Articles | Volume 9, issue 1
https://doi.org/10.5194/esd-9-103-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/esd-9-103-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A framework for modelling the complexities of food and water security under globalisation
Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, the Netherlands
Centre for Complex Systems Studies, Utrecht University, the Netherlands
Department of Science, University College Utrecht, the Netherlands
Murugesu Sivapalan
Department of Civil and Environmental Engineering, Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Elke Stehfest
PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
Detlef P. van Vuuren
Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, the Netherlands
PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
Martin J. Wassen
Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, the Netherlands
Marc F. P. Bierkens
Department of Physical Geography, Faculty of Geosciences, Utrecht University, the Netherlands
Stefan C. Dekker
Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, the Netherlands
Faculty of Management, Science and Technology, Department of Science, Open University, Heerlen, the Netherlands
Related authors
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
B. J. Dermody, R. P. H. van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. van der Velde, M. F. P. Bierkens, M. J. Wassen, and S. C. Dekker
Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, https://doi.org/10.5194/hess-18-5025-2014, 2014
Short summary
Short summary
Our virtual water network of the Roman World shows that virtual water trade and irrigation provided the Romans with resilience to interannual climate variability. Virtual water trade enabled the Romans to meet food demands from regions with a surplus. Irrigation provided stable water supplies for agriculture, particularly in large river catchments. However, virtual water trade also stimulated urbanization and population growth, which eroded Roman resilience to climate variability over time.
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340, https://doi.org/10.5194/hess-2024-340, 2024
Preprint under review for HESS
Short summary
Short summary
We explore tile drainage’ impacts on the integrated hydrology-biogeochemistry-plant system, using ecosys with soil oxygen and microbe dynamics. We found that tile drainage lowers soil water content and improves soil oxygen levels, which helps crops grow better, especially during wet springs, and the developed root system also helps mitigate drought stress on dry summers. Overall, tile drainage increases crop resilience to climate change, making it a valuable future agricultural practice.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan C. Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
EGUsphere, https://doi.org/10.5194/egusphere-2024-2441, https://doi.org/10.5194/egusphere-2024-2441, 2024
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic-climate scenarios' largest effect on variance starting in 2030.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-112, https://doi.org/10.5194/hess-2024-112, 2024
Preprint under review for HESS
Short summary
Short summary
The contribution of groundwater to groundwater dependent ecosystems (GDEs) is declining as a result of an increase in groundwater abstractions and climate change. This may lead to loss of habitat and biodiversity. This proposed framework enables the mapping and understanding of the temporal and spatial dynamics of GDEs on a large scale. The next step is to assess the global impacts of climate change and water use on GDEs' extent and health.
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
EGUsphere, https://doi.org/10.5194/egusphere-2024-1025, https://doi.org/10.5194/egusphere-2024-1025, 2024
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, if these models provided information at higher resolutions that would be better. We present a first of its kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge and this is especially true for smaller catchments. Our results also suggest future hyper-resolution model need to include more detailed landcover information.
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 28, 1493–1514, https://doi.org/10.5194/hess-28-1493-2024, https://doi.org/10.5194/hess-28-1493-2024, 2024
Short summary
Short summary
This study explores the regional streamflow variability in Peninsular India. This variability is governed by monsoons, mountainous systems, and geologic gradients. A linkage between these influencing factors and streamflow variability is established using a Wegenerian approach and flow duration curves.
Arie Staal, Pim Meijer, Maganizo Kruger Nyasulu, Obbe A. Tuinenburg, and Stefan C. Dekker
EGUsphere, https://doi.org/10.5194/egusphere-2024-790, https://doi.org/10.5194/egusphere-2024-790, 2024
Short summary
Short summary
Many areas across the globe rely on upwind land areas for their precipitation supply through terrestrial precipitation recycling. Here we simulate global precipitation recycling in four climate- and land-use scenarios until 2100. We find that global terrestrial moisture recycling decreases by 2.1 % with every degree of global warming, but with strong regional differences.
Sneha Chevuru, Rens L. P. H. van Beek, Michelle T. H. van Vliet, Jerom P. M. Aerts, and Marc F. P. Bierkens
EGUsphere, https://doi.org/10.5194/egusphere-2024-465, https://doi.org/10.5194/egusphere-2024-465, 2024
Short summary
Short summary
This paper integrates PCR-GLOBWB 2 hydrological model with WOFOST crop growth model to analyze mutual feedbacks between hydrology and crop growth. It quantifies one-way and two-way feedbacks between hydrology and crop growth, revealing patterns in crop yield and irrigation water use. Dynamic interactions enhance understanding of climate variability impacts on food production, highlighting the importance of two-way model coupling for accurate assessments.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Mohsen Soltani, Bert Hamelers, Abbas Mofidi, Christopher G. Fletcher, Arie Staal, Stefan C. Dekker, Patrick Laux, Joel Arnault, Harald Kunstmann, Ties van der Hoeven, and Maarten Lanters
Earth Syst. Dynam., 14, 931–953, https://doi.org/10.5194/esd-14-931-2023, https://doi.org/10.5194/esd-14-931-2023, 2023
Short summary
Short summary
The temporal changes and spatial patterns in precipitation events do not show a homogeneous tendency across the Sinai Peninsula. Mediterranean cyclones accompanied by the Red Sea and Persian troughs are responsible for the majority of Sinai's extreme rainfall events. Cyclone tracking captures 156 cyclones (rainfall ≥10 mm d-1) either formed within or transferred to the Mediterranean basin precipitating over Sinai.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep Mujumdar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-286, https://doi.org/10.5194/hess-2022-286, 2023
Preprint withdrawn
Short summary
Short summary
This study explores the regional streamflow variability in Peninsular India – which is governed by monsoons, mountainous systems and geologic gradients. A linkage between these influencers and streamflow variability is established.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Lei Ma, George C. Hurtt, Louise P. Chini, Ritvik Sahajpal, Julia Pongratz, Steve Frolking, Elke Stehfest, Kees Klein Goldewijk, Donal O'Leary, and Jonathan C. Doelman
Geosci. Model Dev., 13, 3203–3220, https://doi.org/10.5194/gmd-13-3203-2020, https://doi.org/10.5194/gmd-13-3203-2020, 2020
Short summary
Short summary
Earth system models require information on historical land cover change. We present transition rules to generate land cover change from newly developed land use dataset (Land-use Harmonization, LUH2). The resulting forest cover, vegetation carbon, and emissions from land use and land cover change are simulated and evaluated against remote sensing data and other studies. The rules can guide the incorporation of land-cover information within earth system models for CMIP6.
Wei Li, Philippe Ciais, Elke Stehfest, Detlef van Vuuren, Alexander Popp, Almut Arneth, Fulvio Di Fulvio, Jonathan Doelman, Florian Humpenöder, Anna B. Harper, Taejin Park, David Makowski, Petr Havlik, Michael Obersteiner, Jingmeng Wang, Andreas Krause, and Wenfeng Liu
Earth Syst. Sci. Data, 12, 789–804, https://doi.org/10.5194/essd-12-789-2020, https://doi.org/10.5194/essd-12-789-2020, 2020
Short summary
Short summary
We generated spatially explicit bioenergy crop yields based on field measurements with climate, soil condition and remote-sensing variables as explanatory variables and the machine-learning method. We further compared our yield maps with the maps from three integrated assessment models (IAMs; IMAGE, MAgPIE and GLOBIOM) and found that the median yields in our maps are > 50 % higher than those in the IAM maps.
Joeri van Engelen, Jarno Verkaik, Jude King, Eman R. Nofal, Marc F. P. Bierkens, and Gualbert H. P. Oude Essink
Hydrol. Earth Syst. Sci., 23, 5175–5198, https://doi.org/10.5194/hess-23-5175-2019, https://doi.org/10.5194/hess-23-5175-2019, 2019
Short summary
Short summary
The Nile Delta is an important agricultural area with a fast-growing population, relying increasingly on groundwater. However, saline groundwater extends far land-inward, rendering groundwater close to the coastal zone useless for consumption or agriculture. It normally is assumed that this is caused by mixing due to velocity differences, but here we show that it might also be caused by the coastline being located more land-inward 8000 years ago.
Maarten C. Braakhekke, Jonathan C. Doelman, Peter Baas, Christoph Müller, Sibyll Schaphoff, Elke Stehfest, and Detlef P. van Vuuren
Earth Syst. Dynam., 10, 617–630, https://doi.org/10.5194/esd-10-617-2019, https://doi.org/10.5194/esd-10-617-2019, 2019
Short summary
Short summary
We developed a computer model that simulates forests plantations at global scale and how fast such forests can take up CO2 from the atmosphere. Using this new model, we performed simulations for a scenario in which a large fraction (14 %) of global croplands and pastures are either converted to planted forests or natural forests. We find that planted forests take up CO2 substantially faster than natural forests and are therefore a viable strategy for reducing climate change.
John O'Connor, Maria J. Santos, Karin T. Rebel, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 23, 3917–3931, https://doi.org/10.5194/hess-23-3917-2019, https://doi.org/10.5194/hess-23-3917-2019, 2019
Short summary
Short summary
The Amazon rainforest has undergone extensive land use change, which greatly reduces the rate of evapotranspiration. Forest with deep roots is replaced by agriculture with shallow roots. The difference in rooting depth can greatly reduce access to water, especially during the dry season. However, large areas of the Amazon have a sufficiently shallow water table that may provide access for agriculture. We used remote sensing observations to compare the impact of deep and shallow water tables.
Rémon M. Saaltink, Maria Barciela-Rial, Thijs van Kessel, Stefan C. Dekker, Hugo J. de Boer, Claire Chassange, Jasper Griffioen, Martin J. Wassen, and Johan C. Winterwerp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-194, https://doi.org/10.5194/hess-2019-194, 2019
Revised manuscript not accepted
Short summary
Short summary
This paper focusses on exploring an alternative approach that uses natural processes, rather than a technological solution, to speed up drainage of soft sediment. In a controlled column experiment, we studied how Phragmites australis can act as an ecological engineer that enhances drainage. The presented results provide information needed for predictive modelling of plants as ecological engineers to speed up soil forming processes in the construction of wetlands with soft cohesive sediment.
Matthew J. Gidden, Keywan Riahi, Steven J. Smith, Shinichiro Fujimori, Gunnar Luderer, Elmar Kriegler, Detlef P. van Vuuren, Maarten van den Berg, Leyang Feng, David Klein, Katherine Calvin, Jonathan C. Doelman, Stefan Frank, Oliver Fricko, Mathijs Harmsen, Tomoko Hasegawa, Petr Havlik, Jérôme Hilaire, Rachel Hoesly, Jill Horing, Alexander Popp, Elke Stehfest, and Kiyoshi Takahashi
Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, https://doi.org/10.5194/gmd-12-1443-2019, 2019
Short summary
Short summary
We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources for use in CMIP6. Integrated assessment model results are provided for each scenario with consistent transitions from the historical data to future trajectories. We find that the set of scenarios enables the exploration of a variety of warming pathways. A wide range of scenario data products are provided for the CMIP6 scientific community including global, regional, and gridded emissions datasets.
