Articles | Volume 15, issue 6
https://doi.org/10.5194/esd-15-1509-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-15-1509-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cross-scale causal information flow from the El Niño–Southern Oscillation to precipitation in eastern China
Yasir Latif
Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, 182 00 Prague 8, Czech Republic
Kaiyu Fan
Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Meteorological Service Center, Dalian Meteorological Bureau, Dalian 116001, China
Geli Wang
CORRESPONDING AUTHOR
Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, 182 00 Prague 8, Czech Republic
Related authors
No articles found.
Jinfang Yin, Xudong Liang, Yanxin Xie, Feng Li, Kaixi Hu, Lijuan Cao, Feng Chen, Haibo Zou, Feng Zhu, Xin Sun, Jianjun Xu, Geli Wang, Ying Zhao, and Juanjuan Liu
Earth Syst. Sci. Data, 15, 2329–2346, https://doi.org/10.5194/essd-15-2329-2023, https://doi.org/10.5194/essd-15-2329-2023, 2023
Short summary
Short summary
A collection of regional reanalysis datasets has been produced. However, little attention has been paid to East Asia, and there are no long-term, physically consistent regional reanalysis data available. The East Asia Reanalysis System was developed using the WRF model and GSI data assimilation system. A 39-year (1980–2018) reanalysis dataset is available for the East Asia region, at a high temporal (of 3 h) and spatial resolution (of 12 km), for mesoscale weather and regional climate studies.
Xinnong Pan, Geli Wang, Peicai Yang, Jun Wang, and Anastasios A. Tsonis
Earth Syst. Dynam., 11, 525–535, https://doi.org/10.5194/esd-11-525-2020, https://doi.org/10.5194/esd-11-525-2020, 2020
Short summary
Short summary
The variations in oceanic and atmospheric modes play important roles in global and regional climate variability. The relationships between their variations and regional climate variability have been extensively examined, but the interconnections among these climate modes remain unclear. We show that the base periods and their harmonic oscillations that appear to be related to QBO, ENSO, and solar activities act as key connections among the climatic modes with synchronous behaviors.
G. Wang and X. Chen
Nonlin. Processes Geophys., 22, 377–382, https://doi.org/10.5194/npg-22-377-2015, https://doi.org/10.5194/npg-22-377-2015, 2015
Short summary
Short summary
This paper presents a new technique of combining the driving force of a time series obtained using the slow feature analysis (SFA) approach, then introducing the driving force into a predictive model to predict nonstationary time series. It could be considered to be a data-driven attempt to make progress in predicting nonstationary climatic time series and in better understanding the climate causality research from observed climate data.
J. Hlinka, D. Hartman, N. Jajcay, M. Vejmelka, R. Donner, N. Marwan, J. Kurths, and M. Paluš
Nonlin. Processes Geophys., 21, 451–462, https://doi.org/10.5194/npg-21-451-2014, https://doi.org/10.5194/npg-21-451-2014, 2014
Related subject area
Topics: Climate dynamics and variability | Interactions: Ocean/atmosphere interactions | Methods: Other methods
Unveiling amplified isolation in climate networks due to global warming
Yifan Cheng, Panjie Qiao, Meiyi Hou, Yuan Chen, Wenqi Liu, and Yongwen Zhang
Earth Syst. Dynam., 15, 779–788, https://doi.org/10.5194/esd-15-779-2024, https://doi.org/10.5194/esd-15-779-2024, 2024
Short summary
Short summary
Global warming has triggered profound transformations in the Earth's climate system. Our study reveals a reduction in the connectivity of highly isolated nodes located along the Equator, particularly regarding their interactions with neighboring regions within the same oceanic basin. Conversely, these nodes display strengthened connections with specific continents, highlighting the intricate interplay between global warming and the evolving structure of climate networks.
