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Abstract. The El Niño–Southern Oscillation (ENSO) is a dominant mode of climate variability influencing
temperature and precipitation in distant parts of the world. Traditionally, the ENSO influence is assessed con-
sidering its amplitude. Focusing on its quasi-oscillatory dynamics comprising multiple timescales, we analyze
the causal influence of phases of ENSO oscillatory components on scales of precipitation variability in east-
ern China, using information-theoretic generalization of Granger causality. We uncover the causal influence of
the ENSO quasi-biennial component on the precipitation variability on and around the annual scale, while the
amplitude of the precipitation quasi-biennial component is influenced by the low-frequency ENSO components
with periods of around 6 years. This cross-scale causal information flow is important mainly in the Yellow River
basin (YWRB), while in the Yangtze River basin (YZRB) the causal effect of the ENSO amplitude is dominant.
The presented results suggest that, in different regions, different aspects of ENSO dynamics should be employed
for prediction of precipitation.

1 Introduction

The Asian summer monsoon (ASM) is the most active mon-
soon system on the planet, bringing ample moisture from the
tropical ocean to the continent and accounting for more than
half of yearly rainfall (Krishnamurti, 1971; Wang and LinHo,
2002). The ASM is divided into two major sub-systems: the
South Asian summer monsoon (SASM), which is character-
ized by a pronounced low-level westerly wind, and the East
Asian summer monsoon (EASM), characterized by a pro-
nounced low-level southerly wind (Wang et al., 2003). Re-
cent climate change and related extreme weather events lead-
ing to catastrophic life and property loss in eastern Asia, par-
ticularly in China, necessitate water resource management
and security measures which must take into account sub-
stantial regional and intraseasonal fluctuation in precipitation

(Heng et al., 2020). The Yangtze River basin (YZRB) has
complicated and unusual precipitation patterns and a unique
regional climate, and it is a flood-prone area due to the influ-
ences of the East Asian and South Asian summer monsoons
(Huang et al., 2021; Sutcliffe, 1987). The EASM, which
is caused by a heat difference between the Pacific Ocean
and the Asian mainland, is a significant component of in-
land eastern Asia’s climate. The regional precipitation pat-
tern in China, in particular, is significantly correlated with
the EASM (Li et al., 2023). Precipitation is the primary fac-
tor influencing agricultural and economic development in the
YZRB (Lijuan et al., 2018).

The El Niño–Southern Oscillation (ENSO) (McPhaden et
al., 2006) is rooted in complex nonlinear large-scale inter-
actions within and between the atmosphere and ocean circu-
lation, and it causes a persistent abnormal fluctuation in sea
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surface temperature (SST) in the central and eastern equa-
torial Pacific. This fluctuation has a quasi-periodic charac-
ter with a 2- to 7-year period (Wang, 2018). In the begin-
ning, the notion of El Niño (EN) and the Southern Oscillation
(SO) originated by figuring out a positive ocean–atmosphere
feedback that triggers ENSO (Bjerknes, 1969). The initial
warm SST anomaly in the eastern equatorial Pacific reduces
the east–west SST gradient and slows the Walker circula-
tion, culminating in the westerly wind anomaly in the central
equatorial Pacific (Gill, 1980). The westerly wind anomaly,
in turn, promotes a change in ocean circulation, exacerbat-
ing the SST anomaly. Positive feedback causes the tropical
Pacific to warm, culminating in El Niño. Once El Niño de-
velops, negative feedbacks are required to transition from a
warm to a cold phase, a process called La Niña (Wingfield
et al., 2018). Precipitation varies inextricably with internal
and external oscillations in global sea surface temperature.
The Pacific Ocean’s alternate cycle of warming (El Niño) and
cooling (La Niña) states affects interannual climate variabil-
ity (Pui et al., 2012; Webster and Yang, 1992). ENSO im-
pacts global climate through its teleconnections, which may
serve as a reliable source of predictability (Horel and Wal-
lace, 1981); however, they are highly sensitive to global tem-
perature changes (Tsonis et al., 2003; Philip and van Old-
enborgh, 2006; Zheng et al., 2016). Climate change poses a
severe threat to China’s water security as extreme precipita-
tion events become more frequent, such as high-precipitation
events in Beijing in 2012, and more recently in Henan in
2021, which resulted in billions of dollars in economic losses
(Mingzhong et al., 2017; Li et al., 2019; Xie et al., 2015; Hsu
et al., 2022). The long-term patterns in EASM rainfall in the
Yellow River basin (YWRB) were driven by variations in air
circulation over the Pacific Ocean, such as the ENSO cycle
and the Pacific Decadal Oscillation (PDO) phase transition,
which may thrive as measurable factors in the prediction of
future EASM rainfall (Li et al., 2023). The links between
extreme precipitation and ENSO depend on magnitude, re-
gions, and seasons (Wei et al., 2012).

Several studies (Yang et al., 2005; Li and Zeng, 2013;
Zhang et al., 2013, 2017; Xiao et al., 2015; Gao and Wang,
2017; Cao et al., 2017; Chang et al., 2016; Hardiman et al.,
2018; Lv et al., 2019; Liu et al., 2020) have previously in-
vestigated the association between annual/seasonal precipi-
tation variability and ENSO in the Yangtze and Yellow River
basins of China. The current impact of ENSO on precipita-
tion on various sub-basin to basin scales across China and
the main river basins (Yangtze and Yellow) is summarized in
Table 1. In addition to the aforementioned studies, other re-
cent studies considered the combined influence of ENSO and
North Atlantic Oscillation (NAO) or PDO on future ENSO
projections (Qadimi et al., 2021; Alizadeh, 2022; C. Liu et
al., 2023). Some studies propose the strengthening of ENSO
events (Cai et al., 2021) in the 21st century due to global
warming, while others expect ENSO weakening (Callahan et
al., 2021).