Stephanie Fiedler, Bjorn Stevens, Matthew Gidden, Steven J. Smith, Keywan Riahi, and Detlef van Vuuren
Geosci. Model Dev., 12, 989–1007, https://doi.org/10.5194/gmd-12-989-2019, https://doi.org/10.5194/gmd-12-989-2019, 2019
HyeJin Kim, Isabel M. D. Rosa, Rob Alkemade, Paul Leadley, George Hurtt, Alexander Popp, Detlef P. van Vuuren, Peter Anthoni, Almut Arneth, Daniele Baisero, Emma Caton, Rebecca Chaplin-Kramer, Louise Chini, Adriana De Palma, Fulvio Di Fulvio, Moreno Di Marco, Felipe Espinoza, Simon Ferrier, Shinichiro Fujimori, Ricardo E. Gonzalez, Maya Gueguen, Carlos Guerra, Mike Harfoot, Thomas D. Harwood, Tomoko Hasegawa, Vanessa Haverd, Petr Havlík, Stefanie Hellweg, Samantha L. L. Hill, Akiko Hirata, Andrew J. Hoskins, Jan H. Janse, Walter Jetz, Justin A. Johnson, Andreas Krause, David Leclère, Ines S. Martins, Tetsuya Matsui, Cory Merow, Michael Obersteiner, Haruka Ohashi, Benjamin Poulter, Andy Purvis, Benjamin Quesada, Carlo Rondinini, Aafke M. Schipper, Richard Sharp, Kiyoshi Takahashi, Wilfried Thuiller, Nicolas Titeux, Piero Visconti, Christopher Ware, Florian Wolf, and Henrique M. Pereira
Geosci. Model Dev., 11, 4537–4562, https://doi.org/10.5194/gmd-11-4537-2018, https://doi.org/10.5194/gmd-11-4537-2018, 2018
Short summary
Short summary
This paper lays out the protocol for the Biodiversity and Ecosystem Services Scenario-based Intercomparison of Models (BES-SIM) that projects the global impacts of land use and climate change on biodiversity and ecosystem services over the coming decades, compared to the 20th century. BES-SIM uses harmonized scenarios and input data and a set of common output metrics at multiple scales, and identifies model uncertainties and research gaps.
Daniel Zamrsky, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 10, 1591–1603, https://doi.org/10.5194/essd-10-1591-2018, https://doi.org/10.5194/essd-10-1591-2018, 2018
Short summary
Short summary
An increasing number of coastal areas worldwide are facing a threat of groundwater quality degradation by saltwater intrusion. Groundwater flow models help to get a better idea of the volumes of fresh groundwater reserves in these areas. Our research provides information on aquifer thickness, which is one of the most important parameters for such models. However, we found that geological complexity of coastal aquifer systems is at least equally as important a factor for accurate predictions.
Kees Nooren, Wim Z. Hoek, Brian J. Dermody, Didier Galop, Sarah Metcalfe, Gerald Islebe, and Hans Middelkoop
Clim. Past, 14, 1253–1273, https://doi.org/10.5194/cp-14-1253-2018, https://doi.org/10.5194/cp-14-1253-2018, 2018
Short summary
Short summary
We present two new palaeoclimatic records for the central Maya lowlands, adding valuable new insights to the impact of climate change on the development of Maya civilisation. Lake Tuspan's diatom record is indicative of precipitation changes at a local scale, while a beach ridge elevation record from the world's largest late Holocene beach ridge plain provides a regional picture.
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary
Short summary
PCR-GLOBWB 2 is an integrated hydrology and water resource model that fully integrates water use simulation and consolidates all features that have been developed since PCR-GLOBWB 1 was introduced. PCR-GLOBWB 2 can have a global coverage at 5 arcmin resolution and supersedes PCR-GLOBWB 1, which has a resolution of 30 arcmin only. Comparing the 5 arcmin with 30 arcmin simulations using discharge data, we clearly find improvement in the model performance of the higher-resolution model.
Yasmina Loozen, Karin T. Rebel, Derek Karssenberg, Martin J. Wassen, Jordi Sardans, Josep Peñuelas, and Steven M. De Jong
Biogeosciences, 15, 2723–2742, https://doi.org/10.5194/bg-15-2723-2018, https://doi.org/10.5194/bg-15-2723-2018, 2018
Short summary
Short summary
Nitrogen (N) is an essential nutrient for plant growth. It would be interesting to detect it using satellite data. The goal was to investigate if it is possible to remotely sense the canopy nitrogen concentration and content of Mediterranean trees using a product calculated from satellite reflectance data, the MERIS Terrestrial Chlorophyll Index (MTCI). The tree plots were located in Catalonia, NE Spain. The relationship between MTCI and canopy N was present but dependent on the type of trees.
Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 22, 1665–1693, https://doi.org/10.5194/hess-22-1665-2018, https://doi.org/10.5194/hess-22-1665-2018, 2018
Short summary
Short summary
The paper presents major milestones in the transformation of hydrologic science over the last 50 years from engineering hydrology to Earth system science. This transformation has involved a transition from a focus on time (empirical) to space (Newtonian mechanics), and to time (Darwinian co-evolution). Hydrology is now well positioned to again return to a focus on space or space–time and a move towards regional process hydrology.
Mahendran Roobavannan, Tim H. M. van Emmerik, Yasmina Elshafei, Jaya Kandasamy, Matthew R. Sanderson, Saravanamuthu Vigneswaran, Saket Pande, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 22, 1337–1349, https://doi.org/10.5194/hess-22-1337-2018, https://doi.org/10.5194/hess-22-1337-2018, 2018
Short summary
Short summary
This paper reviews a relevant social science that links cultural factors to environmental decision-making and assesses how to better incorporate its insights to enhance sociohydrological (SH) models and the knowledge gaps that remain to be filled. The paper concludes with a discussion of challenges and opportunities in terms of generalization of SH models and the use of available data to facilitate future prediction and allow model transfer to ungauged basins.
Sebastian Huizer, Max Radermacher, Sierd de Vries, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 22, 1065–1080, https://doi.org/10.5194/hess-22-1065-2018, https://doi.org/10.5194/hess-22-1065-2018, 2018
Short summary
Short summary
For a large beach nourishment called the Sand Engine we have examined the impact of groundwater recharge, tides, storm surges, and geomorphological changes on the growth of the fresh groundwater resources between 2011 and 2016. With detailed model simulations of these coastal processes we were able to get a good match with field measurements, and demonstrated the importance of wave runup and coastal erosion in studies on fresh groundwater in such dynamic coastal environments.
Hans Visser, Sönke Dangendorf, Detlef P. van Vuuren, Bram Bregman, and Arthur C. Petersen
Clim. Past, 14, 139–155, https://doi.org/10.5194/cp-14-139-2018, https://doi.org/10.5194/cp-14-139-2018, 2018
Short summary
Short summary
In December 2015, 195 countries agreed in Paris to hold the increase in global temperature well below 2.0 °C. However, the Paris Agreement is not conclusive as regards methods to calculate it. To find answers to these questions we performed an uncertainty and sensitivity analysis where datasets, model choices, choices for pre-industrial and warming definitions have been varied. Based on these findings we propose an estimate for signal progression in global temperature since pre-industrial time.
Maarten C. Braakhekke, Karin T. Rebel, Stefan C. Dekker, Benjamin Smith, Arthur H. W. Beusen, and Martin J. Wassen
Earth Syst. Dynam., 8, 1121–1139, https://doi.org/10.5194/esd-8-1121-2017, https://doi.org/10.5194/esd-8-1121-2017, 2017
Short summary
Short summary
Nitrogen input in natural ecosystems usually has a positive effect on plant growth. However, too much N causes N leaching, which contributes to water pollution. Using a global model we estimated that N leaching from natural lands has increased by 73 % during the 20th century, mainly due to rising N deposition from the atmosphere caused by emissions from fossil fuels and agriculture. Climate change and increasing CO2 concentration had positive and negative effects (respectively) on N leaching.
Kees Klein Goldewijk, Arthur Beusen, Jonathan Doelman, and Elke Stehfest
Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, https://doi.org/10.5194/essd-9-927-2017, 2017
Short summary
Short summary
This is an update of HYDE, which is an internally consistent combination of historical population estimates and time-dependent land use allocation algorithms for 10 000 BCE–2015 CE. Categories include cropland, separated into irrigated and rain-fed rice and non-rice crops. Grazing lands are divided into more intensely used pasture and less intensively used rangelands. Population includes total, urban, and rural population and population density and built-up area.
Joyce H. C. Bosmans, Ludovicus P. H. van Beek, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 5603–5626, https://doi.org/10.5194/hess-21-5603-2017, https://doi.org/10.5194/hess-21-5603-2017, 2017
Short summary
Short summary
We investigate how changes in land cover, such as deforestation, affect river runoff and evaporation from the land surface. We use computer simulations to show that the impact of land cover changes is significant and, when globally averaged, it is as important as more direct human impacts through water use (such as irrigation). There is large spatial variability in the impact of land cover change, with the largest changes when tall vegetation (such as forests) is replaced by crop fields.
Andreas Krause, Thomas A. M. Pugh, Anita D. Bayer, Jonathan C. Doelman, Florian Humpenöder, Peter Anthoni, Stefan Olin, Benjamin L. Bodirsky, Alexander Popp, Elke Stehfest, and Almut Arneth
Biogeosciences, 14, 4829–4850, https://doi.org/10.5194/bg-14-4829-2017, https://doi.org/10.5194/bg-14-4829-2017, 2017
Short summary
Short summary
Many climate change mitigation scenarios require negative emissions from land management. However, environmental side effects are often not considered. Here, we use projections of future land use from two land-use models as input to a vegetation model. We show that carbon removal via bioenergy production or forest maintenance and expansion affect a range of ecosystem functions. Largest impacts are found for crop production, nitrogen losses, and emissions of biogenic volatile organic compounds.
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
Guangyao Gao, Jianjun Zhang, Yu Liu, Zheng Ning, Bojie Fu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 21, 4363–4378, https://doi.org/10.5194/hess-21-4363-2017, https://doi.org/10.5194/hess-21-4363-2017, 2017
Short summary
Short summary
This study extracted spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield across the Loess Plateau during 1961–2011. The impacts of precipitation on sediment yield declined with time and the precipitation-sediment relationship showed a coherent spatial pattern. The sediment coefficient, representing the effect of LUCC, decreases linearly with fraction of area treated with erosion control measures and the slopes were highly variable among the catchments.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Naze Candogan Yossef, Rens van Beek, Albrecht Weerts, Hessel Winsemius, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 4103–4114, https://doi.org/10.5194/hess-21-4103-2017, https://doi.org/10.5194/hess-21-4103-2017, 2017
Short summary
Short summary
This paper presents a skill assessment of the global seasonal streamflow forecasting system FEWS-World. For 20 large basins of the world, forecasts using the ESP procedure are compared to forecasts using actual S3 seasonal meteorological forecast ensembles by ECMWF. The results are discussed in the context of prevailing hydroclimatic conditions per basin. The study concludes that in general, the skill of ECMWF S3 forecasts is close to that of the ESP forecasts.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, https://doi.org/10.5194/tc-11-1647-2017, 2017
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Patricia López López, Edwin H. Sutanudjaja, Jaap Schellekens, Geert Sterk, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 3125–3144, https://doi.org/10.5194/hess-21-3125-2017, https://doi.org/10.5194/hess-21-3125-2017, 2017
Short summary
Short summary
We perform various calibration experiments of a large-scale hydrological model using satellite-based products of evapotranspiration and soil moisture in the Oum Er Rbia River basin in Morocco. In addition, we study the impact on discharge estimates of three global precipitation products in comparison with model parameter calibration. Results show that evapotranspiration and soil moisture observations can be used for model calibration, resulting in discharge estimates of acceptable accuracy.
