Articles | Volume 8, issue 4
https://doi.org/10.5194/esd-8-901-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esd-8-901-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea
Björn Claremar
Department of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden
Karin Haglund
Department of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden
Anna Rutgersson
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden
Related authors
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
Tito Maldonado, Anna Rutgersson, Eric Alfaro, Jorge Amador, and Björn Claremar
Adv. Geosci., 42, 35–50, https://doi.org/10.5194/adgeo-42-35-2016, https://doi.org/10.5194/adgeo-42-35-2016, 2016
Short summary
Short summary
We studied the relationship between the midsummer drought (MSD) in Central America, and the sea surface temperatures (SST) of the neighbouring ocean in interannual scales. Besides, the motivation of this study is also to provide a systematic method for forecasting the MSD period. We found that the intensity and the magnitude of the MSD shown a strong association with the contrast in the surface temperatures between the eastern tropical Pacific, and the tropical north Atlantic.
Ferran Lopez-Marti, Mireia Ginesta, Davide Faranda, Anna Rutgersson, Pascal Yiou, Lichuan Wu, and Gabriele Messori
Earth Syst. Dynam., 16, 169–187, https://doi.org/10.5194/esd-16-169-2025, https://doi.org/10.5194/esd-16-169-2025, 2025
Short summary
Short summary
Explosive cyclones and atmospheric rivers are two main drivers of extreme weather in Europe. In this study, we investigate their joint changes in future climates over the North Atlantic. Our results show that both the concurrence of these events and the intensity of atmospheric rivers increase by the end of the century across different future scenarios. Furthermore, explosive cyclones associated with atmospheric rivers last longer and are deeper than those without atmospheric rivers.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Ocean Sci., 20, 21–30, https://doi.org/10.5194/os-20-21-2024, https://doi.org/10.5194/os-20-21-2024, 2024
Short summary
Short summary
Coastal floods occur due to extreme sea levels (ESLs) which are difficult to predict because of their rarity. Long records of accurate sea levels at the local scale increase ESL predictability. Here, we apply a machine learning technique to extend sea level observation data in the past based on a neighbouring tide gauge. We compared the results with a linear model. We conclude that both models give reasonable results with a better accuracy towards the extremes for the machine learning model.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Taru Olsson, Anna Luomaranta, Kirsti Jylhä, Julia Jeworrek, Tuuli Perttula, Christian Dieterich, Lichuan Wu, Anna Rutgersson, and Antti Mäkelä
Adv. Sci. Res., 17, 87–104, https://doi.org/10.5194/asr-17-87-2020, https://doi.org/10.5194/asr-17-87-2020, 2020
Short summary
Short summary
Statistics of the frequency and intensity of snow bands affecting the Finnish coast during years 2000–2010 was conducted. A set of criteria for meteorological variables favoring the formation of the snow bands were applied to regional climate model (RCA4) data. We found on average three days per year with favorable conditions for coastal sea-effect snowfall. The heaviest convective snowfall events were detected most frequently over the southern coastline.
Gaëlle Parard, Anna Rutgersson, Sindu Raj Parampil, and Anastase Alexandre Charantonis
Earth Syst. Dynam., 8, 1093–1106, https://doi.org/10.5194/esd-8-1093-2017, https://doi.org/10.5194/esd-8-1093-2017, 2017
Short summary
Short summary
Coastal environments and shelf sea represent 7.6 % of the total oceanic surface area. They are, however, biogeochemically more dynamic and probably more vulnerable to climate change than the open ocean. Whatever the responses of the open ocean to climate change, they will propagate to the coastal ocean. We used the self-organizing multiple linear output (SOMLO) method to estimate the ocean surface pCO2 in the Baltic Sea from remotely sensed measurements and we estimated the air–sea CO2 flux.
Julia Jeworrek, Lichuan Wu, Christian Dieterich, and Anna Rutgersson
Earth Syst. Dynam., 8, 163–175, https://doi.org/10.5194/esd-8-163-2017, https://doi.org/10.5194/esd-8-163-2017, 2017
Short summary
Short summary
Convective snow bands develop in response to a cold air outbreak from the continent over an open water surface. In the Baltic Sea region these cause intense snowfall and can cause serious problems for traffic, infrastructure and other important establishments of society. The conditions for these events to occur were characterized and the potential of using a regional modelling system was evaluated. The modelling system was used to develop statistics of these events to occur in time and space.