Cited articles
Alizadeh, O.: A review of the El Niño-Southern Oscillation in future, Earth-Sci. Rev., 235, 104246, https://doi.org/10.1016/j.earscirev.2022.104246, 2022. a
Arinyo-i-Prats, A., López-Madrona, V. J., and Paluš, M.: Lead/Lag directionality is not generally equivalent to causality in nonlinear systems: Comparison of phase slope index and conditional mutual information, NeuroImage, 292, 120610, https://doi.org/10.1016/j.neuroimage.2024.120610, 2024. a
Barnett, L., Barrett, A. B., and Seth, A. K.: Granger causality and transfer entropy are equivalent for Gaussian variables, Phys. Rev. Lett., 103, 238701, https://doi.org/10.1103/PhysRevLett.103.238701, 2009. a
Bjerknes, J.: Atmospheric teleconnections from the equatorial Pacific, Mon. Weather Rev., 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2, 1969. a
Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S., Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y., Ying, J., Zheng, X.-T., Bayr, T., Brown, J. R., Capotondi, A., Cobb, K. M., Gan, B., Geng, T., Ham, Y.-G., Jin, F.-F., Jo, H.-S., Li, X., Lin, X., McGregor, S., Park, J.-H., Stein, K., Yang, K., Zhang, L., and Zhong, W.: Changing El Niño–Southern Oscillation in a warming climate, Nature Reviews Earth and Environment, 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z, 2021. a
Callahan, C. W., Chen, C., Rugenstein, M., Bloch-Johnson, J., Yang, S., and Moyer, E. J.: Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming, Nat. Clim. Change, 11, 752–757, https://doi.org/10.1038/s41558-021-01099-2, 2021. a
Canolty, R. T. and Knight, R. T.: The functional role of cross-frequency coupling, Trends Cogn. Sci., 14, 506–515, https://doi.org/10.1016/j.tics.2010.09.001, 2010. a
Cao, Q., Hao, Z., Yuan, F., Su, Z., and Berndtsson, R.: ENSO Influence on Rainy Season Precipitation over the Yangtze River Basin, Water, 9, 469, https://doi.org/10.3390/w9070469, 2017. a, b
Chang, J., Wei, J., Wang, Y., Yuan, M., and Guo, J.: Precipitation and runoff variations in the Yellow River Basin of China, J. Hydroinform., 19, 138–155, https://doi.org/10.2166/hydro.2016.047, 2016. a, b
Chen, J.: Ecosystem of the Yangtze River Basin, Springer Singapore, Singapore, 163–220, ISBN 978-981-13-7872-0, https://doi.org/10.1007/978-981-13-7872-0_4, 2020. a
Fang, J., Kong, F., Fang, J., and Zhao, L.: Observed changes in hydrological extremes and flood disaster in Yangtze River Basin: spatial–temporal variability and climate change impacts, Nat. Hazards, 93, 89–107, 2018. a
Fang, L., Wang, L., Chen, W., Sun, J., Cao, Q., Wang, S., and Wang, L.: Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins, J. Clean. Prod., 314, 127995, https://doi.org/10.1016/j.jclepro.2021.127995, 2021. a
Fraser, A. M. and Swinney, H. L.: Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 1134–1140, https://doi.org/10.1103/PhysRevA.33.1134, 1986. a
Fu, G., lin Chen, S., Liu, C., and Shepard, D.: Hydro-Climatic Trends of the Yellow River Basin for the Last 50 Years, Climatic Change, 65, 149–178, https://doi.org/10.1023/B:CLIM.0000037491.95395.bb, 2004. a
Gao, T. and Wang, H.: Trends in precipitation extremes over the Yellow River Basin in North China: Changing properties and causes, Hydrol. Process., 31, 241R2428, https://doi.org/10.1002/hyp.11192, 2017. a, b
Gill, A. E.: Some simple solutions for heat-induced tropical circulation, Q. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905, 1980. a
Hall, J. and Perdigão, R. A. P.: Who is stirring the waters?, Science, 371, 1096–1097, https://doi.org/10.1126/science.abg6514, 2021. a
Hardiman, S. C., Dunstone, N. J., Scaife, A. A., Bett, P. E., Li, C., Lu, B., Ren, H.-L., Smith, D. M., and Stephan, C. C.: The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña, Environ. Res. Lett., 13, 024015, https://doi.org/10.1088/1748-9326/aaa172, 2018. a, b
