Articles | Volume 8, issue 4
https://doi.org/10.5194/esd-8-1047-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esd-8-1047-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
More homogeneous wind conditions under strong climate change decrease the potential for inter-state balancing of electricity in Europe
Forschungszentrum Jülich, Institute for Energy and Climate Research (IEK-STE), 52428 Jülich, Germany
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
Mark Reyers
Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Juliane Weber
Forschungszentrum Jülich, Institute for Energy and Climate Research (IEK-STE), 52428 Jülich, Germany
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
Dirk Witthaut
Forschungszentrum Jülich, Institute for Energy and Climate Research (IEK-STE), 52428 Jülich, Germany
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
Related authors
Jan Wohland, Peter Hoffmann, Daniela C. A. Lima, Marcus Breil, Olivier Asselin, and Diana Rechid
Earth Syst. Dynam., 15, 1385–1400, https://doi.org/10.5194/esd-15-1385-2024, https://doi.org/10.5194/esd-15-1385-2024, 2024
Short summary
Short summary
We evaluate how winds change when humans grow or cut down forests. Our analysis draws from climate model simulations with extreme scenarios where Europe is either fully forested or covered with grass. We find that the effect of land use change on wind energy is very important: wind energy potentials are twice as high above grass as compared to forest in some locations. Our results imply that wind profile changes should be better incorporated in climate change assessments for wind energy.
Jan Wohland, Doris Folini, and Bryn Pickering
Earth Syst. Dynam., 12, 1239–1251, https://doi.org/10.5194/esd-12-1239-2021, https://doi.org/10.5194/esd-12-1239-2021, 2021
Short summary
Short summary
Surface winds fluctuate. From around 1980 to 2010, surface onshore winds generally became weaker, and they have gained in strength since then. While these fluctuations are well known, we currently do not fully understand why they happen. To investigate the reasons, we use a large set of climate simulations with one model, a so-called large ensemble. We find that the observed long-term wind fluctuations occur naturally under current and future conditions and do not require a specific trigger.
Charlotte Neubacher, Dirk Witthaut, and Jan Wohland
Adv. Geosci., 54, 205–215, https://doi.org/10.5194/adgeo-54-205-2021, https://doi.org/10.5194/adgeo-54-205-2021, 2021
Short summary
Short summary
In our study, we investigate the variability of potential offshore wind power over Europe on time scales of more than 10 years. Detailed spectral analysis of potential offshore wind power capacities over the last century indicates a strong coupling to large climate patterns such as the NAO. Furthermore, combining the wind power potential at the German North Sea and the Portuguese Atlantic coast shows that the variability can be mitigated.
Jan Wohland, Nour Eddine Omrani, Noel Keenlyside, and Dirk Witthaut
Wind Energ. Sci., 4, 515–526, https://doi.org/10.5194/wes-4-515-2019, https://doi.org/10.5194/wes-4-515-2019, 2019
Short summary
Short summary
Wind park planning and power system design require robust wind resource information. While most assessments are restricted to the last four decades, we use centennial reanalyses to study wind energy generation variability in Germany. We find that statistically significant multi-decadal variability exists. These long-term effects must be considered when planning future highly renewable power systems. Otherwise, there is a risk of inefficient system design and ill-informed investments.
Jan Wohland, Peter Hoffmann, Daniela C. A. Lima, Marcus Breil, Olivier Asselin, and Diana Rechid
Earth Syst. Dynam., 15, 1385–1400, https://doi.org/10.5194/esd-15-1385-2024, https://doi.org/10.5194/esd-15-1385-2024, 2024
Short summary
Short summary
We evaluate how winds change when humans grow or cut down forests. Our analysis draws from climate model simulations with extreme scenarios where Europe is either fully forested or covered with grass. We find that the effect of land use change on wind energy is very important: wind energy potentials are twice as high above grass as compared to forest in some locations. Our results imply that wind profile changes should be better incorporated in climate change assessments for wind energy.