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
Tito Maldonado, Anna Rutgersson, Eric Alfaro, Jorge Amador, and Björn Claremar
Adv. Geosci., 42, 35–50, https://doi.org/10.5194/adgeo-42-35-2016, https://doi.org/10.5194/adgeo-42-35-2016, 2016
Short summary
Short summary
We studied the relationship between the midsummer drought (MSD) in Central America, and the sea surface temperatures (SST) of the neighbouring ocean in interannual scales. Besides, the motivation of this study is also to provide a systematic method for forecasting the MSD period. We found that the intensity and the magnitude of the MSD shown a strong association with the contrast in the surface temperatures between the eastern tropical Pacific, and the tropical north Atlantic.
G. Parard, A. A. Charantonis, and A. Rutgerson
Biogeosciences, 12, 3369–3384, https://doi.org/10.5194/bg-12-3369-2015, https://doi.org/10.5194/bg-12-3369-2015, 2015
Short summary
Short summary
In this paper, we used combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and
mixed-layer depth. The outputs of this research have a horizontal resolution of 4km and cover the 1998–2011 period. These outputs give a monthly map of the Baltic Sea.
E. Podgrajsek, E. Sahlée, D. Bastviken, J. Holst, A. Lindroth, L. Tranvik, and A. Rutgersson
Biogeosciences, 11, 4225–4233, https://doi.org/10.5194/bg-11-4225-2014, https://doi.org/10.5194/bg-11-4225-2014, 2014
Related subject area
Management of the Earth system: sustainability science
Governing change: a dynamical systems approach to understanding the stability of environmental governance
Disentangling the climate divide with emotional patterns: a network-based mindset reconstruction approach
Lotka's wheel and the long arm of history: how does the distant past determine today's global rate of energy consumption?
Coupling human and natural systems for sustainability: experience from China's Loess Plateau
Groundwater storage dynamics in the world's large aquifer systems from GRACE: uncertainty and role of extreme precipitation
Linking resilience and robustness and uncovering their trade-offs in coupled infrastructure systems
Exploring the biogeophysical limits of global food production under different climate change scenarios
A framework for modelling the complexities of food and water security under globalisation
Sustainable use of renewable resources in a stylized social–ecological network model under heterogeneous resource distribution
Weather and resource information as tools for dealing with farmer–pastoralist conflicts in the Sahel
Revolutions in energy input and material cycling in Earth history and human history
Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth system
Socio-environmental cooperation and conflict? A discursive understanding and its application to the case of Israel and Palestine
Gender and climate change in the Indian Himalayas: global threats, local vulnerabilities, and livelihood diversification at the Nanda Devi Biosphere Reserve
Policies, economic incentives and the adoption of modern irrigation technology in China
Migration and global environmental change: methodological lessons from mountain areas of the global South
Farmers' perceptions of and adaptation strategies to climate change and their determinants: the case of Punjab province, Pakistan
Climate impacts on human livelihoods: where uncertainty matters in projections of water availability
Applying the concept of "energy return on investment" to desert greening of the Sahara/Sahel using a global climate model
Nusrat Molla, John DeIonno, Thilo Gross, and Jonathan Herman
Earth Syst. Dynam., 13, 1677–1688, https://doi.org/10.5194/esd-13-1677-2022, https://doi.org/10.5194/esd-13-1677-2022, 2022
Short summary
Short summary
How the structure of resource governance systems affects how they respond to change is not yet well understood. We model the stability of thousands of different governance systems, revealing that greater diversity and interdependence among actors are destabilizing, while venue shopping and advocacy organizations are stabilizing. This study suggests that complexity in governance corresponds to responsiveness to change, while providing insight into managing them to balance adaptivity and stability
Roger Cremades and Massimo Stella
Earth Syst. Dynam., 13, 1473–1489, https://doi.org/10.5194/esd-13-1473-2022, https://doi.org/10.5194/esd-13-1473-2022, 2022
Short summary
Short summary
We analyse the speeches of prominent climate activism and climate disinformation figures, finding that the emotional patterns behind the words reveal more than the words themselves and showing the emerging revolutionary characteristics of climate activism and some strange emotional connections on the side of disinformation, where there is surprisingly no worry about change at all.