Heng, C., Lee, T., Kim, J.-S., and Xiong, L.: Influence analysis of central and Eastern Pacific El Niños to seasonal rainfall patterns over China using the intentional statistical simulations, Atmos. Res., 233, 104706, https://doi.org/10.1016/j.atmosres.2019.104706, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2023. a
Horel, J. D. and Wallace, J. M.: Planetary-scale atmospheric phenomena associated with the Southern Oscillation, Mon. Weather Rev., 109, 813–829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2, 1981. a
Hsu, P.-C., Xie, J., Lee, J.-Y., Zhu, Z., Li, Y., Chen, B., and Zhang, S.: Multiscale interactions driving the devastating floods in Henan Province, China during July 2021, Weather and Climate Extremes, 39, 100541, https://doi.org/10.1016/j.wace.2022.100541, 2022. a
Hsu, P.-C., Xie, J., Lee, J.-Y., Zhu, Z., Li, Y., Chen, B., and Zhang, S.: Multiscale interactions driving the devastating floods in Henan Province, China during July 2021, Weather and Climate Extremes, 39, 100541, https://doi.org/10.1016/j.wace.2022.100541, 2023. a
Hu, X. and Yuan, W.: Evaluation of ERA5 precipitation over the eastern periphery of the Tibetan plateau from the perspective of regional rainfall events, Int. J. Climatol., 41, 2625–2637, https://doi.org/10.1002/joc.6980, 2021. a, b, c
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.: Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons, J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017 (data available at: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php, last access: 11 May 2023). a
Huang, Y., Xiao, W., Hou, B., Zhou, Y., Hou, G., Yi, L., and Cui, H.: Hydrological projections in the upper reaches of the Yangtze River Basin from 2020 to 2050, Sci. Rep.-UK, 11, 9720, https://doi.org/10.1038/s41598-021-88135-5, 2021. a
Jajcay, N., Hlinka, J., Kravtsov, S., Tsonis, A. A., and Paluš, M.: Time scales of the European surface air temperature variability: The role of the 7–8 year cycle, Geophys. Res. Lett., 43, 902–909, https://doi.org/10.1002/2015GL067325, 2016. a, b, c
Jajcay, N., Kravtsov, S., Sugihara, G., Tsonis, A. A., and Paluš, M.: Synchronization and causality across time scales in El Niño Southern Oscillation, npj Climate and Atmospheric Science, 1, 33, https://doi.org/10.1038/s41612-018-0043-7, 2018. a, b, c
Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., Wen, J., Gao, J., and Wang, J.: Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland, J. Hydrol., 595, 125660, https://doi.org/10.1016/j.jhydrol.2020.125660, 2021. a, b
Jiao, D., Xu, N., Yang, F., and Xu, K.: Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China, Sci. Rep.-UK, 11, 17956, https://doi.org/10.1038/s41598-021-97432-y, 2021. a
Krishnamurti, T. N.: Observational Study of the Tropical Upper Tropospheric Motion Field during the Northern Hemisphere Summer, J. Appl. Meteorol. Clim., 10, 1066–1096, https://doi.org/10.1175/1520-0450(1971)010<1066:OSOTTU>2.0.CO;2, 1971. a
Lavers, D., Simmons, A., Vamborg, F., and Rodwell, M.: An evaluation of ERA5 precipitation for climate monitoring, Q. J. Roy. Meteor. Soc., 148, 3152–3165, https://doi.org/10.1002/qj.4351, 2022. a
Lei, H., Li, H., Zhao, H., Ao, T., and Li, X.: Comprehensive evaluation of satellite and reanalysis precipitation products over the eastern Tibetan plateau characterized by a high diversity of topographies, Atmos. Res., 259, 105661, https://doi.org/10.1016/j.atmosres.2021.105661, 2021. a
Li, B., Feng, Q., Wang, F., Li, Z., Wang, X., Li, R., and Chen, W.: Chemical weathering evidence for East Asian Summer Monsoon rainfall variability in the upper reaches of the Yellow River since the Early Pleistocene, Palaeogeogr. Palaeocl., 618, 111523, https://doi.org/10.1016/j.palaeo.2023.111523, 2023. a, b
Li, C. and Zeng, G.: Impacts of ENSO on autumn rainfall over Yellow River loop valley in observation: Possible mechanism and stability, J. Geophys. Res.-Atmos., 118, 3110–3119, https://doi.org/10.1002/jgrd.50264, 2013. a, b