Keno Riechers, Leonardo Rydin Gorjão, Forough Hassanibesheli, Pedro G. Lind, Dirk Witthaut, and Niklas Boers
Earth Syst. Dynam., 14, 593–607, https://doi.org/10.5194/esd-14-593-2023, https://doi.org/10.5194/esd-14-593-2023, 2023
Short summary
Short summary
Paleoclimate proxy records show that the North Atlantic climate repeatedly transitioned between two regimes during the last glacial interval. This study investigates a bivariate proxy record from a Greenland ice core which reflects past Greenland temperatures and large-scale atmospheric conditions. We reconstruct the underlying deterministic drift by estimating first-order Kramers–Moyal coefficients and identify two separate stable states in agreement with the aforementioned climatic regimes.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Jan Wohland, Doris Folini, and Bryn Pickering
Earth Syst. Dynam., 12, 1239–1251, https://doi.org/10.5194/esd-12-1239-2021, https://doi.org/10.5194/esd-12-1239-2021, 2021
Short summary
Short summary
Surface winds fluctuate. From around 1980 to 2010, surface onshore winds generally became weaker, and they have gained in strength since then. While these fluctuations are well known, we currently do not fully understand why they happen. To investigate the reasons, we use a large set of climate simulations with one model, a so-called large ensemble. We find that the observed long-term wind fluctuations occur naturally under current and future conditions and do not require a specific trigger.
Charlotte Neubacher, Dirk Witthaut, and Jan Wohland
Adv. Geosci., 54, 205–215, https://doi.org/10.5194/adgeo-54-205-2021, https://doi.org/10.5194/adgeo-54-205-2021, 2021
Short summary
Short summary
In our study, we investigate the variability of potential offshore wind power over Europe on time scales of more than 10 years. Detailed spectral analysis of potential offshore wind power capacities over the last century indicates a strong coupling to large climate patterns such as the NAO. Furthermore, combining the wind power potential at the German North Sea and the Portuguese Atlantic coast shows that the variability can be mitigated.
Jan Wohland, Nour Eddine Omrani, Noel Keenlyside, and Dirk Witthaut
Wind Energ. Sci., 4, 515–526, https://doi.org/10.5194/wes-4-515-2019, https://doi.org/10.5194/wes-4-515-2019, 2019
Short summary
Short summary
Wind park planning and power system design require robust wind resource information. While most assessments are restricted to the last four decades, we use centennial reanalyses to study wind energy generation variability in Germany. We find that statistically significant multi-decadal variability exists. These long-term effects must be considered when planning future highly renewable power systems. Otherwise, there is a risk of inefficient system design and ill-informed investments.
Mark Reyers, Hendrik Feldmann, Sebastian Mieruch, Joaquim G. Pinto, Marianne Uhlig, Bodo Ahrens, Barbara Früh, Kameswarrao Modali, Natalie Laube, Julia Moemken, Wolfgang Müller, Gerd Schädler, and Christoph Kottmeier
Earth Syst. Dynam., 10, 171–187, https://doi.org/10.5194/esd-10-171-2019, https://doi.org/10.5194/esd-10-171-2019, 2019
Short summary
Short summary
In this study, the regional MiKlip decadal prediction system is evaluated. This system has been established to deliver highly resolved forecasts for the timescale of 1 to 10 years for Europe. Evidence of the general potential for regional decadal predictability for the variables temperature, precipitation, and wind speed is provided, but the performance of the prediction system depends on region, variable, and system generation.
Related subject area
Management of the Earth system: renewable energy
Wind speed stilling and its recovery due to internal climate variability
Climate change impacts on solar power generation and its spatial variability in Europe based on CMIP6
The problem of the second wind turbine – a note on a common but flawed wind power estimation method
Jet stream wind power as a renewable energy resource: little power, big impacts
Estimating maximum global land surface wind power extractability and associated climatic consequences
Jan Wohland, Doris Folini, and Bryn Pickering
Earth Syst. Dynam., 12, 1239–1251, https://doi.org/10.5194/esd-12-1239-2021, https://doi.org/10.5194/esd-12-1239-2021, 2021
Short summary
Short summary
Surface winds fluctuate. From around 1980 to 2010, surface onshore winds generally became weaker, and they have gained in strength since then. While these fluctuations are well known, we currently do not fully understand why they happen. To investigate the reasons, we use a large set of climate simulations with one model, a so-called large ensemble. We find that the observed long-term wind fluctuations occur naturally under current and future conditions and do not require a specific trigger.