Considering the quasi-cyclic character of ENSO, Jajcay
et al. (2018) studied interactions between different quasi-
periodic components of ENSO dynamics. They uncovered a
complex causal network involving instantaneous phases and
amplitudes of annual, quasi-biennial, and low-frequency (pe-
riod 4–7 years) ENSO modes. The observed causal inter-
actions lead to intermittent synchronization phenomena re-
sponsible for extreme ENSO events. In this study, we ana-
lyze the causal influence of instantaneous phases of ENSO
oscillatory components on scales of precipitation variabil-
ity in eastern China, using information-theoretic generaliza-
tion of Granger causality. Previous studies were restricted to
SST amplitude-based ENSO states and their influential role
in large scale interactions and precipitation variability. The
term “ENSO phases” is frequently used for three cases: high-
amplitude positive ENSO+ (El Niño), high-amplitude nega-
tive ENSO- (La Niña), and low-amplitude neutral ENSO0.
Here we will use the term “ENSO states” in order to avoid
confusion with the instantaneous phases of ENSO oscillatory
modes.

In the following sections we will describe the study area
and the analyzed data. Then we will introduce the applied
methods, from the scale-wise decomposition using the com-
plex continuous wavelet transform (CCWT hereafter), to the
conditional mutual information (CMI) as the causality mea-
sure and surrogate data method for assessing its statistical
significance, to the conditional means defined as tools for es-
timating the effect of the uncovered causal relations in mea-
surable physical quantities. Then we will present the results
and their discussion.

2 Data and methods

2.1 Study area

The present study includes a particular area of China through
which major Chinese rivers, the Yangtze and Yellow rivers,
flow and ultimately drain into sea, as shown in Fig. 1. The
Yangtze and Yellow rivers have distinct natural habitats and
development demands, despite the fact that they both orig-
inate on the Qinghai–Tibet Plateau (Fang et al., 2021). The
Yellow River, also known as China’s Mother River, initiates
in the Bayankala Mountains and travels eastward throughout
the Loess Plateau (LP) and the North China Plain, eventually
draining into the Bohai Sea. In accordance with a 1973 sur-
vey, the length of the Yellow River is 5464 km, and its basin
area of 752 443 km2 consists of three primary sub-basins:
the Tibetan Plateau (TP), the LP, and the alluvial plateau in
the east (Fu et al., 2004). The altitudes range from 2000 to
5000 m in the Tibetan Plateau in the western sections, which
stretch from the Bayankala Mountains to the eastern estuary,
and from 500 to 2000 m in the LP and in the alluvial plateau
to the east.

The Yangtze River is China’s longest river and the world’s
third largest, and it contributes considerably to China’s eq-
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Table 1. Short literature review. Previous studies regarding the impact of ENSO on annual and seasonal precipitation in Chinese regions.
∗ Et: evapotranspiration; Ppt: precipitation; YWRB: Yellow River basin; YZRB: Yangtze River basin; ERB: East River basin.

Authors Region/study period Variable Observation

Yang et al. (2004) YWRB∗ (1951–2000) Ppt∗ and Et∗ Decreased Ppt and increased Et during 1990–2000
Li and Zheng (2013) YWRB (1951–2012) Ppt and ENSO Decadal weakening of fall Ppt due to ENSO
Zhang et al. (2013) ERB∗ (1956–2005) Ppt and ENSO Strong correlation between ENSO and April Ppt
Xiao et al. (2015) YZRB∗ (1960–2019) Ppt and ENSO Strong relationship between ENSO and seasonal Ppt
Zhang et al. (2016) YZRB (1979–2015) Ppt and ENSO Dominant/predictable impact of ENSO on Asian Ppt
Gao and Wang (2017) YWRB (1960–2011) Extreme Ppt Weakening of summer monsoon
Cao et al. (2017) YZRB (1960–2015) Ppt and ENSO Strong ENSO impact on wetting and drying Ppt pattern
Chang et al. (2017) YWRB (1956–2010) Ppt and runoff Abrupt change in Ppt with insignificant trends at eight stations
Hardiman et al. (2018) YZRB (1992–2015) Ppt and ENSO Linear impact of ENSO on summer Ppt
Lv et al. (2019) China (1960–2013) Ppt and ENSO Decreased Ppt but increased extreme events attributed to ENSO
Liu et al. (2020) YWRB (1961–2017) Seasonal Ppt Linear impact of ENSO on winter and spring Ppt

Figure 1. Study area. (a) Localization of the selected region in the
Yangtze and Yellow River basins. (b) Detailed view of the study
area, including the positions of selected stations.

uitable economic and ecological growth (Xiao et al., 2015).
The ecological growth of the Yangtze River basin refers to
the development and changes in its ecosystems over time,
influenced by both natural processes and human activities.
The Yangtze River basin has undergone significant ecologi-
cal changes due to various factors, such as climate, geogra-
phy, and human impact. The basin’s high, middle, and lower

portions have various climates and geomorphology, which
contribute to its great biodiversity and huge number of un-
common and unique species (Chen, 2020). Therefore, its
ecological growth is as important as its economic growth.