Timothy J. Garrett, Matheus R. Grasselli, and Stephen Keen
Earth Syst. Dynam., 13, 1021–1028, https://doi.org/10.5194/esd-13-1021-2022, https://doi.org/10.5194/esd-13-1021-2022, 2022
Short summary
Short summary
Current world economic production is rising relative to energy consumption. This increase in
production efficiencysuggests that carbon dioxide emissions can be decoupled from economic activity through technological change. We show instead a nearly fixed relationship between energy consumption and a new economic quantity, historically cumulative economic production. The strong link to the past implies inertia may play a more dominant role in societal evolution than is generally assumed.
Bojie Fu, Xutong Wu, Zhuangzhuang Wang, Xilin Wu, and Shuai Wang
Earth Syst. Dynam., 13, 795–808, https://doi.org/10.5194/esd-13-795-2022, https://doi.org/10.5194/esd-13-795-2022, 2022
Short summary
Short summary
To understand the dynamics of a coupled human and natural system (CHANS) and promote its sustainability, we propose a conceptual
pattern–process–service–sustainabilitycascade framework. The use of this framework is systematically illustrated by a review of CHANS research experience in China's Loess Plateau in terms of coupling landscape patterns and ecological processes, linking ecological processes to ecosystem services, and promoting social–ecological sustainability.
Mohammad Shamsudduha and Richard G. Taylor
Earth Syst. Dynam., 11, 755–774, https://doi.org/10.5194/esd-11-755-2020, https://doi.org/10.5194/esd-11-755-2020, 2020
Short summary
Short summary
Recent assessments of the sustainability of global groundwater resources using the Gravity Recovery and Climate Experiment (GRACE) satellites assume that the underlying trends are linear. Here, we assess recent changes in groundwater storage (ΔGWS) in the world’s large aquifer systems using an ensemble of GRACE datasets and show that trends are mostly non-linear. Non-linearity in ΔGWS derives, in part, from the episodic nature of groundwater replenishment associated with extreme precipitation.
Mehran Homayounfar, Rachata Muneepeerakul, John M. Anderies, and Chitsomanus P. Muneepeerakul
Earth Syst. Dynam., 9, 1159–1168, https://doi.org/10.5194/esd-9-1159-2018, https://doi.org/10.5194/esd-9-1159-2018, 2018
Short summary
Short summary
For many complex social-ecological systems, robustness and resilience are difficult to quantify and the connections and trade-offs between them difficult to study. In this study, we present an analytical framework to address the linkage between robustness and resilience more systematically. The results reveal the trade-offs between robustness and resilience. They also show how the nature of such trade-offs varies with the choices of certain policies, internal stresses, and external disturbances.
Philipp de Vrese, Tobias Stacke, and Stefan Hagemann
Earth Syst. Dynam., 9, 393–412, https://doi.org/10.5194/esd-9-393-2018, https://doi.org/10.5194/esd-9-393-2018, 2018
Short summary
Short summary
The potential food supply depends strongly on climatic conditions, while agricultural activity has substantial impacts on climate. Using an Earth system model, we investigate the climate–agriculture interactions resulting from a maximization of the global cropland area during the 21st century. We find that the potential food supply can be increased substantially, but guaranteeing food security in dry areas in Northern Africa, the Middle East and South Asia will become increasingly difficult.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Wolfram Barfuss, Jonathan F. Donges, Marc Wiedermann, and Wolfgang Lucht
Earth Syst. Dynam., 8, 255–264, https://doi.org/10.5194/esd-8-255-2017, https://doi.org/10.5194/esd-8-255-2017, 2017
Short summary
Short summary
Human societies depend on the resources ecosystems provide. We study this coevolutionary relationship by utilizing a stylized model of resource users on a social network. This model demonstrates that social–cultural processes can have a profound influence on the environmental state, such as determining whether the resources collapse from overuse or not. This suggests that social–cultural processes should receive more attention in the modeling of sustainability transitions and the Earth system.