Xinyuan Hou, Martin Wild, Doris Folini, Stelios Kazadzis, and Jan Wohland
Earth Syst. Dynam., 12, 1099–1113, https://doi.org/10.5194/esd-12-1099-2021, https://doi.org/10.5194/esd-12-1099-2021, 2021
Short summary
Short summary
Solar photovoltaics (PV) matters for the carbon neutrality goal. We use climate scenarios to quantify climate risk for PV in Europe and find higher PV potential. The seasonal cycle of PV generation changes in most places. We find an increase in the spatial correlations of daily PV production, implying that PV power balancing through redistribution will be more difficult in the future. Thus, changes in the spatiotemporal structure of PV generation should be included in power system design.
F. Gans, L. M. Miller, and A. Kleidon
Earth Syst. Dynam., 3, 79–86, https://doi.org/10.5194/esd-3-79-2012, https://doi.org/10.5194/esd-3-79-2012, 2012
L. M. Miller, F. Gans, and A. Kleidon
Earth Syst. Dynam., 2, 201–212, https://doi.org/10.5194/esd-2-201-2011, https://doi.org/10.5194/esd-2-201-2011, 2011
L. M. Miller, F. Gans, and A. Kleidon
Earth Syst. Dynam., 2, 1–12, https://doi.org/10.5194/esd-2-1-2011, https://doi.org/10.5194/esd-2-1-2011, 2011
Cited articles
Anderson, K. and Peters, G.: The trouble with negative emissions, Science, 354, 182–183, 2016.
Auffhammer, M., Baylis, P., and Hausman, C. H.: Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States, P. Natl. Acad. Sci. USA, 114, 1886–1891, https://doi.org/10.1073/pnas.1613193114, 2017.
Battaglini, A., Komendantova, N., Brtnik, P., and Patt, A.: Perception of barriers for expansion of electricity grids in the European Union, Energy Policy, 47, 254–259, https://doi.org/10.1016/j.enpol.2012.04.065, 2012.
Becker, S., Rodriguez, R., Andresen, G., Schramm, S., and Greiner, M.: Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply, Energy, 64, 404–418, https://doi.org/10.1016/j.energy.2013.10.010, 2014.
Bloomfield, H. C., Brayshaw, D. J., Shaffrey, L. C., Coker, P. J., and Thornton, H. E.: Quantifying the increasing sensitivity of power systems to climate variability, Environ. Res. Lett., 11, 124025, https://doi.org/10.1088/1748-9326/11/12/124025, 2016.
Brown, T., Schierhorn, P.-P., Troester, E., and Ackermann, T.: Optimising the European transmission system for 77 % renewable electricity by 2030, IET Renew. Power Gen., 10, 3–9, https://doi.org/10.1049/iet-rpg.2015.0135, 2016.
Bruckner, T., Bashmakov, I. A., Mulugetta, Y., Chum, H., de la Vega Navarro, A., Edmonds, J., Faaij, A., Fungtammasan, B., Garg, A., Hertwich, E., Honnery, D., Infield, D., Kainuma, M., Khennas, S., Kim, S., Nimir, H. B., Riahi, K., Strachan, N., Wiser, R., and Zhang, X.: Energy Systems, in: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J. C., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2014.
Chiacchio, M., Solmon, F., Giorgi, F., Stackhouse, P., and Wild, M.: Evaluation of the radiation budget with a regional climate model over Europe and inspection of dimming and brightening: Evaluation of the radiation budget, J. Geophys. Res.-Atmos., 120, 1951–1971, https://doi.org/10.1002/2014JD022497, 2015.
Coumou, D., Lehmann, J., and Beckmann, J.: The weakening summer circulation in the Northern Hemisphere mid-latitudes, Science, 348, 324–327, 2015.
Crook, J. A., Jones, L. A., Forster, P. M., and Crook, R.: Climate change impacts on future photovoltaic and concentrated solar power energy output, Energ. Environ. Sci., 4, 3101, https://doi.org/10.1039/c1ee01495a, 2011.
Davis, S. J., Caldeira, K., and Matthews, H. D.: Future CO2 Emissions and Climate Change from Existing Energy Infrastructure, Science, 329, 1330–1333, https://doi.org/10.1126/science.1194210, 2010.
Ely, C. R., Brayshaw, D. J., Methven, J., Cox, J., and Pearce, O.: Implications of the North Atlantic Oscillation for a UK-Norway Renewable power system, Energ. Policy, 62, 1420–1427, https://doi.org/10.1016/j.enpol.2013.06.037, 2013.