The Yangtze River’s primary course commences at the TP
and travels 6300 km east to the East China Sea. The YZRB
is predominantly controlled by Siberian northwestern win-
ter and southeastern summer monsoons. The winter monsoon
brings cold, dry air from Siberia during the winter months. It
has the potential to diminish temperatures and precipitation,
resulting in drought conditions in certain areas of the basin
(Yang et al., 2023). Yichang hydrological station (YHS) sep-
arates the Yangtze River into upper and lower sections and is
renowned as the “Gateway to the Three Gorges”. The Three
Gorges Dam (TGD) lies just approximately 40 km above (Xu
et al., 2007). The territory above Yichang station is com-
monly regarded as the upper sub-basin of the YZRB, the re-
gion around Yichang station and Hukou station is the middle
sub-basin, and the region under Hukou station is the lower
sub-basin of the YZRB (Fang et al., 2018). The YZRB lies
in a subtropical and temperate climate zone dominated by
monsoonal winds; the southern region exhibits a subtropical
climate, while the northern region is a temperate zone. Major
flooding in the YZRB is linked with warm ENSO, and strong
summer monsoons typically occur after El Niño conditions in
the winter, while weak winter monsoons occur after La Niña
(Xu et al., 2007). Our area of study covers the southeastern
part of the YZRB.

2.2 Gridded data

We have used fifth-generation atmospheric reanalysis of
the European Centre for Medium-Range Weather Fore-
casts (ECMWF), namely ERA5. The fifth generation was
launched in 2017 by the Copernicus Climate Change Service
(Jiang et al., 2021). Jiang et al. (2021) explicitly explained
the advantages of ERA5 concerning advanced assimilation
system and parameterization schemes as compared to the
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previously launched generations. Furthermore, the spatial
and temporal range was improvised by enabling the hourly
estimation at a horizontal resolution of 0.25° covering 137
vertical levels. The ERA dataset is on 1.5°× 1.5° grids
from 1979 to present. The SST over the tropical Pacific
is based on the Hadley Centre sea ice and sea surface
temperature data (HadISST) (Rayner et al., 2003). The top
level is 0.01 hPa around 80 km above the ground surface.
The ERA5 data are freely available for users. Our data range
from 1951 to 2020 for the selected study area and were
downloaded from https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-single-levels-monthly-means?tab=overview
(last access: 11 January 2021).

Recently, some studies focused on comparing the per-
formance of model-based precipitations such as ERA to
satellite products for mainland Chinese regions and the Ti-
betan Plateau, since reliable precipitation retrievals with fine
spatiotemporal resolutions are vital in global and regional
evaluations (Xu et al., 2022; Hu and Yuan, 2021). Model-
based precipitation estimates, which are an essential alter-
native to satellite-based precipitation products, have grown
rapidly in recent decades. Model-based products outperform
satellite products in subregions of temperate monsoon cli-
mate (TM) and temperate continental climate (TC) (Xu et
al., 2022). However, when compared to gauge precipita-
tion, ERA5 performance was being compromised in terms
of frequency and intensity for the Tibetan Plateau (Hu and
Yuan, 2021). The latter study further argued that rainfall
gauges on the Tibetan Plateau are generally positioned in
valleys and may not correctly reflect the region’s average.
Another study for the same regions of the TP and Sichuan
observed that ERA-Interim exhibits better performance than
IMERG_E, IMERG_L, IMERG_F, CHIRPS, TRMM_3B42,
and TRMM_3B42RT (Lei et al., 2021). Future studies will
require additional observations and clarification of station lo-
cations and higher levels (Hu and Yuan, 2021). ERA5 has
replaced ERA-Interim, and this release offers several im-
provements over the previous ERA-Interim reanalysis solu-
tion due to improved design and generation methodologies.
In comparison to ERA-Interim, this dataset is more advanced
due to several factors, including a high resolution, day-by-
day archiving, diverse data sources, better assimilation, and
diversified data products (Tarek et al., 2020). The assess-
ment of the monthly flood season (Lavers et al., 2022) in-
dicates that ERA5 is slightly better than the other models.
It is better in the extratropics. ERA5 precipitation has been
found to be a sufficiently excessive source of information in
the non-tropical areas. Therefore, it is suggested that ERA5
be utilized primarily for extratropical precipitation monitor-
ing. ERA5 performs spatially across China, with the highest
correlation coefficient values in eastern, northwestern, and
northern China and the lowest biases in southeastern China
(our study area) (Jiao et al., 2021). Similarly, intensity com-
parisons show strong agreement between ERA5 and EOBS
in Germany, Ireland, Sweden, and Finland but some dis-

agreement in places with scarce input stations (Rivoire et al.,
2021).

Figure 2 illustrates the distribution of mean precipitation in
the south of eastern China from 1951–2020, its standard de-
viation, and the relative difference of ENSO states. The mean
precipitation is high in the southeastern part of the YZRB
compared to the YWRB. It reaches its maximum limit of
8 mmd−1 in some areas of the YZRB, while it remains in
the lower range of 1.4 to 3.5 mmd−1 in upper areas of the
YWRB, as shown in Fig. 2a. The standard deviation, char-
acterizing the overall precipitation variability, also exhibits
the same pattern as the mean precipitation. The variability
is higher in southeastern parts of the YZRB, whereas it is
lower for the YWRB, as shown in Fig. 2b. It is interesting to
assess the variability relative to mean precipitation; therefore
the standard deviation divided by the mean precipitation is
shown in Fig. 2d. The relative variability is much higher in
the YWRB compared to the YZRB. It reaches the maximum
level of 1.4 in most areas of the YWRB; however, it remains
at 0.63 to 0.93 in the southeastern parts of the YZRB. For
comparison, we map in Fig. 2c the difference between the
ENSO positive and neutral states related to the mean pre-
cipitation. We observe that the relative difference is lower
than the overall variability in the entire selected region but
increases in the same southeastern parts of the YZRB with
heavy precipitation, attaining the range of 0.17–0.31.