Ole Mertz, Kjeld Rasmussen, and Laura Vang Rasmussen
Earth Syst. Dynam., 7, 969–976, https://doi.org/10.5194/esd-7-969-2016, https://doi.org/10.5194/esd-7-969-2016, 2016
Short summary
Short summary
Conflicts over land and water resources between livestock herders and farmers are common in the Sahelian region of Africa. In this paper we show that improved information on weather, grazing areas, and water resources may reduce the level of conflict if communicated in such a way so that not too many livestock herds go to the same areas. However, if this information is not accompanied by information on herd crowding and potential conflict areas, it may lead to more conflict.
Timothy M. Lenton, Peter-Paul Pichler, and Helga Weisz
Earth Syst. Dynam., 7, 353–370, https://doi.org/10.5194/esd-7-353-2016, https://doi.org/10.5194/esd-7-353-2016, 2016
Short summary
Short summary
We identify six past revolutions in energy input and material cycling in Earth and human history. We find that human energy use has now reached a magnitude comparable to the biosphere, and conclude that a prospective sustainability revolution will require scaling up new solar energy technologies and the development of much more efficient material recycling systems. Our work was inspired by recognising the connections between Earth system science and industrial ecology at the "LOOPS" workshop.
J. Heitzig, T. Kittel, J. F. Donges, and N. Molkenthin
Earth Syst. Dynam., 7, 21–50, https://doi.org/10.5194/esd-7-21-2016, https://doi.org/10.5194/esd-7-21-2016, 2016
Short summary
Short summary
The debate about a safe and just operating space for humanity and the possible pathways towards and within it requires an analysis of the inherent dynamics of the Earth system and of the options for influencing its evolution. We present and illustrate with examples a conceptual framework for performing such an analysis not in a quantitative, optimizing mode, but in a qualitative way that emphasizes the main decision dilemmas that one may face in the sustainable management of the Earth system.
T. Ide and C. Fröhlich
Earth Syst. Dynam., 6, 659–671, https://doi.org/10.5194/esd-6-659-2015, https://doi.org/10.5194/esd-6-659-2015, 2015
Short summary
Short summary
We investigate why some social groups engage in conflicts over shared natural resources while other groups cooperate over the same issue. Drawing on evidence from the particularly puzzling case of water conflict and cooperation in Israel and Palestine, we show that the discursive construction of identities and situation assessments is a crucial explanatory factor. This finding highlights the relevance of bottom-up discursive conflict transformation.
M. V. Ogra and R. Badola
Earth Syst. Dynam., 6, 505–523, https://doi.org/10.5194/esd-6-505-2015, https://doi.org/10.5194/esd-6-505-2015, 2015
R. Cremades, J. Wang, and J. Morris
Earth Syst. Dynam., 6, 399–410, https://doi.org/10.5194/esd-6-399-2015, https://doi.org/10.5194/esd-6-399-2015, 2015
Short summary
Short summary
Econometric analyses results revealed that policy support via subsidies and extension services have played an important role in promoting the adoption of irrigation technology. Strikingly, the present irrigation pricing policy has played significant but contradictory roles in promoting the adoption of different types of irrigation technology. Irrigation pricing showed a positive impact on household-based irrigation technology, and a negative impact on community-based irrigation technology.
A. Milan, G. Gioli, and T. Afifi
Earth Syst. Dynam., 6, 375–388, https://doi.org/10.5194/esd-6-375-2015, https://doi.org/10.5194/esd-6-375-2015, 2015
M. Abid, J. Scheffran, U. A. Schneider, and M. Ashfaq
Earth Syst. Dynam., 6, 225–243, https://doi.org/10.5194/esd-6-225-2015, https://doi.org/10.5194/esd-6-225-2015, 2015
Short summary
Short summary
Based on a farm household survey of 450 farmers, this study examined the adaptation to climate change and factors affecting the adoption of various adaptation measures at the farm level in Pakistan. The study demonstrates that awareness of climate change is widespread in the area, and farmers are adapting their crops to climate variability. However the adaptation process is constrained due to several factors such as lack of information, lack of money, lack of resources and shortage of water.