European Network of Transmission System Operators for Electricity: Hourly load values for all countries for a specific month (in MW), available at: https://www.entsoe.eu/db-query/consumption/mhlv-all-countries-for-a-specific-month (last access: 21 November 2016), 2015.
Farneti, R.: Modelling interdecadal climate variability and the role of the ocean, Wiley Interdisciplinary Reviews: Climate Change, 8, e441, https://doi.org/10.1002/wcc.441, 2017.
Gonzalez Aparcio, I., Zucker, A., Careri, F., Monforti, F., Huld, T., and Badger, J.: EMHIRES dataset; Part 1: Wind power generation, Tech. Rep. EUR 28171 EN, Joint Research Center, 2016.
Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I., and Wernli, H.: Balancing Europe's wind-power output through spatial deployment informed by weather regimes, Nature Climate Change, 7, 557–562, https://doi.org/10.1038/nclimate3338, 2017.
Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., O'Rourke, E., Rixen, M., Solman, S., Stephenson, T., and Tangang, F.: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6, Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, 2016.
Haarsma, R. J., Selten, F., and van Oldenborgh, G. J.: Anthropogenic changes of the thermal and zonal flow structure over Western Europe and Eastern North Atlantic in CMIP3 and CMIP5 models, Clim. Dynam., 41, 2577–2588, https://doi.org/10.1007/s00382-013-1734-8, 2013.
Haekkinen, S., Rhines, P. B., and Worthen, D. L.: Atmospheric Blocking and Atlantic Multidecadal Ocean Variability, Science, 334, 655–659, 2011.
Hagspiel, S., Jaegemann, C., Lindenberger, D., Brown, T., Cherevatskiy, S., and Troester, E.: Cost-optimal power system extension under flow-based market coupling, Energy, 66, 654–666, https://doi.org/10.1016/j.energy.2014.01.025, 2014.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional climate predictions, B. Am. Meteorol. Soc., 90, 1095–1107, https://doi.org/10.1175/2009BAMS2607.1, 2009.
Hawkins, E., Smith, R. S., Gregory, J. M., and Stainforth, D. A.: Irreducible uncertainty in near-term climate projections, Clim. Dynam., 46, 3807–3819, https://doi.org/10.1007/s00382-015-2806-8, 2016.
Herwehe, J. A., Alapaty, K., Spero, T. L., and Nolte, C. G.: Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions, J. Geophys. Res.-Atmos., 119, 5317–5330, https://doi.org/10.1002/2014JD021504, 2014.
Huber, M., Dimkova, D., and Hamacher, T.: Integration of wind and solar power in Europe: Assessment of flexibility requirements, Energy, 69, 236–246, https://doi.org/10.1016/j.energy.2014.02.109, 2014.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
James, R., Washington, R., Schleussner, C.-F., Rogelj, J., and Conway, D.: Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets: Characterizing half-a-degree difference, Wiley Interdisciplinary Reviews: Climate Change, 8, e457, https://doi.org/10.1002/wcc.457, 2017.
Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J. M., Thais, F., Bartok, B., Christensen, O. B., Colette, A., Déqué, M., Nikulin, G., Kotlarski, S., van Meijgaard, E., Teichmann, C., and Wild, M.: The impact of climate change on photovoltaic power generation in Europe, Nat. Commun., 6, 10014, https://doi.org/10.1038/ncomms10014, 2015.
Jones, P. D., Hulme, M., and Briffa, K. R.: A comparison of Lamb circulation types with an objective classification scheme, Int. J. Climatol., 13, 655–663, 1993.
Jülich Supercomputing Centre: JURECA: General-purpose supercomputer at Jülich Supercomputing Centre, Journal of Large-Scale Research Facilities, 2, A62, https://doi.org/10.17815/jlsrf-2-121, 2016.
Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy: Generation CMIP5 and how we got there, Geophys. Res. Lett., 40, 1194–1199, https://doi.org/10.1002/grl.50256, 2013.
Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., Held, H., Kriegler, E., Mach, K. J., Matschoss, P. R., Plattner, G.-K., Yohe, G. W., and Zwiers, F. W.: Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties, available at: http://pubman.mpdl.mpg.de/pubman/item/escidoc:2147184/component/escidoc:2147185/uncertainty-guidance-note.pdf (last access: 13 April 2017), 2010.