2.3 Station data and EASM index

The observational data used in this paper are monthly precip-
itation records (from January 1955 to December 2016) pro-
vided by the National Meteorological Information Center of
the China Meteorological Administration (https://data.cma.
cn/data/detail/dataCode/A.0019.0001.S001.html, last access:
7 August 2017). The monthly East Asian summer monsoon
index (from January 1948 to December 2015) is defined by
Zhang et al. (2003).

2.4 ENSO data

The Niño 3.4 series was downloaded from https:
//psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
(last access: 11 May 2023). ENSO states were defined
as warm (ENSO+) and cold (ENSO-) periods based
on crossing the threshold of ±0.5 °C for the Oceanic
Niño Index (ONI) (3-month running mean of ERSST.v5
SST anomalies in the Niño 3.4 region). Neutral ENSO0
means an ONI between ±0.5 °C. The ONI was obtained
from https://origin.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/ONI_v5.php (last access: 11 May
2023).
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Figure 2. Precipitation and its variability in the study area. Spatial distribution of precipitation and its variability during 1951–2020: (a) mean
precipitation, (b) precipitation standard deviation (SD), (c) relative difference between the ENSO positive and ENSO neutral state, and
(d) relative precipitation SD (SD/mean precipitation).

2.5 Scale-wise decomposition, instantaneous phases,
and amplitudes

Consider a time series {x(t)}, t = 1,2,3, . . .,N , here either
monthly Niño 3.4 index or precipitation recordings, reflects
dynamics on different timescales. The latter can be extracted;
i.e., the time series can be decomposed using the complex
continuous wavelet transform (CCWT hereafter) with the
complex Morlet wavelet (Torrence and Compo, 1998):

ψ(t)=
1√

2πσ 2
t

exp
(
−
t2

2σ 2
t

)
exp(2πif t), (1)

where i =
√
−1, σt is the bandwidth parameter, and f is the

central frequency of the wavelet. σt determines the rate of
decay of the Gauss function, and its reciprocal value σf =
1/πσt determines the spectral bandwidth. CCWT converts
the time series x(t) into a set of complex wavelet coefficients
W (t,f ):

W (t,f )=

∞∫
−∞

ψ(t ′)x(t − t ′)dt ′. (2)

The central wavelet frequency f defines the related
timescale. Due to the limited spectral bandwidth, we obtain
an oscillatory quasi-periodic component W (t,f ) reflecting
temporal variability at that timescale. Using the analytic sig-
nal approach (Pikovsky et al., 2001), a complex oscillatory

time series can be represented as

W (t,f )= sf (t)+ iŝf (t)= Af (t)eiφf (t), (3)

where sf (t)= Real{W (t,f )} and ŝf (t)= Im{W (t,fi)}.

φf (t)= arctan
ŝf (t)
sf (t)

(4)

is the instantaneous phase, and

Af (t)=
√
sf (t)2+ ŝf (t)2 (5)

is the instantaneous amplitude of the oscillatory compo-
nent W (t,f ). Paluš (2014) describes how the instantaneous
phases and amplitudes can be used to uncover causal cross-
scale information transfer.

2.6 Conditional mutual information as a causality
measure

Paluš (2014) describes in detail the use of the conditional mu-
tual information as a causality measure for inferring cross-
scale causal relations. Here we briefly remind the basic ideas.

Mutual information I (X;Y ) of two random variables X
and Y is defined as I (X;Y )=H (X)+H (Y )−H (X,Y ),
where the entropies H (X), H (Y ), and H (X,Y ) are given in
the usual Shannonian sense (Cover and Thomas, 1991). The
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conditional mutual information I (X;Y |Z) of the variablesX
and Y given the variable Z is defined using the conditional
entropies (Cover and Thomas, 1991; Paluš, 2014) as

I (X;Y |Z)=H (X|Z)+H (Y |Z)−H (X,Y |Z). (6)

Consider two time series {x(t)} and {y(t)} regarded as
realizations of two stationary ergodic stochastic processes,
{X(t)} and {Y (t)}, which represent observables of two pos-
sibly coupled systems. Alternatively, the time series {x(t)}
and {y(t)} can be understood as one-dimensional projec-
tions of trajectories of dynamical systems Ẋ = fX(X,Y ) and
Ẏ = fY (Y ,X), where X and Y are vectors of dimensions d1
and d2, respectively.

Paluš et al. (2001) proposed to measure the information
transferred from system (process) {Y (t)} to system (process)
{X(t)} using the conditional mutual information I (Y ;Xτ |X),
where X =X(t) and Xτ =X(t+ τ ).

Using the idea of Markov processes, Schreiber (2000) in-
troduced a functional of conditional probability distributions
called transfer entropy. Paluš and Vejmelka (2007) show that
the transfer entropy is equivalent to CMI I (X;Y τ |Y ). Bar-
nett et al. (2009) show analytically that the transfer entropy
(i.e., CMI I (X;Y τ |Y )) is equivalent to Granger causality for
Gaussian processes. Therefore, causal influence is frequently
interpreted as information transfer, or directed information
flow. However, it is worth noting that this interpretation of
the term “information flow” might not be compatible with the
term meaning in information physics (Perdigão et al., 2020;
Hall and Perdigão, 2021) or in the theory of dynamical sys-
tems where the information flow can be derived from system
equations (Liang, 2013).