Reinhard Prestele, Almut Arneth, Alberte Bondeau, Nathalie de Noblet-Ducoudré, Thomas A. M. Pugh, Stephen Sitch, Elke Stehfest, and Peter H. Verburg
Earth Syst. Dynam., 8, 369–386, https://doi.org/10.5194/esd-8-369-2017, https://doi.org/10.5194/esd-8-369-2017, 2017
Short summary
Short summary
Land-use change is still overly simplistically implemented in global ecosystem and climate models. We identify and discuss three major challenges at the interface of land-use and climate modeling and propose ways for how to improve land-use representation in climate models. We conclude that land-use data-provider and user communities need to engage in the joint development and evaluation of enhanced land-use datasets to improve the quantification of land use–climate interactions and feedback.
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary
Short summary
Modelling inundations is pivotal to assess current and future flood hazard, and to define sound measures and policies. Yet, many models focus on the hydrologic or hydrodynamic aspect of floods only. We combined both by spatially coupling a hydrologic with a hydrodynamic model. This way we are able to balance the weaknesses of each model with the strengths of the other. We found that model coupling can indeed strongly improve discharge simulation, and see big potential in our approach.
Kerstin Engström, Stefan Olin, Mark D. A. Rounsevell, Sara Brogaard, Detlef P. van Vuuren, Peter Alexander, Dave Murray-Rust, and Almut Arneth
Earth Syst. Dynam., 7, 893–915, https://doi.org/10.5194/esd-7-893-2016, https://doi.org/10.5194/esd-7-893-2016, 2016
Short summary
Short summary
The development of global cropland in the future depends on how many people there will be, how much meat and milk we will eat, how much food we will waste and how well farms will be managed. Uncertainties in these factors mean that global cropland could decrease from today's 1500 Mha to only 893 Mha in 2100, which would free land for biofuel production. However, if population rises towards 12 billion and global yields remain low, global cropland could also increase up to 2380 Mha in 2100.
Rolf Hut, Niels Drost, Maarten van Meersbergen, Edwin Sutanudjaja, Marc Bierkens, and Nick van de Giesen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-225, https://doi.org/10.5194/gmd-2016-225, 2016
Revised manuscript not accepted
Short summary
Short summary
A system that predicts the amount of water flowing in each river on earth, 9 days ahead, is build using existing parts of open source computer code build by different researchers in other projects.
The glue between all pre-existing parts are all open interfaces which means that the pieces system click together like a house of LEGOs. It is easy to remove a piece (a brick) and replace it with another, improved, piece.
The resulting predictions are available online at forecast.ewatercycle.org
Brian C. O'Neill, Claudia Tebaldi, Detlef P. van Vuuren, Veronika Eyring, Pierre Friedlingstein, George Hurtt, Reto Knutti, Elmar Kriegler, Jean-Francois Lamarque, Jason Lowe, Gerald A. Meehl, Richard Moss, Keywan Riahi, and Benjamin M. Sanderson
Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, https://doi.org/10.5194/gmd-9-3461-2016, 2016
Short summary
Short summary
The Scenario Model Intercomparison Project (ScenarioMIP) will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. The design consists of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions. Climate model projections will facilitate integrated studies of climate change as well as address targeted scientific questions.
Rémon Saaltink, Stefan C. Dekker, Jasper Griffioen, and Martin J. Wassen
Biogeosciences, 13, 4945–4957, https://doi.org/10.5194/bg-13-4945-2016, https://doi.org/10.5194/bg-13-4945-2016, 2016
Short summary
Short summary
We identified biogeochemical plant–soil feedback processes that occur when oxidation, drying and modification by plants alter sediment conditions. Wetland construction in Markermeer (a lake in the Netherlands) is used as a case study. Natural processes will be utilized during and after construction to accelerate ecosystem development. We conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineer.
Sebastian Huizer, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3149–3166, https://doi.org/10.5194/hess-20-3149-2016, https://doi.org/10.5194/hess-20-3149-2016, 2016
Short summary
Short summary
The anticipation of sea-level rise has led to an innovative project called the Sand Engine, where a large volume of sand was placed on the Dutch coast. The intention is that the sand is redistributed by wind, current and tide, reinforcing coastal defence structures. Model simulations show that this large sand replenishment can result in a substantial growth of fresh groundwater resources. Thus, sand replenishments could combine coastal protection with an increase of fresh groundwater resources.
Patricia López López, Niko Wanders, Jaap Schellekens, Luigi J. Renzullo, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3059–3076, https://doi.org/10.5194/hess-20-3059-2016, https://doi.org/10.5194/hess-20-3059-2016, 2016
Short summary
Short summary
We perform a joint assimilation experiment of high-resolution satellite soil moisture and discharge observations in the Murrumbidgee River basin with a large-scale hydrological model. Additionally, we study the impact of high- and low-resolution meteorological forcing on the model performance. We show that the assimilation of high-resolution satellite soil moisture and discharge observations has a significant impact on discharge simulations and can bring them closer to locally calibrated models.
Stefan C. Dekker, Margriet Groenendijk, Ben B. B. Booth, Chris Huntingford, and Peter M. Cox
Earth Syst. Dynam., 7, 525–533, https://doi.org/10.5194/esd-7-525-2016, https://doi.org/10.5194/esd-7-525-2016, 2016
Short summary
Short summary
Our analysis allows us to infer maps of changing plant water-use efficiency (WUE) for 1901–2010, using atmospheric observations of temperature, humidity and CO2. Our estimated increase in global WUE is consistent with the tree-ring and eddy covariance data, but much larger than the historical WUE increases simulated by Earth System Models (ESMs). We therefore conclude that the effects of increasing CO2 on plant WUE are significantly underestimated in the latest climate projections.
Zun Yin, Stefan C. Dekker, Bart J. J. M. van den Hurk, and Henk A. Dijkstra
Biogeosciences, 13, 3343–3357, https://doi.org/10.5194/bg-13-3343-2016, https://doi.org/10.5194/bg-13-3343-2016, 2016
Short summary
Short summary
Bimodality is found in aboveground biomass and mean annual shortwave radiation in West Africa, which is a strong evidence of alternative stable states. The condition with low biomass and low radiation is demonstrated under which ecosystem state can shift between savanna and forest states. Moreover, climatic indicators have different prediction confidences to different land cover types. A new method is proposed to predict potential land cover change with a combination of climatic indicators.
Patrick W. Bogaart, Ype van der Velde, Steve W. Lyon, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 20, 1413–1432, https://doi.org/10.5194/hess-20-1413-2016, https://doi.org/10.5194/hess-20-1413-2016, 2016
Short summary
Short summary
We analyse how stream discharge declines after rain storms. This "recession" behaviour contains information about the capacity of the catchment to hold or release water. Looking at many rivers in Sweden, we were able to link distinct recession regimes to land use and catchment characteristics. Trends in recession behaviour are found to correspond to intensifying agriculture and extensive reforestation. We conclude that both humans and nature reorganizes the soil in order to enhance efficiency.
Detlef P. van Vuuren, Paul L. Lucas, Tiina Häyhä, Sarah E. Cornell, and Mark Stafford-Smith
Earth Syst. Dynam., 7, 267–279, https://doi.org/10.5194/esd-7-267-2016, https://doi.org/10.5194/esd-7-267-2016, 2016
Short summary
Short summary
There is a need for further integrated research on developing a set of sustainable development objectives, based on the proposed framework of planetary boundary indicators. This paper organises the research questions in four key categories. It subsequently discusses how different categories of scientific disciplines and in particular models can contribute to the necessary analysis.
Inge E. M. de Graaf, Rens L. P. H. van Beek, Tom Gleeson, Nils Moosdorf, Oliver Schmitz, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-121, https://doi.org/10.5194/hess-2016-121, 2016
Revised manuscript not accepted
Short summary
Short summary
In this study we want to understand groundwater flows at the global scale better. We simulated groundwater storage and fluctuations in confined and unconfined aquifer systems. This is the first study that includes confined systems at the global scale. Confined systems change timing and amplitude of head fluctuations, flow paths, and groundwater-surface water interactions. Hotspots of groundwater depletion are identified and resulted in a global estimate of 6700 km3.
Maria Stergiadi, Marcel van der Perk, Ton C. M. de Nijs, and Marc F. P. Bierkens
Biogeosciences, 13, 1519–1536, https://doi.org/10.5194/bg-13-1519-2016, https://doi.org/10.5194/bg-13-1519-2016, 2016
Short summary
Short summary
We modelled the effects of changes in climate and land management on soil organic carbon (SOC) and dissolved organic carbon (DOC) levels in sandy and loamy soils under forest, grassland, and arable land. Climate change causes a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC slightly increases. A reduction in fertilizer application leads to a decrease in SOC and DOC levels under arable land but has a negligible effect under grassland.
A. M. Carmona, G. Poveda, M. Sivapalan, S. M. Vallejo-Bernal, and E. Bustamante
Hydrol. Earth Syst. Sci., 20, 589–603, https://doi.org/10.5194/hess-20-589-2016, https://doi.org/10.5194/hess-20-589-2016, 2016
Short summary
Short summary
We study a 3-D generalization of Budyko's framework that captures the interdependence among actual and potential evapotranspiration and precipitation. We demonstrate that Budyko-type equations present an inconsistency in humid environments, which we overcome by proposing a physically consistent power law that incorporates the complementary relationship of evapotranspiration into the Budyko curve. Evidence of space-time symmetry and signs of co-evolution of catchments are also found in Amazonia.
W. W. Immerzeel, N. Wanders, A. F. Lutz, J. M. Shea, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, https://doi.org/10.5194/hess-19-4673-2015, 2015
Short summary
Short summary
The water resources of the upper Indus river basin (UIB) are important for millions of people, yet little is known about the rain and snow fall in the high-altitude regions because of the inaccessibility, the climatic complexity and the lack of observations. In this study we use mass balance of glaciers to reconstruct the amount of precipitation in the UIB and we conclude that this amount is much higher than previously thought.