Moemken, J., Reyers, M., Buldmann, B., and Pinto, J. G.: Decadal predictability of regional scale wind speed and wind energy potentials over Central Europe, Tellus A, 68, 29199, https://doi.org/10.3402/tellusa.v68.29199, 2016.
Monforti, F., Gaetani, M., and Vignati, E.: How synchronous is wind energy production among European countries?, Renewable and Sustainable Energy Reviews, 59, 1622–1638, https://doi.org/10.1016/j.rser.2015.12.318, 2016.
Peings, Y. and Magnusdottir, G.: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean, Environ. Res. Lett., 9, 034018, https://doi.org/10.1088/1748-9326/9/3/034018, 2014.
Pfenninger, S. and Staffell, I.: Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data, Energy, 114, 1251–1265, https://doi.org/10.1016/j.energy.2016.08.060, 2016.
Pfenninger, S., Gauché, P., Lilliestam, J., Damerau, K., Wagner, F., and Patt, A.: Potential for concentrating solar power to provide baseload and dispatchable power, Nature Climate Change, 4, 689–692, https://doi.org/10.1038/nclimate2276, 2014.
Rasmussen, M. G., Andresen, G. B., and Greiner, M.: Storage and balancing synergies in a fully or highly renewable pan-European power system, Energy Policy, 51, 642–651, https://doi.org/10.1016/j.enpol.2012.09.009, 2012.
Reyers, M., Pinto, J. G., and Moemken, J.: Statistical-dynamical downscaling for wind energy potentials: evaluation and applications to decadal hindcasts and climate change projections, Int. J. Climatol., 35, 229–244, https://doi.org/10.1002/joc.3975, 2015.
Reyers, M., Moemken, J., and Pinto, J. G.: Future changes of wind energy potentials over Europe in a large CMIP5 multi-model ensemble, Int. J. Climatol., 36, 783–796, https://doi.org/10.1002/joc.4382, 2016.
Rodriguez, R. A., Becker, S., Andresen, G. B., Heide, D., and Greiner, M.: Transmission needs across a fully renewable European power system, Renew. Energ., 63, 467–476, https://doi.org/10.1016/j.renene.2013.10.005, 2014.
Rodriguez, R. A., Becker, S., and Greiner, M.: Cost-optimal design of a simplified, highly renewable pan-European electricity system, Energy, 83, 658–668, https://doi.org/10.1016/j.energy.2015.02.066, 2015a.
Rodriguez, R. A., Dahl, M., Becker, S., and Greiner, M.: Localized vs. synchronized exports across a highly renewable pan-European transmission network, Energy, Sustainability and Society, 5, 21, https://doi.org/10.1186/s13705-015-0048-6, 2015b.
Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5, 519–527, https://doi.org/10.1038/nclimate2572, 2015.
Rogelj, J., den Elzen, M., Hoehne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., and Meinshausen, M.: Paris Agreement climate proposals need a boost to keep warming well below 2 °C, Nature, 534, 631–639, https://doi.org/10.1038/nature18307, 2016.
Rummukainen, M.: Added value in regional climate modeling, Wiley Interdisciplinary Reviews: Climate Change, 7, 145–159, https://doi.org/10.1002/wcc.378, 2016.
Schlachtberger, D., Becker, S., Schramm, S., and Greiner, M.: Backup flexibility classes in emerging large-scale renewable electricity systems, Energ. Convers. Manage., 125, 336–346, https://doi.org/10.1016/j.enconman.2016.04.020, 2016.
Schlachtberger, D., Brown, T., Schramm, S., and Greiner, M.: The benefits of cooperation in a highly renewable European electricity network, Energy, 134, 469–481, https://doi.org/10.1016/j.energy.2017.06.004, 2017.
Schleussner, C.-F., Lissner, T. K., Fischer, E. M., Wohland, J., Perrette, M., Golly, A., Rogelj, J., Childers, K., Schewe, J., Frieler, K., Mengel, M., Hare, W., and Schaeffer, M.: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C, Earth Syst. Dynam., 7, 327–351, https://doi.org/10.5194/esd-7-327-2016, 2016a.
Schleussner, C.-F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R., Fischer, E. M., Knutti, R., Levermann, A., Frieler, K., and Hare, W.: Science and policy characteristics of the Paris Agreement temperature goal, Nature Climate Change, 6, 827–835, https://doi.org/10.1038/nclimate3096, 2016b.