Li, W., He, X., Scaioni, M., Yao, D., Mi, C., Zhao, J., Chen, Y., Zhang, K., and Gao, J.: Annual precipitation and daily extreme precipitation distribution: possible trends from 1960 to 2010 in urban areas of China, Geomatics, Natural Hazards and Risk, 10, 1694–1711, https://doi.org/10.1080/19475705.2019.1609604, 2019. a
Lijuan, C., Manyin, Z., and Weigang, X.: Yangtze River Basin (China), Springer Netherlands, Dordrecht, 1551–1563, ISBN 978-94-007-4001-3, https://doi.org/10.1007/978-94-007-4001-3_99, 2018. a
Liu, C., Li, J., Liu, Q., Gao, J., Mumtaz, F., Dong, Y., Wang, C., Gu, C., and Zhao, J.: Combined influence of ENSO and North Atlantic Oscillation (NAO) on Eurasian Steppe during 1982–2018, Sci. Total Environ., 892, 164735, https://doi.org/10.1016/j.scitotenv.2023.164735, 2023. a
Liu, J., Jin, L., Huang, C., and Zhang, L.: Variations of Seasonal Precipitation in the Yellow River Basin and Its Relationship to General Circulation and SST, Proc. IAHS, 383, 5–12, https://doi.org/10.5194/piahs-383-5-2020, 2020. a, b
Liu, J., Tao, L., and Yang, Y.: Dynamical analysis of multi-scale interaction during the “21⋅7” persistent rainstorm in Henan, Atmos. Res., 292, 106857, https://doi.org/10.1016/j.atmosres.2023.106857, 2023. a
Lv, A., Qu, B., Jia, S., and Zhu, W.: Influence of three phases of El Niño–Southern Oscillation on daily precipitation regimes in China, Hydrol. Earth Syst. Sci., 23, 883–896, https://doi.org/10.5194/hess-23-883-2019, 2019. a, b
Manshour, P., Balasis, G., Consolini, G., Papadimitriou, C., and Paluš, M.: Causality and Information Transfer Between the Solar Wind and the Magnetosphere–Ionosphere System, Entropy, 23, 390, https://doi.org/10.3390/e23040390, 2021. a
Materia, S., Ardilouze, C., and Muñoz, Á. G.: Deciphering Prediction Windows of Opportunity: A Cross Time-Scale Causality Framework, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18766, https://doi.org/10.5194/egusphere-egu24-18766, 2024. a
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an Integrating Concept in Earth Science, Science, 314, 1740–1745, https://doi.org/10.1126/science.1132588, 2006. a
Meehl, G. A.: The Annual Cycle and Interannual Variability in the Tropical Pacific and Indian Ocean Regions, Mon. Weather Rev., 115, 27–50, https://doi.org/10.1175/1520-0493(1987)115<0027:TACAIV>2.0.CO;2, 1987. a, b
Mingzhong, X., Zhang, Q., and Singh, V.: Spatiotemporal variations of extreme precipitation regimes during 1961–2010 and possible teleconnections with climate indices across China, Int. J. Climatol., 37, 468–479, https://doi.org/10.1002/joc.4719, 2017. a
Muñoz, A. G., Goddard, L., Robertson, A. W., Kushnir, Y., and Baethgen, W.: Cross–Time Scale Interactions and Rainfall Extreme Events in Southeastern South America for the Austral Summer. Part I: Potential Predictors, J. Climate, 28, 7894–7913, https://doi.org/10.1175/JCLI-D-14-00693.1, 2015. a
Muñoz, A. G., Yang, X., Vecchi, G. A., Robertson, A. W., and Cooke, W. F.: A Weather-Type-Based Cross-Time-Scale Diagnostic Framework for Coupled Circulation Models, J. Climate, 30, 8951–8972, https://doi.org/10.1175/JCLI-D-17-0115.1, 2017. a
Muñoz, Á. G., Doblas-Reyes, F., DiSera, L., Donat, M., González-Reviriego, N., Soret, A., Terrado, M., and Torralba, V.: Hunting for “Windows of Opportunity” in Forecasts Across Timescales? Cross it, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15594, https://doi.org/10.5194/egusphere-egu23-15594, 2023. a
Paluš, M. and Vejmelka, M.: Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections, Phys. Rev. E, 75, 056211, https://doi.org/10.1103/PhysRevE.75.056211, 2007. a, b, c, d
Paluš, M., Komárek, V., Hrnčíř, Z., and Štěrbová, K.: Synchronization as adjustment of information rates: Detection from bivariate time series, Phys. Rev. E, 63, 046211, https://doi.org/10.1103/PhysRevE.63.046211, 2001. a
