploring the Safe Operating Space for
Humanity, Ecol. Soc., 14, 32, https://doi.org/10.5751/ES-03180-140232, 2009b. a
Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic, N.,
and Schellnhuber, H. J.: A roadmap for rapid decarbonization, Science, 355,
1269–1271, 2017. a
Rounsevell, M. D. A., Arneth, A., Alexander, P., Brown, D. G., de Noblet-Ducoudré, N., Ellis, E., Finnigan, J., Galvin, K., Grigg, N., Harman, I., Lennox, J., Magliocca, N., Parker, D., O'Neill, B. C., Verburg, P. H., and Young, O.: Towards decision-based global land use models for improved understanding of the Earth system, Earth Syst. Dynam., 5, 117–137, https://doi.org/10.5194/esd-5-117-2014, 2014. a, b, c
Schill, C., Anderies, J. M., Lindahl, T., Folke, C., Polasky, S., Cárdenas, J. C., Crépin, A.-S., Janssen, M. A., Norberg, J., and Schlüter, M.: A more dynamic understanding of human behaviour for the Anthropocene, Nature Sustainability, 2, 1075–1082, 2019. a
Schlüter, M., McAllister, R. R. J., Arlinghaus, R., Bunnefeld, N., Eisenack, K., Hölker, F., Milner-Gulland, E. J., Müller, B., Nicholson, E., Quaas, M., und Stöven, M. T.: New horizons for managing the environment: A review of coupled
social-ecological systems modeling, Nat. Resour. Model., 25, 219–272,
2012. a
Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M. A., McAllister, R. R. J., Müller, B., Orach, K., Schwarz, N., and Wijermans, N.: A
framework for mapping and comparing behavioural theories in models of
social-ecological systems, Ecol. Econ., 131, 21–35, 2017. a
Schneider, S. H., Miller, J. R., Crist, E., and Boston, P. J. (Eds.): Scientists Debate Gaia: The Next Century, MIT Press, Cambridge, Massachusetts, USA, 2004. a
Seitzinger, S. P., Gaffney, O., Brasseur, G., Broadgate, W., Ciais, P., Claussen, M., Erisman, J. W., Kiefer, T., Lancelot, C., Monks, P. S., Smyth, K., Syvitski, J., and Uematsu, M.:
International Geosphere-Biosphere Programme and Earth system science: three
decades of co-evolution, Anthropocene, 12, 3–16, 2015. a
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of
ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ
dynamic global vegetation model, Glob. Change Biol., 9, 161–185, 2003. a, b, c
Steffen, W., Crutzen, P. J., and McNeill, J. R.: The Anthropocene: are humans
now overwhelming the great forces of nature, AMBIO, 36, 614–621, 2007. a
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., and Sörlin, S.: Planetary boundaries: Guiding human development on a changing planet, Science, 347, 1259855, https://doi.org/10.1126/science.1259855, 2015. a, b
Steffen, W., Rockström, J., Richardson, K., Folke, C., Barnosky, A. D.,
Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Lenton,
T. M., Liverman, D., Scheffer, M., Summerhayes, C., Winkelmann, R., and
Schellnhuber, H. J.: Trajectories of the Earth system in the Anthropocene,
P. Natl. Acad. Sci. USA, 115, 8252–8259, 2018. a, b, c
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P. (Eds.): Climate Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, United Kingdom and New York, USA,
https://doi.org/10.1017/CBO9781107415324, 2013. a, b, c, d
Strnad, F. M., Barfuss, W., Donges, J. F., and Heitzig, J.: Deep reinforcement learning in World-Earth system models to discover sustainable management strategies, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29, 123122, https://doi.org/10.1063/1.5124673, 2019. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, 2012. a
Traulsen, A., Semmann, D., Sommerfeld, R. D., Krambeck, H.-J., and Milinski,
M.: Human strategy updating in evolutionary games,, P. Natl. Acad. Sci. USA, 107, 2962–2966, 2010. a