T. K. Lissner, D. E. Reusser, J. Schewe, T. Lakes, and J. P. Kropp
Earth Syst. Dynam., 5, 355–373, https://doi.org/10.5194/esd-5-355-2014, https://doi.org/10.5194/esd-5-355-2014, 2014
Short summary
Short summary
Climate change will have impacts on many different sectors of society, but a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable. This paper presents the AHEAD approach, which allows for relating impacts of climate change to 16 dimensions of livelihoods and well-being. Using the example of changes in water availability, the results show how climate change impacts AHEAD. The approach also provides a tool to frame uncertainties from climate models.
S. P. K. Bowring, L. M. Miller, L. Ganzeveld, and A. Kleidon
Earth Syst. Dynam., 5, 43–53, https://doi.org/10.5194/esd-5-43-2014, https://doi.org/10.5194/esd-5-43-2014, 2014
Cited articles
Amann, M., Borken, J., Böttcher, H., Cofala, J., Hettelingh, J., Heyes, C., Holland, M., Hunt, A., Klimont, Z., Mantzos, L., Ntziachristos, L., Obersteiner, M., Posch, M., Schneider, U., Schöpp, W., Slootweg, J., Witzke, P., Wagner, A., and Winiwarter, W.: Greenhouse Gases and Air Pollutants in the European Union: Baseline Projections up to 2030, Ec4macs Interim Assessment, IIASA, available at: http://webarchive.iiasa.ac.at/rains/reports/EC4MACS_IR_11.pdf (last access: 11 August 2014), 2011.
Andersen, J. H., Korpinen, S., Laamanen, M., Wolpers, U., Claussen, U., Durkin, M., Hasselström, L., Ljungberg, R., Meski, L., Murray, C., Reker, J., Soutukorva, Å., Stankiewicz, M., and Zweifel, U. L.: Ecosystem Health of the Baltic Sea, HELCOM Initial Holistic Assessment No. 122, Baltic Sea Environment Proceedings, 1–68, http://www.helcom.fi/Lists/Publications/BSEP122.pdf (last access: October 2017), 2010.
Andersson, P., Håkansson, B., Håkansson, J., and Sahlsten, E.: Marine Acidification on Effects and Monitoring of Marine Acidification in the Seas Surrounding Sweden, SMHI Report No. 92, SMHI, Gothenburg, Sweden, 1–62, 2008.
Claremar, B. and Rutgersson, A.: Deposition scenarios from Baltic Sea ship traffic with scrubbers, (Version 1) [Data set], Environment Climate Data Sweden (ECDS), https://doi.org/10.5879/ECDS/2017-10-10.1/1, 2017a.
Claremar, B. and Rutgersson, A.: 20th century deposition from Baltic Sea ship traffic, (Version 1) [Data set], Environment Climate Data Sweden (ECDS), https://doi.org/10.5879/ECDS/2017-10-10.2/1, 2017b.
Claremar, B., Wällstedt T., Rutgersson, A., and Omstedt, A.: Deposition of acidifying and neutralising compounds over the Baltic Sea drainage basin between 1960 and 2006, Boreal Environ. Res., 18, 425–445, 2013.
CleanShip: Cleanship, Clean Baltic Sea Shipping, available at http://www.clean-baltic-sea-shipping.com/uploads/files/CLEANSHIP_final_report_for_download.pdf (last access: 28 October 2015), 2013.
Cofala, J., Amann, M., Hayes, C., Wagner, F., Klimont, Z., Posch, M., Schöpp, W., Tarrasón, L., Jonson, J. E., Whall, C., and Stavrakaki, A.: Analysis of policy measures to reduce ship emissions in the context of the revision of national emission ceilings directive,Institute for Applied Systems Analysis (IIASA), Austria, 6–107, 2007.
Corbett, J. J. and Fischbeck, P.: Emissions from ships, Science, 11, 823–824, 1997.
Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., and Lauer, A.: Mortality from ship emissions: a global assessment, Environ. Sci. Technol., 41, 8512–8518, 2007.
De Ceuster, G., va Herbruggen, B., and Logghe, S.: TREMOVE – description of model and baseline version 2.41. Report for the European Commission, DG ENV, Chapter VI – The maritime model, Rep. B4-3040/2002/342069/MAR/C.1., European Commision, Brussels, Belgium, 2006.
Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T., Lamarque, J. F., and Rasch, P. J.: Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system, P. Natl. Acad. Sci. USA, 104, 14580–14585, https://doi.org/10.1073/pnas.0702218104, 2007.
Engardt, M. and Langner, J.: Simulations of future sulfur and nitrogen deposition over Europe using meteorological data from three regional climate projections, Tellus B, 65, 20348, https://doi.org/10.3402/tellusb.v65i0.20348, 2013.
ENTEC: Quantification of Emissions From Ships Associated With Ship Movements Between Ports in the European Community, A Report for the European Commission, Entec UK Limited, Northwich, UK, 1–21, 2002.
ENTEC: Service Contract on Ship Emissions: Assignment, Abatement and Marked-Based Instruments, Task 1 – Preliminary Assignment of Ship Emissions to European Countries, Rep., London, 1–171, 2005.
ENTEC: Defra, UK Ship Emissions Inventory, Final Report, Crown Copyright, 1–168, available at: http://uk-air.defra.gov.uk/reports/cat15/1012131459_21897_Final_Report_291110.pdf (last access: 6 October 2017), 2010.
Eyring, V., Köhler, H. W., van Aardenne, J., and Lauer, A.: Emissions from international shipping: 1. The last 50 years, J. Geophys. Res., 110, D17305, https://doi.org/10.1029/2004JD005619, 2005.
Eyring, V., Isaksen, I., Berntsen, T., Collins, W., Corbett, J., Endresen, Ø., Grainger, R., Moldanova, J., Schlager, H., and Stevenson, D.: Transport impacts on atmosphere and climate: shipping, Atmos. Environ., 44, 4735–4771, 2010.
Fagerli, H., Tsyro, S., Simpson, D., Schulz, M., Gauss, M., Jonson, J.-E-., Benedictow, A., Wind, P., Nyiri, A., Steensen, B. M., and Valiyaveetil, S.: EMEP/MSC-W Model Performance for Transboundary Particulate Matter, Photo-Oxidants, Acidifying and Eutrophying Components, EMEP Status Report 1/2015, Norweigian Meteorological Institute, Oslo, Norway, 1–228, 2015.
Finnish Meteorological Institute: Mittausasema Länsi-Turunmaa: Utö, available at: http://www.ilmanlaatu.fi/mittaaminen/verkot/asemat/asemat.php?nws=1&ss=349, last access: 12 October 2015.
Fridell, E., Jernström, M., and Segersson, D.: Översyn av sjöfartens emissioner av luftföroreningar, Svenska Miljö Emissions Data, SMHI, Norrköping, Sweden, 1653–8108, 2008.
Fuglestvedt, J. and Berntsen, T.: Shipping emissions: from cooling to warming of climates and reducing impacts on health, Environ. Sci. Technol., 43, 9057–9062, 2009.
Gauss, M., Benedictow, A., Hjellbrekke, A.-G., Mareckova, K., Nyíri, A., and Wankmüller, R.: Status of transboundary pollution in 2011, in: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2011, EMEP/MSC-W Status Report 1/2013, The Norwegian Meteorological Institute, Oslo, Norway, 1–205, 2013.
Gauss, M., Tsyro, S., Benedicrow, A. C., Hjellbrekke, A.-G., and Solberg, S.: EMEP/MSC-W Model Performance for Acidifying and Eutrophying Components, Photo-Oxidants and Particulate Matter in 2013, Supplementary Material to the EMEP Status Report 1/2015, The Norwegian Meteorological Institute, Oslo, Norway, 1–96, 2015.
Hassellöv, I.-M., Turner, D. R., Lauer, A., and Corbett, J. J.: Shipping contributes to ocean acidification, Geophys. Res. Lett., 40, 2731–2736, https://doi.org/10.1002/grl.50521, 2013.
Hunter, K. A., Liss, P. S., Surapipith, V., Dentener, F., Duce, R., Kanakidou, M., Kubilay, N., Mahowald, N., Okin, G., Sarin, M., Uematsu, M., and Zhu, T.: Impacts of anthropogenic SOx, NOx and NH3 on acidification of coastal waters and shipping lanes, Geophys. Res. Lett., 38, L13602, https://doi.org/10.1029/2011gl047720, 2011.