B. R. Voortman, R. P. Bartholomeus, S. E. A. T. M. van der Zee, M. F. P. Bierkens, and J. P. M. Witte
Hydrol. Earth Syst. Sci., 19, 3787–3805, https://doi.org/10.5194/hess-19-3787-2015, https://doi.org/10.5194/hess-19-3787-2015, 2015
Short summary
Short summary
This study explores the magnitude of energy and water fluxes in an inland dune ecosystem in the Netherlands. We parameterized the Penman-Monteith evapotranspiration model for four different surfaces: bare sand, moss, grass and heather. The knowledge presented in this paper will help improve the simulations of water recharge in sand dunes by hydrological models, and allow the quantification of the cost and benefit of nature conservation in terms of groundwater recharge.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
J. Mao, K. G. J. Nierop, M. Rietkerk, and S. C. Dekker
SOIL, 1, 411–425, https://doi.org/10.5194/soil-1-411-2015, https://doi.org/10.5194/soil-1-411-2015, 2015
Short summary
Short summary
In this study we show how soil water repellency (SWR) is linked to the quantity and quality of SWR markers in soils mainly derived from vegetation. To predict the SWR of topsoils, we find the strongest relationship with ester-bound alcohols, and for subsoils with root-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids. From this we conclude that, overall, roots influence SWR more strongly than leaves and subsequently SWR markers derived from roots predict SWR better.
A. Lourens, M. F. P. Bierkens, and F. C. van Geer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-4191-2015, https://doi.org/10.5194/hessd-12-4191-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We present a method to find the most likely properties (layer thickness and conductivity) for each litho-class of the constituting layers of an aquitard, using a readily calibrated groundwater model. The prior litho-class properties are uncertain, and based on borehole data. The groundwater model parameters are assumed to be the truth. The combination of prior data and calibration result yields the most likely litho-class properties. The method is applicable to aquifers as well.
M. Baudena, S. C. Dekker, P. M. van Bodegom, B. Cuesta, S. I. Higgins, V. Lehsten, C. H. Reick, M. Rietkerk, S. Scheiter, Z. Yin, M. A. Zavala, and V. Brovkin
Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, https://doi.org/10.5194/bg-12-1833-2015, 2015
D. Liu, F. Tian, M. Lin, and M. Sivapalan
Hydrol. Earth Syst. Sci., 19, 1035–1054, https://doi.org/10.5194/hess-19-1035-2015, https://doi.org/10.5194/hess-19-1035-2015, 2015
Short summary
Short summary
A simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of a co-evolutionary model. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. The hydrological equation focusing on water balance is coupled to the evolutionary equations of the other three sub-systems.
I. E. M. de Graaf, E. H. Sutanudjaja, L. P. H. van Beek, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 19, 823–837, https://doi.org/10.5194/hess-19-823-2015, https://doi.org/10.5194/hess-19-823-2015, 2015
Short summary
Short summary
In this paper we present a high-resolution global-scale groundwater model of an upper aquifer. An equilibrium water table at its natural state is constructed. Aquifer parameterization is based on available global datasets on lithology and conductivity combined with estimated aquifer thickness. The results showed groundwater levels are well simulated for many regions of the world. Simulated flow paths showed the relevance of including lateral groundwater flows in global scale hydrological models.
B. J. Dermody, R. P. H. van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. van der Velde, M. F. P. Bierkens, M. J. Wassen, and S. C. Dekker
Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, https://doi.org/10.5194/hess-18-5025-2014, 2014
Short summary
Short summary
Our virtual water network of the Roman World shows that virtual water trade and irrigation provided the Romans with resilience to interannual climate variability. Virtual water trade enabled the Romans to meet food demands from regions with a surplus. Irrigation provided stable water supplies for agriculture, particularly in large river catchments. However, virtual water trade also stimulated urbanization and population growth, which eroded Roman resilience to climate variability over time.
T. H. M. van Emmerik, Z. Li, M. Sivapalan, S. Pande, J. Kandasamy, H. H. G. Savenije, A. Chanan, and S. Vigneswaran
Hydrol. Earth Syst. Sci., 18, 4239–4259, https://doi.org/10.5194/hess-18-4239-2014, https://doi.org/10.5194/hess-18-4239-2014, 2014
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
J. R. Delsman, K. R. M. Hu-a-ng, P. C. Vos, P. G. B. de Louw, G. H. P. Oude Essink, P. J. Stuyfzand, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 3891–3905, https://doi.org/10.5194/hess-18-3891-2014, https://doi.org/10.5194/hess-18-3891-2014, 2014
S. Pande, M. Ertsen, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3239–3258, https://doi.org/10.5194/hess-18-3239-2014, https://doi.org/10.5194/hess-18-3239-2014, 2014
E. J. Coopersmith, B. S. Minsker, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3095–3107, https://doi.org/10.5194/hess-18-3095-2014, https://doi.org/10.5194/hess-18-3095-2014, 2014
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Earth Syst. Dynam., 5, 257–270, https://doi.org/10.5194/esd-5-257-2014, https://doi.org/10.5194/esd-5-257-2014, 2014
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
Y. Elshafei, M. Sivapalan, M. Tonts, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 2141–2166, https://doi.org/10.5194/hess-18-2141-2014, https://doi.org/10.5194/hess-18-2141-2014, 2014
Z. Yin, S. C. Dekker, B. J. J. M. van den Hurk, and H. A. Dijkstra
Geosci. Model Dev., 7, 821–845, https://doi.org/10.5194/gmd-7-821-2014, https://doi.org/10.5194/gmd-7-821-2014, 2014
Y. Liu, F. Tian, H. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, https://doi.org/10.5194/hess-18-1289-2014, 2014
J. Kandasamy, D. Sounthararajah, P. Sivabalan, A. Chanan, S. Vigneswaran, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 1027–1041, https://doi.org/10.5194/hess-18-1027-2014, https://doi.org/10.5194/hess-18-1027-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
K. A. Sawicz, C. Kelleher, T. Wagener, P. Troch, M. Sivapalan, and G. Carrillo
Hydrol. Earth Syst. Sci., 18, 273–285, https://doi.org/10.5194/hess-18-273-2014, https://doi.org/10.5194/hess-18-273-2014, 2014
Y. Wada, D. Wisser, and M. F. P. Bierkens
Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, https://doi.org/10.5194/esd-5-15-2014, 2014
S. E. Thompson, M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 5013–5039, https://doi.org/10.5194/hess-17-5013-2013, https://doi.org/10.5194/hess-17-5013-2013, 2013
M. A. Yaeger, M. Sivapalan, G. F. McIsaac, and X. Cai
Hydrol. Earth Syst. Sci., 17, 4607–4623, https://doi.org/10.5194/hess-17-4607-2013, https://doi.org/10.5194/hess-17-4607-2013, 2013
A. F. Lutz, W. W. Immerzeel, A. Gobiet, F. Pellicciotti, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 17, 3661–3677, https://doi.org/10.5194/hess-17-3661-2013, https://doi.org/10.5194/hess-17-3661-2013, 2013
E. Vannametee, D. Karssenberg, M. R. Hendriks, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 17, 2981–3004, https://doi.org/10.5194/hess-17-2981-2013, https://doi.org/10.5194/hess-17-2981-2013, 2013
J. L. Salinas, G. Laaha, M. Rogger, J. Parajka, A. Viglione, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 2637–2652, https://doi.org/10.5194/hess-17-2637-2013, https://doi.org/10.5194/hess-17-2637-2013, 2013
A. Viglione, J. Parajka, M. Rogger, J. L. Salinas, G. Laaha, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 2263–2279, https://doi.org/10.5194/hess-17-2263-2013, https://doi.org/10.5194/hess-17-2263-2013, 2013
P. A. Troch, G. Carrillo, M. Sivapalan, T. Wagener, and K. Sawicz
Hydrol. Earth Syst. Sci., 17, 2209–2217, https://doi.org/10.5194/hess-17-2209-2013, https://doi.org/10.5194/hess-17-2209-2013, 2013
J. Parajka, A. Viglione, M. Rogger, J. L. Salinas, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 1783–1795, https://doi.org/10.5194/hess-17-1783-2013, https://doi.org/10.5194/hess-17-1783-2013, 2013
H. Liu, F. Tian, H. C. Hu, H. P. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, https://doi.org/10.5194/hess-17-805-2013, 2013
A. F. Bouwman, M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop, and C. P. Slomp
Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, https://doi.org/10.5194/bg-10-1-2013, 2013
Related subject area
Management of the Earth system: sustainability science
Governing change: a dynamical systems approach to understanding the stability of environmental governance
Disentangling the climate divide with emotional patterns: a network-based mindset reconstruction approach
Lotka's wheel and the long arm of history: how does the distant past determine today's global rate of energy consumption?
Coupling human and natural systems for sustainability: experience from China's Loess Plateau
Groundwater storage dynamics in the world's large aquifer systems from GRACE: uncertainty and role of extreme precipitation
Linking resilience and robustness and uncovering their trade-offs in coupled infrastructure systems
Exploring the biogeophysical limits of global food production under different climate change scenarios
Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea
Sustainable use of renewable resources in a stylized social–ecological network model under heterogeneous resource distribution
Weather and resource information as tools for dealing with farmer–pastoralist conflicts in the Sahel
Revolutions in energy input and material cycling in Earth history and human history
Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth system
Socio-environmental cooperation and conflict? A discursive understanding and its application to the case of Israel and Palestine
Gender and climate change in the Indian Himalayas: global threats, local vulnerabilities, and livelihood diversification at the Nanda Devi Biosphere Reserve
Policies, economic incentives and the adoption of modern irrigation technology in China
Migration and global environmental change: methodological lessons from mountain areas of the global South
Farmers' perceptions of and adaptation strategies to climate change and their determinants: the case of Punjab province, Pakistan
Climate impacts on human livelihoods: where uncertainty matters in projections of water availability
Applying the concept of "energy return on investment" to desert greening of the Sahara/Sahel using a global climate model
Nusrat Molla, John DeIonno, Thilo Gross, and Jonathan Herman
Earth Syst. Dynam., 13, 1677–1688, https://doi.org/10.5194/esd-13-1677-2022, https://doi.org/10.5194/esd-13-1677-2022, 2022
Short summary
Short summary
How the structure of resource governance systems affects how they respond to change is not yet well understood. We model the stability of thousands of different governance systems, revealing that greater diversity and interdependence among actors are destabilizing, while venue shopping and advocacy organizations are stabilizing. This study suggests that complexity in governance corresponds to responsiveness to change, while providing insight into managing them to balance adaptivity and stability
Roger Cremades and Massimo Stella
Earth Syst. Dynam., 13, 1473–1489, https://doi.org/10.5194/esd-13-1473-2022, https://doi.org/10.5194/esd-13-1473-2022, 2022
Short summary
Short summary
We analyse the speeches of prominent climate activism and climate disinformation figures, finding that the emotional patterns behind the words reveal more than the words themselves and showing the emerging revolutionary characteristics of climate activism and some strange emotional connections on the side of disinformation, where there is surprisingly no worry about change at all.