If the measurement of information about the future Xτ of
the process {X}, with τ time units shifted forward (“τ -future”
hereafter), contained in the process {Y } is used for testing
the existence of a causal link from {Y } to {X}, denoted as
Y →X, Paluš and Vejmelka (2007) show that the vectors X

and Y τ can be substituted by one-dimensional components x
and yτ , and the CMI in the time series representation reads
as

I (y(t);x(t + τ )|x(t),x(t − η1), . . .x(t − (d1− 1)η1)). (7)

The condition in CMI (Eq. 7) must contain complete in-
formation about the state of the system X (Paluš and Ve-
jmelka, 2007). According to the theorem of Takens (1981),
the state of a d1-dimensional dynamical system (a point in
the state space) is mapped by the set of time-lagged coor-
dinates x(t),x(t − η1), . . .x(t − (d1− 1)η1), where η1 is the
backward time lag used in the embedding of system X. This
time lag can be set according to the embedding construction
recipe based on the first minimum of the mutual information
(Fraser and Swinney, 1986).

The causal link X→ Y is tested in analogy with Eq. (7):

I (x(t);y(t + τ )|y(t),y(t − η2), . . .y(t − (d2− 1)η2)). (8)

For estimating the information transfer delay, Wibral et al.
(2013) proposed the following CMI reformulation:

I (x(t);y(t + τ )|y(t + τ − 1),

y(t + τ − 1− η2), . . .y(t + τ − 1− (d2− 1)η2)),
(9)

in which the condition moves forward with the increasing
prediction horizon τ , while, in the formulation of Paluš and
Vejmelka (2007), the condition is kept in the same position
for all values of τ . The Wibral et al. (2013) formula (Eq. 9)
is used in order to establish the causal delay, while Eq. (7)
and Eq. (8) are used for testing the statistical significance of
uncovered causal relations. The Wibral et al. (2013) formula
(Eq. 9) was proposed as a CMI in the case of self-prediction
optimality (SPO) of y states prior to the forecast delay τ .
This is a very conservative estimate of CMI/TE, since the
SPO may never be reached with CMI/TE of Eq. (9) being
underestimated. CMI estimated according to Eq. (7) or (8) is
more sensitive with respect to the detection of causality.

For testing the cross-scale causality, before applying
Eq. (8), the Niño 3.4 and the precipitation data underwent
CCWT, x(t) was substituted by the ENSO phase φfi (t) for a
particular frequency fi , and y(t) was substituted by the pre-
cipitation amplitude Afj (t) for a frequency fj . The Gaus-
sian estimator was used and d2 = 3 was chosen as in Paluš
(2014) based on “saturation of the results”, i.e., obtaining
unchanged results for d2 = 4 in comparison with d2 = 3.
The tested value is the CMI average for time lags τ = 1 to
6 months, according to the recommendation in Paluš and Ve-
jmelka (2007).

2.7 Surrogate data for statistical testing

Finite-sample estimates of mutual information are always
nonzero. In order to assess the presence of causal relations in
the analyzed data, it is suitable to relate the CMI values com-
puted from studied data to ranges of CMI values obtained
from uncoupled processes that share statistical properties of
the analyzed data. Using the surrogate data testing procedure,
we manipulate the original data in a randomization proce-
dure that preserves the original frequency spectra or variance
on all relevant timescales. In this study, we use the circular
time-shifted surrogate data, proved effective for the inference
of causality (Manshour et al., 2021). For the analyzed time
series X of the length N , we generate 100 independent real-
izations of time-shifted surrogates as follows: for each real-
ization, an integer variable k < N is randomly chosen. Then,
by moving the first k values of X(1),X(2). . .X(k) to the end
of the time series, we generate the circular time-shifted sur-
rogate series Xsurr as

Xsurr
=

{X(k+ 1),X(k+ 2), . . .,X(N ),X(1),X(2), . . .,X(k)}.
(10)

In order to avoid surrogates very close to the original series,
or an influence of seasonality, k is constrained as follows:
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min(k,N − k)> 200 and 3<mod(k,12)< 10. The results
of the surrogate data tests can be represented as the Z-score;
e.g., for CMI, marked as I , it is

Z =
Id − Is

σs
, (11)

where Id is the CMI value estimated from the studied data, Is
is the mean for 100 realizations of the surrogate data, and σ 2

s

is their variance. Typically, the results are considered statis-
tically significant for Z > 2. In the cross-scale analyses, the
surrogate data are applied directly to the raw data before the
application of the wavelet transform, using different shifts for
the phase and amplitude series.

2.8 Conditional means as the effect size

The results reported below present statistical evidence of the
cross-scale causal influence of ENSO on precipitation vari-
ability in eastern China. In order to quantify this causal effect
in a measurable physical quantity and compare it with the ef-
fect of the amplitude-based ENSO states, we employed the
method of conditional means (CM) (Jajcay et al., 2016), il-
lustrated in Fig. 3. A segment of Niño 3.4 time series data is
shown in black in Fig. 3a, while the ENSO states are marked
by color: light red is used for El Niño, i.e., the ENSO positive
state; light blue is used for La Niña, i.e., the ENSO negative
state; and white is used for the ENSO neutral state given by
the Oceanic Niño Index between−0.5 and 0.5. The Niño 3.4
time series (black) is plotted again in Fig. 3b together with its
CCWT-extracted 6-year oscillatory component (blue curve)
and the instantaneous phase (red saw-like pattern) of the lat-
ter. In each cycle, the phase rises from−π to π (note that the
data in Fig. 3b are normalized for the common scale plot).
However, the angular range of one cycle (2π ) is only ap-
proximately equal to 6 years; i.e., the cycle period is variable
within a small range given by the CCWT bandwidth. Each
cycle of 2π radians is divided into six equidistant bins (dif-
ferent colors and patterns in Fig. 3c and d). Thus, each bin
is only approximately equal to 1 year in real time. The phase
bins are used to compute precipitation conditional means in
order to see patterns of precipitation variability related to the
considered ENSO cycle. The conditional mean for a partic-
ular bin is obtained by averaging precipitation data (from a
particular station or a grid point) belonging to that bin in all
cycles, e.g., the averaging runs over all blue bins over the
whole dataset (see Fig. 3d for a subset of the data).