Turchin, P.: Arise “cliodynamics”, Nature, 454, 34–35, https://doi.org/10.1038/454034a, 2008. a
UNFCCC:
Paris Agreement (Dec. 13, 2015), UNFCCC, COP Report No. 21, Addenum, at 21, U.N. Doc. FCCC/CP/2015/10/Add, 1 (29 January 2016), 2015. a
Van Dijk, J. and Breedveld, P. C.: Simulation of system models containing
zero-order causal paths – I. Classification of zero-order causal paths,
J. Frankl. Inst., 328, 959–979, 1991. a
van Vuuren, D. P., Bayer, L. B., Chuwah, C., Ganzeveld, L., Hazeleger, W.,
van den Hurk, B., Van Noije, T., O'Neill, B., and Strengers, B. J.: A
comprehensive view on climate change: coupling of earth system and integrated
assessment models, Environ. Res. Lett., 7, 024012, https://doi.org/10.1088/1748-9326/7/2/024012, 2012. a
van Vuuren, D. P., Lucas, P. L., Häyhä, T., Cornell, S. E., and Stafford-Smith, M.: Horses for courses: analytical tools to explore planetary boundaries, Earth Syst. Dynam., 7, 267–279, https://doi.org/10.5194/esd-7-267-2016, 2016. a, b, c, d
Vaughan, N. E. and Lenton, T. M.: A review of climate geoengineering proposals, Climatic Change, 109, 745–790, 2011. a
Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E. C., Ellis, M., Jeandel, C., Leinfelder, R., McNeill, J. R., Richter, D. deB., Steffen, W., Syvitski, J., Vidas, D., Wagreich, M., Williams, M., Zhisheng, A., Grinevald, J., Odada, E., Oreskes, N., Wolfe, A. P.: The Anthropocene is functionally and stratigraphically distinct from
the Holocene, Science, 351, aad2622, https://doi.org/10.1126/science.aad2622, 2016. a
Watson, A. J.: Implications of an anthropic model of evolution for emergence of complex life and intelligence, Astrobiology, 8, 175–185, 2008. a
Weiss, H. and Bradley, R. S.: What drives societal collapse?, Science, 291,
609–610, 2001. a
Wiedermann, M., Donges, J. F., Heitzig, J., Lucht, W., and Kurths, J.:
Macroscopic description of complex adaptive networks co-evolving with dynamic
node states, Phys. Rev. E, 91, 052801, https://doi.org/10.1103/PhysRevE.91.052801, 2015.
a, b, c
Williamson, O. E.: Transaction cost economics: how it works; where it is
headed, De Economist, 146, 23–58, https://doi.org/10.1023/A:1003263908567, 1998. a, b
Winkelmann, R., Levermann, A., Ridgwell, A., and Caldeira, K.: Combustion of
available fossil fuel resources sufficient to eliminate the Antarctic Ice
Sheet, Science Advances, 1, e1500589, https://doi.org/10.1126/sciadv.1500589, 2015. a
Woroniecki, S., Wendo, H., Brink, E., Islar, M., Krause, T., Vargas, A.-M., and Mahmoud, Y.: Nature unsettled: How knowledge and power shape
“nature-based” approaches to societal challenges, Glob. Environ.
Change, 65, 102132, https://doi.org/10.1016/j.gloenvcha.2020.102132, 2020. a
Yearworth, M. and Cornell, S. E.: Contested modelling: a critical examination
of expert modelling in sustainability, Syst. Res. Behav. Sci., 33, 45–63, 2016. a
Zalasiewicz, J., Waters, C. N., Wolfe, A. P., Barnosky, A. D., Cearreta, A., Edgeworth, M., Ellis, E. C., Fairchild, I. J., Gradstein, F. M., Grinevald, J., Haff, P., Head, M. J., Ivar do Sul, J. A., Jeandel, C., Leinfelder, R., McNeill, J. R., Oreskes, N., Poirier, C., Revkin, A., Richter, D. deB, Steffen, W., Summerhayes, C., Syvitski, J. P. M., Vidas, D., Wagreich, M., Wing, S., and Williams, M.: Making the case for a formal Anthropocene Epoch: an analysis of
ongoing critiques, Newsl. Stratigr., 50, 205–226, 2017. a
Zeebe, R. E. and Zachos, J. C.: Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene, Philos. T. Roy. Soc. A, 371,
20120006, https://doi.org/10.1098/rsta.2012.0006, 2013. a
Altmetrics
Final-revised paper
Preprint