Perdigão, R. A., Ehret, U., Knuth, K. H., and Wang, J.: Debates: Does Information Theory Provide a New Paradigm for Earth Science? Emerging Concepts and Pathways of Information Physics, Water Resour. Res., 56, e2019WR025270, https://doi.org/10.1029/2019WR025270, 2020. a
Philip, S. and van Oldenborgh, G. J.: Shifts in ENSO coupling processes under global warming, Geophys. Res. Lett., 33, L11704, https://doi.org/10.1029/2006GL026196, 2006. a
Pikovsky, A., Rosenblum, M., and Kurths, J.: Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, ISBN 0521592852, 2001. a
Pineda, L. E., Changoluisa, J. A., and Muñoz, A. G.: Early onset of heavy rainfall on the northern coast of Ecuador in the aftermath of El Niño 2015/2016, Front. Earth Sci., 11, 1027609, https://doi.org/10.3389/feart.2023.1027609, 2023. a
Pui, A., Sharma, A., Santoso, A., and Westra, S.: Impact of the El Niño–Southern Oscillation, Indian Ocean Dipole, and Southern Annular Mode on Daily to Subdaily Rainfall Characteristics in East Australia, Mon. Weather Rev., 140, 1665–1682, https://doi.org/10.1175/MWR-D-11-00238.1, 2012. a
Qadimi, M., Alizadeh, O., and Irannejad, P.: Impacts of the El Niño-Southern Oscillation on the strength and duration of the Indian Summer monsoon, Meteorol. Atmos. Phys., 133, 553–564, https://doi.org/10.1007/s00703-020-00767-w, 2021. a
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of Sea Surface Temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003 (data available at: https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data, last access: 11 May 2023). a, b
Rivoire, P., Martius, O., and Naveau, P.: A Comparison of Moderate and Extreme ERA-5 Daily Precipitation With Two Observational Data Sets, Earth and Space Science, 8, e2020EA001633, https://doi.org/10.1029/2020EA001633, 2021. a
Schreiber, T.: Measuring Information Transfer, Phys. Rev. Lett., 85, 461–464, https://doi.org/10.1103/PhysRevLett.85.461, 2000. a
Sutcliffe, J.: The use of historical records in flood frequency analysis, J. Hydrol., 96, 159–171, https://doi.org/10.1016/0022-1694(87)90150-8, 1987. a
Takens, F.: Detecting strange attractors in turbulence, in: Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, vol. 898, edited by: Rand, D. A. and Young, L.-S., Springer, Berlin, 366–381, https://doi.org/10.1007/BFb0091924, 1981. a
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, 2020. a
Tsonis, A. A., Hunt, A. G., and Elsner, J. B.: On the relation between ENSO and global climate change, Meteorol. Atmos. Phys., 84, 229–242, https://doi.org/10.1007/s00703-003-0001-7, 2003. a
Ungerovich, M., Barreiro, M., and Kalemkerian, J.: Simulation of extreme rainfall events in Uruguay: Role of initialization and large scale dynamics, Atmos. Res., 292, 106842, https://doi.org/10.1016/j.atmosres.2023.106842, 2023. a
Wang, B. and LinHo: Rainy Season of the Asian-Pacific Summer Monsoon, J. Climate, 15, 386–398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2, 2002. a
Wang, B., Clemens, S., and Liu, P.: Contrasting the Indian and East Asian monsoons: Implications on geologic timescales, Mar. Geol., 201, 5–21, https://doi.org/10.1016/S0025-3227(03)00196-8, 2003. a
Wang, C.: A review of ENSO theories, Natl. Sci. Rev., 5, 813–825, https://doi.org/10.1093/nsr/nwy104, 2018. a
Webster, P. J. and Yang, S.: Monsoon and ENSO: Selectively Interactive Systems, Q. J. Roy. Meteor. Soc., 118, 877–926, https://doi.org/10.1002/qj.49711850705, 1992. a
Wei, L., Zhai, P., and Jinhui, C.: Research on the Relationship of ENSO and the Frequency of Extreme Precipitation Events in China, Advances in Climate Change Research, 2, 101–107, https://doi.org/10.3724/SP.J.1248.2011.00101, 2012. a
Wingfield, J. C., Hau, M., Boersma, P. D., Romero, L. M., Hillgarth, N., Ramenofsky, M., Wrege, P., Scheibling, R., Kelley, J. P., Walker, B., and Wikelski, M.: Effects of El Niño and La Niña Southern Oscillation events on the adrenocortical responses to stress in birds of the Galapagos Islands, Gen. Comp. Endocr., 259, 20–33, https://doi.org/10.1016/j.ygcen.2017.10.015, 2018. a