Computing the conditional means, the precipitation time
series is not exactly aligned in time with the ENSO states or
the ENSO phase bins, since the causal effect of ENSO can
occur with some time delay. The causal delay can be found
in the causality analysis as follows: in Fig. 4a, the conditional
mutual information represents the causal influence of ENSO
states on the precipitation (EASMI-ZQY index). It was com-
puted using the Wibral et al. (2013) formula (Eq. 9) in which

Figure 3. ENSO states and binning of the low-frequency cycle.
From top to bottom: (a) a segment of anomalized Niño 3.4 (black)
and ONI (gray) time series with marked ENSO states – warm
episodes ENSO+ (light red), cold episodes ENSO- (light blue), and
neutral ENSO0 (white). (b) The same segment of the anomalized
Niño 3.4 time series (black) with its CCWT-extracted 6-year com-
ponent (blue) and the instantaneous phase (red) of the latter. (c) The
6-year Niño 3.4 component (blue) and its instantaneous phase (red).
The bars of different colors and patterns mark the six phase bins into
which each 6-year cycle is divided. (d) A segment of reanalysis pre-
cipitation data from the grid point 33.75° N, 115.75° E (black) and
the 4-month lagged phase (red) of the 6-year Niño 3.4 cycle and re-
lated phase bins (bars of different colors and patterns) in which the
precipitation conditional means are computed.

x(t) is a discrete three-value function of the ENSO states,
y(t) is the precipitation EASMI-ZQY index discretized into
four bins using the equiquantal binning algorithm (Paluš and
Vejmelka, 2007), and d2 = 1. It is plotted as a function of
causal delay. The blue line shows the causal influence in the
direction from ENSO to precipitation, while the dashed black
line shows the causal influence of the precipitation on the
ENSO states. The significance level is shown by the red line.
It is evident that there is no significant causality from precip-
itation to ENSO; however, the influence of ENSO exhibits a
significant peak for the time lag of 6 months. Therefore, in
computing the conditional precipitation means for the ENSO
states, precipitation data are advanced by 6 months.

Figure 4b represents the conditional means, i.e., the av-
erage precipitation for the ENSO states using the precipi-
tation data at the grid point (33.7° N, 115.75° E). The three
ENSO states, i.e., negative, positive, and neutral, are shown
with light-blue, light-red, and white bars, respectively. The
differences between the two adjacent states are marked with
black bars. The first black bar represents the difference be-
tween the negative and neutral ENSO states, while the next
one exhibits the difference between the positive and neutral
ENSO states. The maximum difference, expressed as a rel-
ative value (the difference divided by the average precipita-
tion), is equal to 0.259, which is shown by the vertical red
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Figure 4. Causal mechanisms and their effects. (a) Conditional mutual information measuring the causal influence of ENSO states on
precipitation characterized by the EASMI-ZQY index (solid blue line) and causality in the opposite direction (dashed black line). The red
line is the significance threshold given as the mean+2SD for the surrogate data. (b) Conditional means for the precipitation data from the
grid point 33.75° N, 115.75° E for the different ENSO states, ENSO- (light blue), ENSO0 (white), and ENSO+ (light red), computed for
the lag of 6 months. Differences between the adjacent states are in black. (c) Evaluation of statistical significance of the maximum relative
difference between states, ENSO- and ENSO0 (vertical red line), using the histogram for the surrogate data (black). (d) Conditional mutual
information measuring the causal influence of the ENSO 6-year cycle phase on the 2-year cycle amplitude for precipitation characterized by
the EASMI-ZQY index (solid blue line) and causality in the opposite direction (dashed black line). The red line is the significance threshold
given as the mean+2SD for the surrogate data. (e) Conditional means for the precipitation data from the grid point 33.75° N, 115.75° E for
the six phase bins within the ENSO 6-year cycle (various colors). Differences between adjacent bins (red) are regarded as the amplitude of
the precipitation quasi-biennial cycle. The effect of the 6-year cycle phase is estimated as the maximum difference of the bin values – here,
the difference between the values of the sixth (light red) and third (green) bins. This value relative to the total precipitation mean is 0.264
and is marked by the vertical red line in panel (f) and found statistically significant in comparison with the surrogate histogram (black).

line in Fig. 4c, while the black line illustrates the histogram
of the same differences obtained from the surrogate data. It
can be observed that the red bar lies inside the surrogate
histogram which means the difference between two ENSO
states is not statistically significant in this grid point.