IMO: Prevention of Air Pollution from Ships, Information on NOx Emissions from Shipping in the Baltic Sea Area, available at: http://www.sjofartsverket.se/pages/14179/57-inf14.pdf (last access: 1 September 2017), 2007.
IMO: Guidelines for Monitoring the Worldwide Average Sulphur Content of Residual Fuel Oils Supplied for Use on Board Ships (MEPC59/24/Add.1), International Maritime Organization (IMO), London, UK, 2009.
IMO: IMO profile, IMO (International Maritime Organization), available at: https://business.un.org/en/entities/13 (last access: 6 October 2017), 2016.
IMO: Pollution Prevention, available at: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/Pages/Default.aspx, last access: 1 September 2017.
IVL – Swedish Environmental Research Institute: Information om Mätstation, available at: http://www3.ivl.se/db/plsql/dvst_meta_statb1.QueryViewByKey?P_STAT_ID=106&Z_CHK=39128 (last access: 14 January 2016), 2015.
Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., and Stipa, T.: A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9, 9209–9223, https://doi.org/10.5194/acp-9-9209-2009, 2009.
Jalkanen, J.-P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J., and Stipa, T.: Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys., 12, 2641–2659, https://doi.org/10.5194/acp-12-2641-2012, 2012.
Jalkanen, J.-P., Johansson, L., and Kukkonen, J.: A comprehensive inventory of ship traffic exhaust emissions in the Baltic Sea from 2006 to 2009, Ambio, 43, 311–324, 2014.
Jonson, J.-E., Tarrason, L., Klein, H., Vestreng, V., Cofala, J., and Whall, C.: Effects of ship emissions on European ground-level ozone in 2020, Int. J. Remote Sens., 30, 4099–4110, https://doi.org/10.1080/01431160902821858, 2009.
Jonson, J. E., Jalkanen, J. P., Johansson, L., Gauss, M., and Denier van der Gon, H. A. C.: Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea, Atmos. Chem. Phys., 15, 783–798, https://doi.org/10.5194/acp-15-783-2015, 2015.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lloyd's register: International Maritime Organization Marine Exhaust Emissions, Quantification study, 98/EE/7036, Baltic Sea, London, 1998.
Matthias, V., Bewersdorff, I., Aulinger, A., and Quante, M.: The contribution of ship emissions to air pollution in the North Sea regions, Environ. Pollut., 158, 2241–2250, 2010.
Monks, P., Granier, C., Fuzzi, S., Stohl, A., Williams, M., Akimoto, H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R., Carslaw, K., Cooper, O., Dentener, F., Fowler, D., Fragkou, E., Frost, G., Generoso, S., Ginoux, P., Grewe, V., Guenther, A., Hansson, H., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I. S., Jenkin, M., Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj, P., Lawrence, M., Lee, J., Liousse, C., Maione, M., McFiggans, G., Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J., O'Down, C., Palmer, P., Parrish, D., Petzold, A., Platt, U., Pöschl, U., Prévot, A. S., Reeves, C., Reimann, S., Rudich, Y., Sellegri, K., Steinbrecher, R., Simpson, D., ten Brink, H., Theloke, J., van der Werf, G., Vautard, R., Vestreng, V., Vlachokostas, C., and von Glasow, R.: Atmospheric composition change – global and regional air quality, Atmos. Environ., 43, 5268–5350, 2009.
Olivier, J. G. J., Bouwman, A. F., Maas, C. W. M., van der Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Zandveld, P. Y. J.,and Haverlag, J. L.: Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1° × 1° grid, RIVM Rapport 771060002, RIVM, Bilthoven, 1996.
Olivier, J. G. J., Janssens-Maenhout, G., Peters, J., and Wilson, J.: Long term trend in global CO2 emissions, JRC65918, PBL Netherlands Environmental Assessment Agency and European Commission Publications Office, The Hague, the Netherlands, http://www.pbl.nl/sites/default/files/cms/publicaties/C02 Mon diaal_ webdef_19sept.pdf? (last access: October 2017), 2011.
Omstedt, A.: Guide to Process Based Modelling of Lakes and Coastal Seas, in: Springer-Praxis Books in Geophysical Sciences, 2nd Edn., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-319-17990-2, 2015.