Timothy J. Garrett, Matheus R. Grasselli, and Stephen Keen
Earth Syst. Dynam., 13, 1021–1028, https://doi.org/10.5194/esd-13-1021-2022, https://doi.org/10.5194/esd-13-1021-2022, 2022
Short summary
Short summary
Current world economic production is rising relative to energy consumption. This increase in
production efficiencysuggests that carbon dioxide emissions can be decoupled from economic activity through technological change. We show instead a nearly fixed relationship between energy consumption and a new economic quantity, historically cumulative economic production. The strong link to the past implies inertia may play a more dominant role in societal evolution than is generally assumed.
Bojie Fu, Xutong Wu, Zhuangzhuang Wang, Xilin Wu, and Shuai Wang
Earth Syst. Dynam., 13, 795–808, https://doi.org/10.5194/esd-13-795-2022, https://doi.org/10.5194/esd-13-795-2022, 2022
Short summary
Short summary
To understand the dynamics of a coupled human and natural system (CHANS) and promote its sustainability, we propose a conceptual
pattern–process–service–sustainabilitycascade framework. The use of this framework is systematically illustrated by a review of CHANS research experience in China's Loess Plateau in terms of coupling landscape patterns and ecological processes, linking ecological processes to ecosystem services, and promoting social–ecological sustainability.
Mohammad Shamsudduha and Richard G. Taylor
Earth Syst. Dynam., 11, 755–774, https://doi.org/10.5194/esd-11-755-2020, https://doi.org/10.5194/esd-11-755-2020, 2020
Short summary
Short summary
Recent assessments of the sustainability of global groundwater resources using the Gravity Recovery and Climate Experiment (GRACE) satellites assume that the underlying trends are linear. Here, we assess recent changes in groundwater storage (ΔGWS) in the world’s large aquifer systems using an ensemble of GRACE datasets and show that trends are mostly non-linear. Non-linearity in ΔGWS derives, in part, from the episodic nature of groundwater replenishment associated with extreme precipitation.
Mehran Homayounfar, Rachata Muneepeerakul, John M. Anderies, and Chitsomanus P. Muneepeerakul
Earth Syst. Dynam., 9, 1159–1168, https://doi.org/10.5194/esd-9-1159-2018, https://doi.org/10.5194/esd-9-1159-2018, 2018
Short summary
Short summary
For many complex social-ecological systems, robustness and resilience are difficult to quantify and the connections and trade-offs between them difficult to study. In this study, we present an analytical framework to address the linkage between robustness and resilience more systematically. The results reveal the trade-offs between robustness and resilience. They also show how the nature of such trade-offs varies with the choices of certain policies, internal stresses, and external disturbances.
Philipp de Vrese, Tobias Stacke, and Stefan Hagemann
Earth Syst. Dynam., 9, 393–412, https://doi.org/10.5194/esd-9-393-2018, https://doi.org/10.5194/esd-9-393-2018, 2018
Short summary
Short summary
The potential food supply depends strongly on climatic conditions, while agricultural activity has substantial impacts on climate. Using an Earth system model, we investigate the climate–agriculture interactions resulting from a maximization of the global cropland area during the 21st century. We find that the potential food supply can be increased substantially, but guaranteeing food security in dry areas in Northern Africa, the Middle East and South Asia will become increasingly difficult.
Björn Claremar, Karin Haglund, and Anna Rutgersson
Earth Syst. Dynam., 8, 901–919, https://doi.org/10.5194/esd-8-901-2017, https://doi.org/10.5194/esd-8-901-2017, 2017
Short summary
Short summary
Shipping is the most cost-effective option for the global transport of goods, and over 90 % of world trade is carried by sea. The shipping sector, however, contributes to emissions of pollutants into the air and water. Estimates of deposition and near-surface concentrations of sulfur, nitrogen, and particulate matter originating from shipping in the Baltic Sea region have been developed for present conditions concerning traffic intensity and fuel as well as for future scenarios until 2050.
Wolfram Barfuss, Jonathan F. Donges, Marc Wiedermann, and Wolfgang Lucht
Earth Syst. Dynam., 8, 255–264, https://doi.org/10.5194/esd-8-255-2017, https://doi.org/10.5194/esd-8-255-2017, 2017
Short summary
Short summary
Human societies depend on the resources ecosystems provide. We study this coevolutionary relationship by utilizing a stylized model of resource users on a social network. This model demonstrates that social–cultural processes can have a profound influence on the environmental state, such as determining whether the resources collapse from overuse or not. This suggests that social–cultural processes should receive more attention in the modeling of sustainability transitions and the Earth system.
Ole Mertz, Kjeld Rasmussen, and Laura Vang Rasmussen
Earth Syst. Dynam., 7, 969–976, https://doi.org/10.5194/esd-7-969-2016, https://doi.org/10.5194/esd-7-969-2016, 2016
Short summary
Short summary
Conflicts over land and water resources between livestock herders and farmers are common in the Sahelian region of Africa. In this paper we show that improved information on weather, grazing areas, and water resources may reduce the level of conflict if communicated in such a way so that not too many livestock herds go to the same areas. However, if this information is not accompanied by information on herd crowding and potential conflict areas, it may lead to more conflict.
Timothy M. Lenton, Peter-Paul Pichler, and Helga Weisz
Earth Syst. Dynam., 7, 353–370, https://doi.org/10.5194/esd-7-353-2016, https://doi.org/10.5194/esd-7-353-2016, 2016
Short summary
Short summary
We identify six past revolutions in energy input and material cycling in Earth and human history. We find that human energy use has now reached a magnitude comparable to the biosphere, and conclude that a prospective sustainability revolution will require scaling up new solar energy technologies and the development of much more efficient material recycling systems. Our work was inspired by recognising the connections between Earth system science and industrial ecology at the "LOOPS" workshop.
J. Heitzig, T. Kittel, J. F. Donges, and N. Molkenthin
Earth Syst. Dynam., 7, 21–50, https://doi.org/10.5194/esd-7-21-2016, https://doi.org/10.5194/esd-7-21-2016, 2016
Short summary
Short summary
The debate about a safe and just operating space for humanity and the possible pathways towards and within it requires an analysis of the inherent dynamics of the Earth system and of the options for influencing its evolution. We present and illustrate with examples a conceptual framework for performing such an analysis not in a quantitative, optimizing mode, but in a qualitative way that emphasizes the main decision dilemmas that one may face in the sustainable management of the Earth system.
T. Ide and C. Fröhlich
Earth Syst. Dynam., 6, 659–671, https://doi.org/10.5194/esd-6-659-2015, https://doi.org/10.5194/esd-6-659-2015, 2015
Short summary
Short summary
We investigate why some social groups engage in conflicts over shared natural resources while other groups cooperate over the same issue. Drawing on evidence from the particularly puzzling case of water conflict and cooperation in Israel and Palestine, we show that the discursive construction of identities and situation assessments is a crucial explanatory factor. This finding highlights the relevance of bottom-up discursive conflict transformation.
M. V. Ogra and R. Badola
Earth Syst. Dynam., 6, 505–523, https://doi.org/10.5194/esd-6-505-2015, https://doi.org/10.5194/esd-6-505-2015, 2015
R. Cremades, J. Wang, and J. Morris
Earth Syst. Dynam., 6, 399–410, https://doi.org/10.5194/esd-6-399-2015, https://doi.org/10.5194/esd-6-399-2015, 2015
Short summary
Short summary
Econometric analyses results revealed that policy support via subsidies and extension services have played an important role in promoting the adoption of irrigation technology. Strikingly, the present irrigation pricing policy has played significant but contradictory roles in promoting the adoption of different types of irrigation technology. Irrigation pricing showed a positive impact on household-based irrigation technology, and a negative impact on community-based irrigation technology.
A. Milan, G. Gioli, and T. Afifi
Earth Syst. Dynam., 6, 375–388, https://doi.org/10.5194/esd-6-375-2015, https://doi.org/10.5194/esd-6-375-2015, 2015
M. Abid, J. Scheffran, U. A. Schneider, and M. Ashfaq
Earth Syst. Dynam., 6, 225–243, https://doi.org/10.5194/esd-6-225-2015, https://doi.org/10.5194/esd-6-225-2015, 2015
Short summary
Short summary
Based on a farm household survey of 450 farmers, this study examined the adaptation to climate change and factors affecting the adoption of various adaptation measures at the farm level in Pakistan. The study demonstrates that awareness of climate change is widespread in the area, and farmers are adapting their crops to climate variability. However the adaptation process is constrained due to several factors such as lack of information, lack of money, lack of resources and shortage of water.
T. K. Lissner, D. E. Reusser, J. Schewe, T. Lakes, and J. P. Kropp
Earth Syst. Dynam., 5, 355–373, https://doi.org/10.5194/esd-5-355-2014, https://doi.org/10.5194/esd-5-355-2014, 2014
Short summary
Short summary
Climate change will have impacts on many different sectors of society, but a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable. This paper presents the AHEAD approach, which allows for relating impacts of climate change to 16 dimensions of livelihoods and well-being. Using the example of changes in water availability, the results show how climate change impacts AHEAD. The approach also provides a tool to frame uncertainties from climate models.
S. P. K. Bowring, L. M. Miller, L. Ganzeveld, and A. Kleidon
Earth Syst. Dynam., 5, 43–53, https://doi.org/10.5194/esd-5-43-2014, https://doi.org/10.5194/esd-5-43-2014, 2014
Cited articles
Ahmed, S. E., Souza, C. M., Riberio, J., and Ewers, R. M.: Temporal patterns of road network development in the Brazilian Amazon, Reg. Environ. Change, 13, 927–937, https://doi.org/10.1007/s10113-012-0397-z, 2013.
Allan, J. A.: Virtual water: a strategic resource global solutions to regional deficits, Ground Water, 36, 545–546, https://doi.org/10.1111/j.1745-6584.1998.tb02825.x, 1998.
An, L.: Modeling human decisions in coupled human and natural systems: review of agent-based models, Ecol. Model., 229, 25–36, https://doi.org/10.1016/j.ecolmodel.2011.07.010, 2012.
Arima, E. Y., Walker, R. T., Sales, M., Souza Jr., C., and Perz, S. G.: The fragmentation of space in the Amazon Basin: emergent road networks, Photogramm. Eng. Rem. S., 74, https://doi.org/10.14358/PERS.74.6.699, 2008.
Barber, C. P., Cochrane, M. A., Souza Jr., C. M., and Laurance, W. F.: Roads, deforestation, and the mitigating effect of protected areas in the Amazon, Biol. Conserv., 177, 203–209, https://doi.org/10.1016/j.biocon.2014.07.004, 2014.
Barredo, J. I. and Demicheli, L.: Urban sustainability in developing countries' megacities: modelling and predicting future urban growth in Lagos, Cities, 20, 297–310, https://doi.org/10.1016/S0264-2751(03)00047-7, 2003.
Batty, M.: The size, scale, and shape of cities, Science, 319, 769–771, https://doi.org/10.1126/science.1151419, 2008.
Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., Steduto, P., Mueller, A., Komor, P., Tol, R. S. J., and Yumkella, K. K.: Considering the energy, water and food nexus: towards an integrated modelling approach, Special Issue: Clean Cooking Fuels and Technologies in Developing Economies, Energ. Policy, 39, 7896–7906, https://doi.org/10.1016/j.enpol.2011.09.039, 2011.