Figure 4d shows the conditional mutual information show-
ing the causal influence of the phase of the 6-year compo-
nent obtained from the Niño 3.4 time series, on the precipi-
tation amplitude for the variability in the quasi-biennial scale
(blue). It was again computed using the Wibral et al. (2013)
formula (Eq. 9); however, since the cross-scale causality is
evaluated, before applying Eq. (9), the Niño 3.4 and the pre-
cipitation data underwent CCWT, x(t) was substituted by the
ENSO phase φfi (t) for a particular frequency fi , and y(t)
was substituted by the precipitation amplitude Afj (t) for a
frequency fj . The Gaussian estimator was used and d2 = 3
was chosen as in Paluš (2014). It is evident again that there is
no significant causality from the precipitation to the ENSO
phase shown by the dashed black line. However, the influ-

ence of the ENSO phase on the amplitude of precipitation
exhibits a clear significant peak in approximately 4 months
(lags 2–6 months). Therefore, for the calculation of condi-
tional means for the six phase bins, we used the ENSO phase
bins with a time shift of 4 months back relative to precip-
itation data. Figure 4e represents the results of conditional
means computed in different ENSO phase bins, marked by
different light colors, while differences between the adjacent
bins are displayed as red bars.

In order to evaluate the influence of the low-frequency
ENSO mode on precipitation, the difference is taken between
the maximum and minimum of the conditional means in the
six phase bins. Here, again expressed as the relative value, it
is 0.264, and is illustrated by the vertical red line in Fig. 4f.
The histogram obtained from the surrogate data using the
same procedure shows this value outside the surrogate dis-
tribution. Thus, the effect of the slow ENSO cycle on precip-
itation in this grid point is statistically significant.
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Table 2. Geographical coordinates of seven local precipitation sta-
tions used in the combined region of the Yellow and Yangtze River
basins.

Station ID Station name Province Longitude Latitude

57355 Badong Hubei 110.4° E 31° N
57494 Wuhan Hubei 114.1° E 30.6° N
57598 Xiushui Jiangxi 114.6° E 29° N
57799 Ji’an Jiangxi 114.9° E 27.1° N
58102 Bozhou Anhui 115.7° E 33.7° N
58457 Hangzhou Zhejiang 120° E 30.2° N
58527 Jingdezhen Jiangxi 117.2° E 29.3° N

3 Results

The cross-scale causal influence of ENSO on eastern Chinese
precipitation, measured as the information transfer from the
time series of the instantaneous phase of an oscillatory ENSO
component to the time series of the instantaneous amplitude
of a precipitation oscillatory component, was evaluated us-
ing conditional mutual information and a surrogate data test-
ing approach (see Methods) and is presented in Fig. 5. The
ENSO phase for a particular timescale was extracted from
the Niño 3.4 index using complex continuous wavelet trans-
form. Similarly, the precipitation amplitude for a particular
timescale was also extracted using the CCWT for the relevant
central period from the EASMI-ZQY index, from station pre-
cipitation data, or from reanalysis data. Firstly, we evaluate
the causal ENSO effect on the Eastern Asian summer mon-
soon index characterizing the whole eastern China region:
the EASMI-ZQY index (Zhang et al., 2003) (Fig. 5a). The
dominant patterns of statistically significant causality have
been identified as an influence of the phase of the ENSO os-
cillatory component with the period close to 2 years (quasi-
biennial, or QB component hereafter) on the amplitude of the
annual cycle in the precipitation index and related variability
on the timescale close to 1 year (quasi-annual, or QA vari-
ability hereafter). The QA precipitation variability is also in-
fluenced by slower ENSO oscillations with periods between
4 and 6 years. Another identified area of the cross-scale
phase–amplitude causality is the influence of the slow ENSO
modes (periods starting under 5 and ending over 6 years)
on the biennial and quasi-biennial precipitation variability.
The results from the EASMI-ZQY index are, to various ex-
tents, repeated in the precipitation data of individual stations.
For instance, in the precipitation data from Hangzhou station
58457 in Zhejiang (Fig. 5c), we can see some influence of the
ENSO QB and slow modes on the QA precipitation variabil-
ity and a marked influence of the phase of the low-frequency
ENSO modes (periods between 5 and 7 years) on the am-
plitude of QB precipitation variability. In the precipitation
data from Bozhou station 58102 in Anhui (Fig. 5e), the am-
plitude of the precipitation QB variability is influenced by a
broadband low-frequency (LF) ENSO oscillatory mode with

periods from 3 to 7 years. In all figures but Fig. 5b, we can
see a number of small spots of false positive results which
occur due to multiplicity of the tests in the phase period ×
amplitude period plane. This effect can be partially attenu-
ated by taking an average of results from several stations,
such as the results in Fig. 5b. The only spots of significant
causality which survived the averaging give the influence of
the ENSO QB mode on the precipitation QA variability and
the influence of the ENSO low-frequency mode in a period
of around 6 years on the amplitude of the QB precipitation
variability.

The reported results present statistical evidence of the
cross-scale causal influence of ENSO on precipitation vari-
ability in eastern China. In order to quantify this causal effect
and compare it with the effect of the amplitude-based ENSO
states, we employed the method of conditional means (CM)
(Jajcay et al., 2016), illustrated in Fig. 3.

The conditional means of precipitation, conditioned either
on the ENSO states or on the six phase bins and derived from
the instantaneous phase of the low-frequency ENSO compo-
nent with a period of around 6 years, were computed and
their maximum differences were statistically evaluated for
all grid points in the selected area and mapped in Fig. 6.
Thus, Fig. 6 illustrates two different approaches to measure
the causal effect of ENSO on precipitation in southeastern
China. Figure 6a represents the map of the maximum relative
difference (RD) in the six phase bins, while Fig. 6b shows the
maximum RD between ENSO states (positive, negative, and
neutral). In order to see the causal effects in physical quan-
tities, Fig. 6c and d represent absolute values for the same
variables as selected in Fig. 6a and b.