Xiao, M., Zhang, Q., and Singh, V. P.: Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River Basin, China, Int. J. Climatol., 35, 3556–3567, https://doi.org/10.1002/joc.4228, 2015. a, b, c, d
Xie, Y., Xing, J., Shi, J., Dou, Y., and Lei, Y.: Impacts of radiance data assimilation on the Beijing 7.21 heavy rainfall, Atmos. Res., 169, 318–330, https://doi.org/10.1016/j.atmosres.2015.10.016, 2015. a
Xu, J., Ma, Z., Yan, S., and Peng, J.: Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China, J. Hydrol., 605, 127353, https://doi.org/10.1016/j.jhydrol.2021.127353, 2022. a, b
Xu, K., Brown, C., Kwon, H.-H., Lall, U., Zhang, J., Hayashi, S., and Chen, Z.: Climate teleconnections to Yangtze river seasonal streamflow at the Three Gorges Dam, China, Int. J. Climatol., 27, 771–780, https://doi.org/10.1002/joc.1437, 2007. a, b
Yang, P., Zhang, Y., Li, J., Xia, J., Huang, H., and Zhu, Y.: Characterization of precipitation and temperature equilibrium and its driving forces in the Yangtze river basin under climate change, Clim. Dynam., 61, 5861–5873, 2023. a
Yang, S. L., Gao, A., Hotz, H. M., Zhu, J., Dai, S. B., and Li, M.: Trends in annual discharge from the Yangtze River to the sea (1865–2004) / Tendances et épisodes extrêmes dans les débits annuels du Fleuve Yangtze débouchant dans la mer (1865–2004), Hydrolog. Sci. J., 50, 825–836, https://doi.org/10.1623/hysj.2005.50.5.825, 2005. a, b
Yu, T., Chen, W., Huang, P., Feng, J., and Jiang, N.: Recent interdecadal changes in the Tropospheric Biennial Oscillation of the East Asian Summer monsoon, Atmos. Res., 277, 106301, https://doi.org/10.1016/j.atmosres.2022.106301, 2022a. a
Yu, T., Feng, J., Chen, W., Hu, K., and Chen, S.: Enhanced Tropospheric Biennial Oscillation of the East Asian Summer Monsoon since the Late 1970s, J. Climate, 35, 1613–1628, https://doi.org/10.1175/JCLI-D-21-0416.1, 2022b. a
Zhang, Q., Li, J., Singh, V., Xu, C.-Y., and Deng, J.: Influence of ENSO on precipitation in the East River Basin, South China, J. Geophys. Res.-Atmos., 118, 2207–2219, https://doi.org/10.1002/jgrd.50279, 2013. a, b
Zhang, Q., Zheng, Y., Singh, V. P., Luo, M., and Xie, Z.: Summer extreme precipitation in eastern China: Mechanisms and impacts, J. Geophys. Res.-Atmos., 122, 2766–2778, https://doi.org/10.1002/2016JD025913, 2017. a, b
Zhang, Q., Zhang, Y., and Wu, Z.: Multiple time scales of the southern annular mode, Clim. Dynam., 61, 1–18, https://doi.org/10.1007/s00382-022-06476-x, 2023. a
Zheng, X.-T., Xie, S.-P., Lv, L.-H., and Zhou, Z.-Q.: Intermodel Uncertainty in ENSO Amplitude Change Tied to Pacific Ocean Warming Pattern, J. Climate, 29, 7265–7279, https://doi.org/10.1175/JCLI-D-16-0039.1, 2016. a
Chief editor
Precipitation predictability is a complex subject, given the spatiotemporal complexity of the relevant mechanisms and interactions. This paper provides a clear and relevant contribution on the topic of precipitation predictability, grounded in causal inference approaches. Although the focus of the study is regional, the methodology is flexible and can serve as working example for guiding further research on the topic in other geographical domains.
Precipitation predictability is a complex subject, given the spatiotemporal complexity of the...
Short summary
The El Niño–Southern Oscillation (ENSO) is a gigantic natural orchestra playing with the temperature of Pacific waters and influencing air temperature and rainfall worldwide. Naturally, the “loudness” or amplitude of ENSO has effects on climate; however, consonance of its various tones, or phases of different ENSO oscillatory components, can exert causal effects on rainfall in some areas in China. In different regions, different aspects of ENSO dynamics can predict rainfall amounts.
The El Niño–Southern Oscillation (ENSO) is a gigantic natural orchestra playing with the...
Altmetrics
Final-revised paper
Preprint