Begg, I.: Cities and competitiveness, Urban Stud., 36, 795–809, https://doi.org/10.1080/0042098993222, 1999.
Berger, T.: Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis, Agr. Econ., 25, 245–260, https://doi.org/10.1016/S0169-5150(01)00082-2, 2001.
Berthelon, M. and Freund, C.: On the conservation of distance in international trade, J. Int. Econ., 75, 310–320, https://doi.org/10.1016/j.jinteco.2007.12.005, 2008.
Biemans, H., Speelman, L. H., Ludwig, F., Moors, E. J., Wiltshire, A. J., Kumar, P., Gerten, D., and Kabat, P.: Future water resources for food production in five South Asian river basins and potential for adaptation – a modeling study, Sci. Total Environ., 468–469, Supplement, S117–S131, https://doi.org/10.1016/j.scitotenv.2013.05.092, 2013.
Bierkens, M. F. P. and van Beek, L. P. H.: Seasonal predictability of European discharge: NAO and hydrological response time, J. Hydrometeorol., 10, 953–968, https://doi.org/10.1175/2009JHM1034.1, 2009.
Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. M., and van Vuuren, D. P.: Long-term water demand for electricity, industry and households, Environ. Sci. Policy, 55, 75–86, https://doi.org/10.1016/j.envsci.2015.09.005, 2016.
Bijl, D. L., Bogaart, P. W., Dekker, S. C., Stehfest, E., de Vries, B. J. M., and van Vuuren, D. P.: A physically-based model of long-term food demand, Global Environ. Chang., 45, 47–62, https://doi.org/10.1016/j.gloenvcha.2017.04.003, 2017.
Billen, G., Barles, S., Garnier, J., Rouillard, J., and Benoit, P.: The food-print of Paris: long-term reconstruction of the nitrogen flows imported into the city from its rural hinterland, Reg. Environ. Change, 9, 13–24, https://doi.org/10.1007/s10113-008-0051-y, 2009.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Bonsch, M., Humpenöder, F., Popp, A., Bodirsky, B., Dietrich, J. P., Rolinski, S., Biewald, A., Lotze-Campen, H., Weindl, I., Gerten, D., and Stevanovic, M.: Trade-offs between land and water requirements for large-scale bioenergy production, GCB Bioenergy, 8, 11–24, https://doi.org/10.1111/gcbb.12226, 2016.
Brenner, N.: Globalisation as reterritorialisation: the re-scaling of urban governance in the European Union, Urban Stud., 36, 431–451, https://doi.org/10.1080/0042098993466, 1999.
Brinkhoff, T.: World City Population Database: Population Statistics for Countries, Administrative Areas, Cities and Agglomerations, available at: www.citypopulation.de (last access: 15 March 2017), 2016.
Broto, V. C., Allen, A., and Rapoport, E.: Interdisciplinary perspectives on urban metabolism, J. Ind. Ecol., 16, 851–861, https://doi.org/10.1111/j.1530-9290.2012.00556.x, 2012.
Brown, D. G., Page, S., Riolo, R., Zellner, M., and Rand, W.: Path dependence and the validation of agent-based spatial models of land use, Int. J. Geogr. Inf. Sci., 19, 153–174, https://doi.org/10.1080/13658810410001713399, 2005.
Brugier, C.: China's Way: The New Silk Road, No. 14, EU-Institute for Security Studies, available at: https://www.iss.europa.eu/sites/default/files/EUISSFiles/Brief_14_New_Silk_Road.pdf (last access: 17 February 2017), 2014.
Chaney, T.: The Gravity Equation in International Trade: An Explanation, Working Paper No. 19285, National Bureau of Economic Research, https://doi.org/10.3386/w19285, 2013.
Chen, J.: Rapid urbanization in China: a real challenge to soil protection and food security, CATENA, 69, 1–15, https://doi.org/10.1016/j.catena.2006.04.019, 2007.
Costanza, R., Fioramonti, L., and Kubiszewski, I.: The UN sustainable development goals and the dynamics of well-being, Front. Ecol. Environ., 14, 59–59, https://doi.org/10.1002/fee.1231, 2016.
d'Amour, C. B., Wenz, L., Kalkuhl, M., Steckel, J. C., and Creutzig, F.: Teleconnected food supply shocks, Environ. Res. Lett., 11, 035007, https://doi.org/10.1088/1748-9326/11/3/035007, 2016.
Dalin, C., Hanasaki, N., Qiu, H., Mauzerall, D. L., and Rodriguez-Iturbe, I.: Water resources transfers through Chinese interprovincial and foreign food trade, P. Natl. Acad. Sci. USA, 111, 9774–9779, https://doi.org/10.1073/pnas.1404749111, 2014.
Dalin, C., Wada, Y., Kastner, T., and Puma, M. J.: Groundwater depletion embedded in international food trade, Nature, 543, 700–704, https://doi.org/10.1038/nature21403, 2017.
Dang, Q., Lin, X., and Konar, M.: Agricultural virtual water flows within the United States, Water Resour. Res., 51, 973–986, https://doi.org/10.1002/2014WR015919, 2015.
De Benedictis, L. and Tajoli, L.: The World Trade Network, World Econ., 34, 1417–1454, https://doi.org/10.1111/j.1467-9701.2011.01360.x, 2011.
de Fraiture, C., Cai, X., Amarasinghe, I., Rosegrant, M., and Molden, D.: Does international cereal trade save water? The impact of virtual water trade on global water use, Comprehensive Assessment Research Report 4, Colombo, Sri Lanka, http://www.iwmi.cgiar.org/assessment/FILES/pdf/publications/ResearchReports/CARR4.pdf (last access: 30 March 2017), 2004.
Dentoni, D., Hospes, O., and Ross, R. B.: Managing wicked problems in agribusiness: the role of multi-stakeholder engagements in value creation, Int. Food Agribus. Man., 15, 1–12 2012.
Dermody, B. J., Tanner, C. J., and Jackson, A. L.: The evolutionary pathway to obligate scavenging in gyps vultures, PLoS ONE, 6, e24635, https://doi.org/10.1371/journal.pone.0024635, 2011.
Dermody, B. J., van Beek, R. P. H., Meeks, E., Klein Goldewijk, K., Scheidel, W., van der Velde, Y., Bierkens, M. F. P., Wassen, M. J., and Dekker, S. C.: A virtual water network of the Roman world, Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, 2014.
Di Baldassarre, G., Kooy, M., Kemerink, J. S., and Brandimarte, L.: Towards understanding the dynamic behaviour of floodplains as human-water systems, Hydrol. Earth Syst. Sci., 17, 3235–3244, https://doi.org/10.5194/hess-17-3235-2013, 2013a.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-hydrology: conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, 2013b.
D'Odorico, P., Laio, F., and Ridolfi, L.: Does globalization of water reduce societal resilience to drought?, Geophys. Res. Lett., 37, L13403, https://doi.org/10.1029/2010GL043167, 2010.
Duit, A. and Galaz, V.: Governance and complexity – emerging issues for governance theory, Governance, 21, 311–335, https://doi.org/10.1111/j.1468-0491.2008.00402.x, 2008.
Eakin, H., Winkels, A., and Sendzimir, J.: Nested vulnerability: exploring cross-scale linkages and vulnerability teleconnections in Mexican and Vietnamese coffee systems, Special Issue: Food security and environmental change, Environ. Sci. Policy, 12, 398–412, https://doi.org/10.1016/j.envsci.2008.09.003, 2009.
Elshafei, Y., Coletti, J. Z., Sivapalan, M., and Hipsey, M. R.: A model of the socio-hydrologic dynamics in a semiarid catchment: isolating feedbacks in the coupled human-hydrology system, Water Resour. Res., 51, 6442–6471, https://doi.org/10.1002/2015WR017048, 2015.
Fader, M., Gerten, D., Thammer, M., Heinke, J., Lotze-Campen, H., Lucht, W., and Cramer, W.: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade, Hydrol. Earth Syst. Sci., 15, 1641–1660, https://doi.org/10.5194/hess-15-1641-2011, 2011.
Fader, M., Gerten, D., Krause, M., Lucht, W., and Cramer, W.: Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints, Environ. Res. Lett., 8, 014046, https://doi.org/10.1088/1748-9326/8/1/014046, 2013.
Farmer, J. D. and Foley, D.: The economy needs agent-based modelling, Nature, 460, 685–686, https://doi.org/10.1038/460685a, 2009.
Farmer, J. D. and Geanakoplos, J.: The virtues and vices of equilibrium and the future of financial economics, Complexity, 14, 11–38, https://doi.org/10.1002/cplx.20261, 2009.
Filatova, T., Verburg, P. H., Parker, D. C., and Stannard, C. A.: Spatial agent-based models for socio-ecological systems: challenges and prospects, Environ. Modell. Softw., Thematic Issue on Spatial Agent-Based Models for Socio-Ecological Systems, 45, 1–7, https://doi.org/10.1016/j.envsoft.2013.03.017, 2013.
Folke, C.: Resilience: the emergence of a perspective for social–ecological systems analyses, Global Environ. Chang., 16, 253–267, https://doi.org/10.1016/j.gloenvcha.2006.04.002, 2006.
Food and Agriculture Organisation of the United Nations: The State of Food Insecurity in the World. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress, Rome, www.fao.org/3/a-i4646e.pdf (last access: 30 March 2017), 2015.
Friedmann, J. and Wolff, G.: World city formation: an agenda for research and action, Int. J. Urban Regional, 6, 309–344, https://doi.org/10.1111/j.1468-2427.1982.tb00384.x, 1982.
Frieler, K., Levermann, A., Elliott, J., Heinke, J., Arneth, A., Bierkens, M. F. P., Ciais, P., Clark, D. B., Deryng, D., Döll, P., Falloon, P., Fekete, B., Folberth, C., Friend, A. D., Gellhorn, C., Gosling, S. N., Haddeland, I., Khabarov, N., Lomas, M., Masaki, Y., Nishina, K., Neumann, K., Oki, T., Pavlick, R., Ruane, A. C., Schmid, E., Schmitz, C., Stacke, T., Stehfest, E., Tang, Q., Wisser, D., Huber, V., Piontek, F., Warszawski, L., Schewe, J., Lotze-Campen, H., and Schellnhuber, H. J.: A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties, Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, 2015.
Fujita, M., Krugman, P., and Venables, A.: The Spatial Economy: Cities, Regions, and International Trade, MIT Press Books, The MIT Press, Cambridge, Massachusetts, USA, https://econpapers.repec.org/RePEc:mtp:titles:0262561476 (last access: 30 March 2017), 2001.
Garud, R., Kumaraswamy, A., and Karnøe, P.: Path Dependence or path creation?, J. Manage. Stud., 47, 760–774, https://doi.org/10.1111/j.1467-6486.2009.00914.x, 2010.
Geist, H. J. and Lambin, E. F.: Proximate causes and underlying driving forces of tropical deforestation tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations, BioScience, 52, 143–150, https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2, 2002.