Omstedt, A., Edman, M., Claremar, B., and Rutgersson, A.: Modelling the contributions to marine acidification from deposited SOx, NOx, and NHx in the Baltic Sea: past and present situations, Cont. Shelf Res., 111, 234–249, https://doi.org/10.1016/j.csr.2015.08.024, 2015.
Orr, J.: Recent and future changes in ocean carbonate chemistry, in: Ocean Acidification, edited by: Gattuso, J.-P. and Hansson, L., OUP, Oxford, 41–66, 2011.
Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D., and Wang, F.: Observations: Ocean, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, 255–315, 2013.
Robertson, L., Langner, J., and Engardt, M.: An Eulerian limited-area atmospheric transport model, J. Appl. Meteorol., 38, 190–210, 1999.
S&P Global Platts: The IMO's 2020 Global Sulfur Cap: What a 2020 Sulfur-Constrained World Means for Shipping Lines, Refineries and Bunker Suppliers, Shipping Special Report, https://www.platts.com/IM.Platts.Content/InsightAnalysis/IndustrySolutionPapers/SR-IMO-2020-Global-sulfur-cap-102016.pdf (last access: October 2017), October 2016.
Schulz, M., Gauss, M., Benedicrow, A. C., Eiof Jonson, J., Tsyro, S., Nyiri, A., and Simpson, D.: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2011, EMEP Report 1/2013, 1–205, EMEP, Oslo, Norway, http://emep.int/publ/reports/2011/status_report_1_2011.pdf (last access: October 2017), 2011.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edn., John Wiley & Sons, Hoboken, New Jersey, USA, 2006.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
Sjöberg, K. and Peterson, K.: Utredning avseende flytt av mätstationen Vavihill, No. U4824, IVL Svenska Miljöinstitutet, available at: http://www.diva-portal.org/smash/get/diva2:748240/FULLTEXT01.pdf (last access: 14 January 2016), 2014.
Turner, D., Edman, M., Gallego-Urrea, J. A., Claremar, B., Hassellöv, I. M., Omstedt, A., and Rutgersson, A.: Potential future contribution of shipping to acidification of the Baltic Sea, https://doi.org/10.1007/s13280-017-0950-6, in press, 2017.
Van Aardenne, J. A.,Dentener, F. J., Olivier, J. G. J., Klein Goldewijk, C. G. M., and Lelieveld, J.: A 1° × 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990, Global Biogeochem. Cy., 15, 909–928, 2001.
Van Aardenne, J., Colette, A., Degraeuwe, B., Hammingh, P., Viana, M., and Vlieger, I.: The impact of international shipping on European air quality and climate forcing, Technical Report No. 4/2013, EEA (European Environment Agency), Copenhagen, Denmark, 1–84, 2013.
Vestreng, V.: Review and Revision. Emission Data Reported to CLRTAP, EMEP MSC-W Status Report 2003, Technical Report Note 1/2003, Meteorological Synthesizing Centre – West, Norwegian Meteorological Institute, Oslo, Norway, 1–134, 2003.
Wang, C., Corbett, J., and Firestone, J.: Improving spatial representation of global ship emissions inventories, Environ. Sci. Technol., 42, 193–199, 2008.
WHO – World Health Organization: WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide, Global Update, Summary of Risk Assessment, available at: http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdf (last access: 10 November 2015), 2006.
Winnes, H., Moldanová, J., Anderson, M., and Fridell, E.: On-board measurements of particle emissions from marine engines using fuels with different sulfur content, J. Eng. Marit. Environ., 230, 45–54, https://doi.org/10.1177/1475090214530877, 2014.
Short summary
Shipping is the most cost-effective option for the global transport of goods, and over 90 % of world trade is carried by sea. The shipping sector, however, contributes to emissions of pollutants into the air and water. Estimates of deposition and near-surface concentrations of sulfur, nitrogen, and particulate matter originating from shipping in the Baltic Sea region have been developed for present conditions concerning traffic intensity and fuel as well as for future scenarios until 2050.
Shipping is the most cost-effective option for the global transport of goods, and over 90 % of...
Altmetrics
Final-revised paper
Preprint