Staffell, I. and Pfenninger, S.: Using bias-corrected reanalysis to simulate current and future wind power output, Energy, 114, 1224–1239, https://doi.org/10.1016/j.energy.2016.08.068, 2016.
Stocker, T. F., Qin, D., Plattner, G.-K., et al.: Technical summary, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 33–115, Cambridge University Press, available at: http://pubman.mpdl.mpg.de/pubman/item/escidoc:1977530/component/escidoc:1977527/WG1AR5_TS_FINAL.pdf (last access: 3 March 2017), 2013.
Strandberg, G., Bärring, L., Hansson, U., Jansson, C., Jones, C., Kjellström, E., Kolax, M., Kupiainen, M., Nikulin, G., Samuelsson, P., Ullerstig, A., and Wang, S.: CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4, SMHI, Sveriges Meteorologiska och Hydrologiska Institut, 2015.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, 2011.
Tobin, I., Vautard, R., Balog, I., Bréon, F.-M., Jerez, S., Ruti, P. M., Thais, F., Vrac, M., and Yiou, P.: Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections, Climatic Change, 128, 99–112, https://doi.org/10.1007/s10584-014-1291-0, 2015.
Tobin, I., Jerez, S., Vautard, R., Thais, F., van Meijgaard, E., Prein, A., Deque, M., Kotlarski, S., Maule, C. F., Nikulin, G., Noel, T., and Teichmann, C.: Climate change impacts on the power generation potential of a European mid-century wind farms scenario, Environ. Res. Lett., 11, 034013, https://doi.org/10.1088/1748-9326/11/3/034013, 2016.
Trump, D. J.: Presidential Executive Order on Promoting Energy Independence and Economic Growth, available at: https://www.whitehouse.gov/the-press-office/2017/03/28/presidential-executive-order-promoting-energy-independence-and-economi-1 (last access: 4 June 2017), 2017.
UNFCCC: Adoption of the Paris Agreement, FCCC/CP/2015/10/Add.1, 2015.
van Vliet, M. T. H., Yearsley, J. R., Ludwig, F., Voegele, S., Lettenmaier, D. P., and Kabat, P.: Vulnerability of US and European electricity supply to climate change, Nature Climate Change, 2, 676–681, https://doi.org/10.1038/nclimate1546, 2012.
van Vliet, M. T. H., Wiberg, D., Leduc, S., and Riahi, K.: Power-generation system vulnerability and adaptation to changes in climate and water resources, Nature Climate Change, 6, 375–380, https://doi.org/10.1038/nclimate2903, 2016.
van Vuuren, D. P., van Soest, H., Riahi, K., Clarke, L., Krey, V., Kriegler, E., Rogelj, J., Schaeffer, M., and Tavoni, M.: Carbon budgets and energy transition pathways, Environ. Res. Lett., 11, 075002, https://doi.org/10.1088/1748-9326/11/7/075002, 2016.
Vautard, R., Thais, F., Tobin, I., Bréon, F.-M., de Lavergne, J.-G. D., Colette, A., Yiou, P., and Ruti, P. M.: Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms, Nat. Commun., 5, 3196, https://doi.org/10.1038/ncomms4196, 2014.
Weber, J., Wohland, J., Reyers, M., Moemken, J., Hoppe, C., Pinto, J. G., and Witthaut, D.: Impact of climate change on backup and storage needs in a wind-dominated European power system, in review, 2017.
Wiser, R., Bolinger, M., Barbose, G., Darghouth, N., Hoen, B., Mills, A., Rand, J., Millstein, D., Porter, K., and Widiss, R.: 2015 Wind Technologies Market Report, available at: https://pubarchive.lbl.gov/islandora/object/ir%3A1005951/data% stream/PDF/download/citation.pdf (last access: 28 August 2017), 2016.
Short summary
Solar and wind energy generation are weather dependent and can not be switched on when needed. Despite this, stable electricity supply can be obtained by aggregation over large areas, for example Europe. However, we show that strong climate change impedes spatial balancing of electricity because countries are more likely to suffer from simultaneous generation shortfall. As a consequence, local scarcity can less often be balanced by imports.
Solar and wind energy generation are weather dependent and can not be switched on when needed....
Altmetrics
Final-revised paper
Preprint