Gerten, D., Heinke, J., Hoff, H., Biemans, H., Fader, M., and Waha, K.: Global water availability and requirements for future food production, J. Hydrometeorol., 12, 885–899, https://doi.org/10.1175/2011JHM1328.1, 2011.
Gleeson, T., Wada, Y., Bierkens, M. F. P., and van Beek, L. P. H.: Water balance of global aquifers revealed by groundwater footprint, Nature, 488, 197–200, https://doi.org/10.1038/nature11295, 2012.
Güneralp, B., Seto, K. C., and Ramachandran, M.: Evidence of urban land teleconnections and impacts on hinterlands, Curr. Opin. Env. Sust., 5, 445–451, https://doi.org/10.1016/j.cosust.2013.08.003, 2013.
Haklay, M. and Weber, P.: OpenStreetMap: user-generated street maps, IEEE Pervas. Comput., 7, 12–18, https://doi.org/10.1109/MPRV.2008.80, 2008.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007-1025, https://doi.org/10.5194/hess-12-1007-2008, 2008.
Hanasaki, N., Inuzuka, T., Kanae, S., and Oki, T.: An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model, J. Hydrol., 384, 232–244, https://doi.org/10.1016/j.jhydrol.2009.09.028, 2010.
Harvey, D.: Between space and time: reflections on the geographical imagination, Ann. Assoc. Am. Geogr., 80, 418–434, https://doi.org/10.1111/j.1467-8306.1990.tb00305.x, 1990.
Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K., and Masui, T.: Global land-use allocation model linked to an integrated assessment model, Sci. Total Environ., 580, 787–796, https://doi.org/10.1016/j.scitotenv.2016.12.025, 2017.
Hejazi, M. I., Voisin, N., Liu, L., Bramer, L. M., Fortin, D. C., Hathaway, J. E., Huang, M., Kyle, P., Leung, L. R., Li, H.-Y., Liu, Y., Patel, P. L., Pulsipher, T. C., Rice, J. S., Tesfa, T. K., Vernon, C. R., and Zhou, Y.: 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating, P. Natl. Acad. Sci. USA, 112, 10635–10640, https://doi.org/10.1073/pnas.1421675112, 2015.
Helbing, D.: Globally networked risks and how to respond, Nature, 497, 51–59, https://doi.org/10.1038/nature12047, 2013.
Hertel, T.: Global Trade Analysis: Modeling and Applications, Cambridge University Press, Cambridge, UK, https://www.gtap.agecon.purdue.edu/products/gtap_book.asp (last access: 30 March 2017), 1997.
Hertel, T., Hummels, D., Ivanic, M., and Keeney, R.: How confident can we be of CGE-based assessments of Free Trade Agreements?, Econ. Model., 24, 611–635, https://doi.org/10.1016/j.econmod.2006.12.002, 2007.
Hoekstra, A. Y. and Chapagain, A. K.: Water footprints of nations: water use by people as a function of their consumption pattern, Water Resour. Manag., 21, 35–48, https://doi.org/10.1007/s11269-006-9039-x, 2006.
Hoekstra, A. Y. and Mekonnen, M. M.: The water footprint of humanity, P. Natl. Acad. Sci. USA, 109, 3232–3237, https://doi.org/10.1073/pnas.1109936109, 2012.
Hoff, H., Falkenmark, M., Gerten, D., Gordon, L., Karlberg, L., and Rockström, J.: Greening the global water system, J. Hydrol., Special Issue: Green-Blue Water Initiative (GBI), 384, 177–186, https://doi.org/10.1016/j.jhydrol.2009.06.026, 2010.
Hoff, H., Döll, P., Fader, M., Gerten, D., Hauser, S., and Siebert, S.: Water footprints of cities – indicators for sustainable consumption and production, Hydrol. Earth Syst. Sci., 18, 213–226, https://doi.org/10.5194/hess-18-213-2014, 2014.
Ibisch, P. L., Hoffmann, M. T., Kreft, S., Pe'er, G., Kati, V., Biber-Freudenberger, L., DellaSala, D. A., Vale, M. M., Hobson, P. R., and Selva, N.: A global map of roadless areas and their conservation status, Science, 354, 1423–1427, https://doi.org/10.1126/science.aaf7166, 2016.
IFPRI: Global Food Policy Report, International Food Policy Research Institute, Washington, DC, USA, https://doi.org/10.2499/9780896292529, 2017.
Janic, M.: Modelling the full costs of an intermodal and road freight transport network, Transp. Res. Part Transp. Environ., 12, 33–44, https://doi.org/10.1016/j.trd.2006.10.004, 2007.
Kaluza, P., Kölzsch, A., Gastner, M. T., and Blasius, B.: The complex network of global cargo ship movements, J. R. Soc. Interface, 7, 1093–1103, https://doi.org/10.1098/rsif.2009.0495, 2010.
Kandasamy, J., Sounthararajah, D., Sivabalan, P., Chanan, A., Vigneswaran, S., and Sivapalan, M.: Socio-hydrologic drivers of the pendulum swing between agricultural development and environmental health: a case study from Murrumbidgee River basin, Australia, Hydrol. Earth Syst. Sci., 18, 1027–1041, https://doi.org/10.5194/hess-18-1027-2014, 2014.
Karpiarz, M., Fronczak, P., and Fronczak, A.: International Trade Network: fractal properties and globalization puzzle, Phys. Rev. Lett., 113, 248701, https://doi.org/10.1103/PhysRevLett.113.248701, 2014.
Khanna, P.: Connectography: Mapping the Global Network Revolution, Hachette Publishers, London, UK, https://www.paragkhanna.com/connectography/ (last access: 30 March 2017), 2016.
Klein Goldewijk, K., Beusen, A., van Drecht, G., and de Vos, M.: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years, Glob. Ecol. Biogeogr., 20, 73–86, https://doi.org/10.1111/j.1466-8238.2010.00587.x, 2011.
Knox, P. L. and McCarthy, L.: Urbanization: an introduction to urban geography, Pearson, Boston, MA, https://www.pearson.com/us/higher-education/program/Knox-Urbanization-An-Introduction-to-Urban-Geography- 3rd-Edition/PGM213191.html?tab=overview (last access: 30 March 2017), 2012.
Konak, A., Coit, D. W., and Smith, A. E.: Multi-objective optimization using genetic algorithms: a tutorial, Special Issue – Genetic Algorithms and Reliability, Reliab. Eng. Syst. Safe., 91, 992–1007, https://doi.org/10.1016/j.ress.2005.11.018, 2006.
Konar, M., Dalin, C., Suweis, S., Hanasaki, N., Rinaldo, A., and Rodriguez-Iturbe, I.: Water for food: the global virtual water trade network, Water Resour. Res., 47, W05520, https://doi.org/10.1029/2010WR010307, 2011.
Konar, M., Hussein, Z., Hanasaki, N., Mauzerall, D. L., and Rodriguez-Iturbe, I.: Virtual water trade flows and savings under climate change, Hydrol. Earth Syst. Sci., 17, 3219–3234, https://doi.org/10.5194/hess-17-3219-2013, 2013.
Konar, M., Evans, T. P., Levy, M., Scott, C. A., Troy, T. J., Vörösmarty, C. J., and Sivapalan, M.: Water resources sustainability in a globalizing world: who uses the water?, Hydrol. Process., 30, 3330–3336, https://doi.org/10.1002/hyp.10843, 2016a.
Konar, M., Reimer, J. J., Hussein, Z., and Hanasaki, N.: The water footprint of staple crop trade under climate and policy scenarios, Environ. Res. Lett., 11, 035006, https://doi.org/10.1088/1748-9326/11/3/035006, 2016b.
Kraucunas, I., Clarke, L., Dirks, J., Hathaway, J., Hejazi, M., Hibbard, K., Huang, M., Jin, C., Kintner-Meyer, M., van Dam, K. K., Leung, R., Li, H.-Y., Moss, R., Peterson, M., Rice, J., Scott, M., Thomson, A., Voisin, N., and West, T.: Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA), Climatic Change, 129, 573–588, https://doi.org/10.1007/s10584-014-1064-9, 2015.
Lach, D., Rayner, S., and Ingram, H.: Taming the waters: strategies to domesticate the wicked problems of water resource management, Int. J. Water, 3, 1–17, https://doi.org/10.1504/IJW.2005.007156, 2005.
Lambin, E. F. and Geist, H. J.: Land-Use and Land-Cover Change: Local Processes and Global Impacts, Springer Science & Business Media, Heidelberg, Germany, https://doi.org/10.1007/3-540-32202-7, 2008.
Lambin, E. F. and Meyfroidt, P.: Global land use change, economic globalization, and the looming land scarcity, P. Natl. Acad. Sci. USA, 108, 3465–3472, https://doi.org/10.1073/pnas.1100480108, 2011.
Laurance, W. F., Peletier-Jellema, A., Geenen, B., Koster, H., Verweij, P., Van Dijck, P., Lovejoy, T. E., Schleicher, J., and Van Kuijk, M.: Reducing the global environmental impacts of rapid infrastructure expansion, Curr. Biol., 25, R259–R262, https://doi.org/10.1016/j.cub.2015.02.050, 2015.
Liebowitz, S. J. and Margolis, S. E.: Path dependence, lock-in, and history, J. Law Econ. Organ., 11, 205–226, https://doi.org/10.2139/ssrn.1706450, 1995.
Limão, N. and Venables, A. J.: Infrastructure, geographical disadvantage, transport costs, and trade, World Bank Econ. Rev., 15, 451–479, https://doi.org/10.1093/wber/15.3.451, 2001.
Liu, D., Tian, F., Lin, M., and Sivapalan, M.: A conceptual socio-hydrological model of the co-evolution of humans and water: case study of the Tarim River basin, western China, Hydrol. Earth Syst. Sci., 19, 1035–1054, https://doi.org/10.5194/hess-19-1035-2015, 2015.
Liu, J. and Savenije, H. H. G.: Food consumption patterns and their effect on water requirement in China, Hydrol. Earth Syst. Sci., 12, 887–898, https://doi.org/10.5194/hess-12-887-2008, 2008.
Liu, J., Mooney, H., Hull, V., Davis, S. J., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K. C., Gleick, P., Kremen, C., and Li, S.: Systems integration for global sustainability, Science, 347, 1258832, https://doi.org/10.1126/science.1258832, 2015.
Liu, Y., Tian, F., Hu, H., and Sivapalan, M.: Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji–Tire model, Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, 2014.
Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., and Lucht, W.: Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach, Agr. Econ., 39, 325–338, https://doi.org/10.1111/j.1574-0862.2008.00336.x, 2008.
Lu, Y., Nakicenovic, N., Visbeck, M., and Stevance, A.-S.: Policy: five priorities for the UN sustainable development goals, Nature News, 520, 432, https://doi.org/10.1038/520432a, 2015.
Marchand, P., Carr, J. A., Dell'Angelo, J., Fader, M., Gephart, J. A., Kummu, M., Magliocca, N. R., Porkka, M., Puma, M. J., Ratajczak, Z., Rulli, M. C., Seekell, D. A., Suweis, S., Tavoni, A., and D'Odorico, P.: Reserves and trade jointly determine exposure to food supply shocks, Environ. Res. Lett., 11, 095009, https://doi.org/10.1088/1748-9326/11/9/095009, 2016.
Meyfroidt, P., Lambin, E. F., Erb, K.-H., and Hertel, T. W.: Globalization of land use: distant drivers of land change and geographic displacement of land use, Special Issue: Human settlements and industrial systems, Curr. Opin. Env. Sust., 5, 438–444, https://doi.org/10.1016/j.cosust.2013.04.003, 2013.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Baldassarre, G. D., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: “Panta Rhei – Everything Flows”: change in hydrology and society – the IAHS Scientific Decade 2013–2022, Hydrol. Sci. J., 58, 1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, H., and Schwarz, N.: Describing human decisions in agent-based models – ODD + D, an extension of the ODD protocol, Environ. Modell. Softw., 48, 37–48, https://doi.org/10.1016/j.envsoft.2013.06.003, 2013.
Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Lampe, M. V., Lotze-Campen, H., d'Croz, D. M., van Meijl, H., van der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., Tabeau, A., and Willenbockel, D.: Climate change effects on agriculture: economic responses to biophysical shocks, P. Natl. Acad. Sci. USA, 111, 3274–3279, https://doi.org/10.1073/pnas.1222465110, 2014.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environ. Chang., 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2015.
Pande, S. and Sivapalan, M.: Progress in socio-hydrology: a meta-analysis of challenges and opportunities, WIRES Water, e1193, https://doi.org/10.1002/wat2.1193, 2016.
Rees, W. and Wackernagel, M.: Urban ecological footprints: why cities cannot be sustainable – and why they are a key to sustainability, in: Urban Ecology, Springer, New York, USA, 537–555, https://doi.org/10.1007/978-0-387-73412-5 , 2008.
Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic, N., and Schellnhuber, H. J.: A roadmap for rapid decarbonization, Science, 355, 1269–1271, https://doi.org/10.1126/science.aah3443, 2017.
Romero-Lankao, P., McPhearson, T., and Davidson, D. J.: The food-energy-water nexus and urban complexity, Nat. Clim. Change, 7, 233–235, https://doi.org/10.1038/nclimate3260, 2017.
Sartori, M. and Schiavo, S.: Connected we stand: a network perspective on trade and global food security, Food Policy, 57, 114–127, https://doi.org/10.1016/j.foodpol.2015.10.004, 2015.
Seto, K. C. and Reenberg, A.: Rethinking global land use in an urban era, in: Rethinking Global Land Use in an Urban Era, edited by: Seto, K. C. and Reenberg, A., The MIT Press, Cambridge, Massachusetts, USA, 1–7, https://doi.org/10.7551/mitpress/9780262026901.001.0001, 2014.
Shiklomanov, I. A.: Appraisal and assessment of world water resources, Water Int., 25, 11–32, https://doi.org/10.1080/02508060008686794, 2000.
Sivapalan, M. and Blöschl, G.: Time scale interactions and the coevolution of humans and water, Water Resour. Res., 51, 6988–7022, https://doi.org/10.1002/2015WR017896, 2015.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: a new science of people and water, Hydrol. Process., 26, 1270–1276, https://doi.org/10.1002/hyp.8426, 2012.
Sophocleous, M.: Retracted: conserving and extending the useful life of the largest aquifer in North America: the future of the High Plains/Ogallala Aquifer, Groundwater, 50, 831–839, https://doi.org/10.1111/j.1745-6584.2012.00965.x, 2012.
Srinivasan, V., Sanderson, M., Garcia, M., Konar, M., Blöschl, G., and Sivapalan, M.: Prediction in a socio-hydrological world, Hydrol. Sci. J., 62, 338–345, https://doi.org/10.1080/02626667.2016.1253844, 2017.
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., and Sörlin, S.: Planetary boundaries: guiding human development on a changing planet, Science, 347, 1259855, https://doi.org/10.1126/science.1259855, 2015.
Stehfest, E.: Diet: food choices for health and planet, Nature, 515, 501–502, https://doi.org/10.1038/nature13943, 2014.
Stehfest, E. and Bouwman, L.: N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions, Nutr. Cycl. Agroecosys., 74, 207–228, https://doi.org/10.1007/s10705-006-9000-7, 2006.
Stehfest, E., van den Berg, M., Woltjer, G., Msangi, S., and Westhoek, H.: Options to reduce the environmental effects of livestock production – comparison of two economic models, Agr. Syst., 114, 38–53, https://doi.org/10.1016/j.agsy.2012.07.002, 2013.
Stehfest, E., van Vuuren, D., Kram, T., Bouwman, L., Alkemade, R., Bakkenes, M., Biemans, H., Bouwman, A., den Elzen, M., Janse, J., Lucas, P., van Minnen, J., Muller, M., and Gerdien Prins, A.: Integrated Assessment of Global Environmental Change With IMAGE 3.0 – Model Description and Policy Applications, Netherlands Environmental Assessment Agency, De Bilt, the Netherlands, http://www.pbl.nl/en/publications/integrated-assessment-of-global-environmental-change-with- IMAGE-3.0 (last access: 30 March 2017), 2014.
Troy, T. J., Konar, M., Srinivasan, V., and Thompson, S.: Moving sociohydrology forward: a synthesis across studies, Hydrol. Earth Syst. Sci., 19, 3667-3679, https://doi.org/10.5194/hess-19-3667-2015, 2015.
UN Population Division: World Population Prospects: the 2015 Revision, United Nations, Department of Economic and Social Affairs, Population Division, New York, USA, http://www.un.org/en/development/desa/publications/world-population-prospects-2015-revision.html (last access: 30 March 2017), 2015.
United Nations: World Urbanization Prospects, United Nations, Department of Economic and Social Affairs, Population Division, New York, USA, https://esa.un.org/unpd/wup/ (last access: 30 March 2017), 2012.
United Nations: Transforming Our World: the 2030 Agenda for Sustainable Development, New York, USA, http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (last access: 30 March 2017), 2015.
United Nations Environmental Programme: City-level Decoupling: Urban Resource Flows and the Governance of Infrastructure Transitions. A Report of the Working Group on Cities of the International Resource Panel, New York, USA, https://www.wrforum.org/uneppublicationspdf/city-level-decoupling-urban-resource-flows-and-the-governance -of-infrastructure-transitions/ (last access: 30 March 2017), 2013.
United Nations Water: Annual Report, United Nations, New York, USA, http://www.unwater.org/publications/un-water-annual-report-2015/ (last access: 30 March 2017), 2015.
van Emmerik, T. H. M., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H. H. G., Chanan, A., and Vigneswaran, S.: Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River basin, Australia, Hydrol. Earth Syst. Sci., 18, 4239–4259, https://doi.org/10.5194/hess-18-4239-2014, 2014.
van Vuuren, D. P., Lucas, P. L., Häyhä, T., Cornell, S. E., and Stafford-Smith, M.: Horses for courses: analytical tools to explore planetary boundaries, Earth Syst. Dynam., 7, 267–279, https://doi.org/10.5194/esd-7-267-2016, 2016.
Verburg, P. H. and Overmars, K. P.: Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model, Landsc. Ecol., 24, 1167, https://doi.org/10.1007/s10980-009-9355-7, 2009.
Verburg, P. H., Dearing, J. A., Dyke, J. G., van der Leeuw, S., Seitzinger, S., Steffen, W., and Syvitski, J.: Methods and approaches to modelling the Anthropocene, Global Environ. Chang., 39, 328–340, https://doi.org/10.1016/j.gloenvcha.2015.08.007, 2016.
Verstegen, J. A., Hilst, F., Woltjer, G., Karssenberg, D., Jong, S. M., and Faaij, A. P.: What can and can not we say about indirect land-use change in Brazil using an integrated economic-land-use change model?, GCB Bioenergy, 8, 561–578, https://doi.org/10.1111/gcbb.12270, 2016.
von Lampe, M., Willenbockel, D., Ahammad, H., Blanc, E., Cai, Y., Calvin, K., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Lotze-Campen, H., Mason d'Croz, D., Nelson, G. C., Sands, R. D., Schmitz, C., Tabeau, A., Valin, H., van der Mensbrugghe, D., and van Meijl, H.: Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison, Agr. Econ., 45, 3–20, https://doi.org/10.1111/agec.12086, 2014.
Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., and Sorooshian, S.: Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resour. Res., 39, WRCR9547, https://doi.org/10.1029/2002WR001746, 2003.
Wada, Y. and Bierkens, M. F. P.: Sustainability of global water use: past reconstruction and future projections, Environ. Res. Lett., 9, 104003, https://doi.org/10.1088/1748-9326/9/10/104003, 2014.
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M. F. P.: Global depletion of groundwater resources, Geophys. Res. Lett., 37, GRL27382, https://doi.org/10.1029/2010GL044571, 2010.
Wada, Y., van Beek, L. P. H., and Bierkens, M. F. P.: Nonsustainable groundwater sustaining irrigation: a global assessment, Water Resour. Res., 48, W00L06, https://doi.org/10.1029/2011WR010562, 2012.
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., Kumar, P., Rao, P. S. C., Basu, N. B., and Wilson, J. S.: The future of hydrology: an evolving science for a changing world, Water Resour. Res., 46, W05301, https://doi.org/10.1029/2009WR008906, 2010.
Walker, R., Arima, E., Messina, J., Soares-Filho, B., Perz, S., Vergara, D., Sales, M., Pereira, R., and Castro, W.: Modeling spatial decisions with graph theory: logging roads and forest fragmentation in the Brazilian Amazon, Ecol. Appl., 23, 239–254, https://doi.org/10.1890/11-1800.1, 2013.
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S. J., Janetos, A., and Edmonds, J.: Implications of limiting CO2 concentrations for land use and energy, Science, 324, 1183–1186, https://doi.org/10.1126/science.1168475, 2009.
Woltjer, G. B., Kuiper, M., Kavallari, A., van Meijl, H., Powell, J. P., Rutten, M. M., Shutes, L. J., and Tabeau, A. A.: The MAGNET Model: Module Description, LEI Wageningen UR, https://www.wur.nl/en/Publication-details.htm?publicationId=publication-way-343535383037 (last access: 30 March 2017), 2014.
Young, O. R., Berkhout, F., Gallopin, G. C., Janssen, M. A., Ostrom, E., and Van Der Leeuw, S.: The globalization of socio-ecological systems: an agenda for scientific research, Global Environ. Chang., 16, 304–316, https://doi.org/10.1016/j.gloenvcha.2006.03.004, 2006.
Zhang, Y.: Urban metabolism: a review of research methodologies, Environ. Pollut., 178, 463–473, https://doi.org/10.1016/j.envpol.2013.03.052, 2013.
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Ensuring sustainable food and water security is an urgent and complex challenge. As the world...
Altmetrics
Final-revised paper
Preprint