In Fig. 6b and d, we evaluate the influence of ENSO states;
i.e., from the point of view of ENSO oscillatory dynamics, it
is the influence of the ENSO amplitude on precipitation. The
values of RD are high and statistically significant in the south
of the YZRB (Fig. 6b and d), while, in the case of the influ-
ence of the phase of low-frequency modes of ENSO, the sig-
nificant areas are located mainly around the YWRB (Fig. 6a
and c).

Extending the circle of investigation, we further observed
the values and the occurrence of maxima and minima of the
precipitation conditional means in relation either to ENSO
states or to the six phase bins of the low-frequency ENSO
component phase. Considering the ENSO states, the precipi-
tation conditional means maxima, expressed relatively to the
total mean, peak in the YZRB with ranges from 1.08 to 1.23
(Fig. 7a), while the minima range from 0.8 to 0.9 for the en-
tire study area but increase at a few locations of the lower
YZRB (Fig. 7b). Answering the question of in which ENSO
state the precipitation conditional means maxima occur, the
ENSO positive state dominates, mainly in the YZRB, while
in the YWRB the maxima occur in the ENSO negative state
(Fig. 7c). The precipitation conditional means minima occur
exclusively in the ENSO neutral state (Fig. 7d).
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Figure 5. Cross-scale ENSO influence on precipitation in eastern China. Cross-scale phase–amplitude information transfer characterizing
the causal influence of the phase of ENSO oscillatory components, with periods given on the abscissa, on the amplitude of precipitation
oscillatory components, with periods given on the ordinate. Significant causal influence of ENSO detected in (a) the EASMI-ZQY index;
(b) precipitation data from six stations in Hubei, Jiangxi, and Zhejiang (see Table 2, averaged results); (c) precipitation data from station
58457 Hangzhou in Zhejiang; (d) precipitation data from station 58527 Jingdezhen in Jiangxi; (e) precipitation data from 58102 Bozhou
station in Anhui; and (f) ERA5 reanalysis precipitation data from the grid point 33.75° N, 115.75° E. The color codes present the conditional
mutual information Z-score for Z > 2, obtained in the test using 100 realizations of surrogate data.

Considering the six phase bins of the ENSO low-
frequency component and the precipitation conditional
means maxima, expressed relatively to the total mean, the
highest values ranging from 1.1 to 1.23 dominate the YWRB
region. Only a few areas in the YZRB reach this range, while
most of the YZRB study area receives values from 1.03 to
1.09 (Fig. 8a). This is another piece of evidence suggesting
that the dominant ENSO causal mechanism in the YWRB
area is due to the phase of the low-frequency ENSO compo-
nent and not due to the ENSO amplitude, in addition to the
areas of statistically significant differences in Fig. 6a and c.

The precipitation conditional means minima peak in the
lower reaches of the YZRB ranging from 0.96 to 1.02, while
the lowest values under 0.89 are confined to the northwestern
quadrant of the study area. In the majority of the study area,
the values range from 0.89 to 0.95 (Fig. 8b). Discussing the
occurrence of CM extrema within the LF cycle, we can refer
to bin numbers, or divide the cycle into three states, using the
term negative state for bins 1 and 6 at the edge of the cycle
reaching cycle minima, positive state for central bins 3 and
4 where the cycle peaks, and neutral state for bins 2 and 5
(see Fig. 3c). In the YZRB and south of it, the minima oc-
cur in phase bins 2, 5, and 6 (Fig. 8d); that is, in neutral and
negative states of the low-frequency ENSO component (cf.
Fig. 3c). In the YWRB and adjacent areas, the minima are lo-
cated in the positive state of the low-frequency cycle (bins 3

and 4; see Fig. 8d ; cf. Fig. 3c). The pattern of localization of
the precipitation conditional means maxima in the six phase
bins is more complex (Fig. 8c). For better understanding, we
present precipitation conditional means in all six phase bins
for selected grid points in Fig. 9.

The results for a representative grid point from the YWRB,
markedly influenced by the phases of ENSO oscillatory com-
ponents, are presented in Fig. 9a. Since each of the six
phase bins covering the 6-year cycle represents approxi-
mately 1 year in real time, the conditional means can be re-
garded as an estimate of the amplitude of the precipitation an-
nual cycle (APAC). At first sight, one can see an alternation
of higher and lower APAC, confirming the well-known alter-
nation of strong and weak monsoon years (Meehl, 1987). The
cross-scale causality analysis presented above suggests that
this phenomenon is a consequence of the causal influence of
the phase of the ENSO quasi-biennial component on the pre-
cipitation annual cycle amplitude. Differences between two
adjacent APACs are illustrated by the red bars. The latter
can be understood as an estimation of the amplitude of the
precipitation quasi-biennial cycle (APQBC). Apparently, the
APQBC is modulated by the low-frequency (LF; approxi-
mately 6-year) ENSO component. The maximum APQBC
is in the middle, i.e., in the positive state of the LF ENSO
cycle (cf. Fig. 3c). This is why both minimum and maxi-
mum precipitation conditional means occur in the positive
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Figure 6. Quantification of the effects of two causal mechanisms. Relative (a, b) and absolute (c, d) maximum differences between pre-
cipitation conditional means: (a, c) conditioning on the six phase bins, i.e., the effect of the phase of the low-frequency ENSO component
on precipitation, and (b, d) conditioning on the three ENSO states, i.e., the effect of the ENSO amplitude on precipitation. Statistically
significant differences are marked with X.

Figure 7. Geography of ENSO amplitude influence. Maximum and minimum precipitation values in ENSO states: (a) maximum precipita-
tion value, (b) minimum precipitation value, (c) ENSO state in which maximum precipitation occurs, and (d) ENSO state in which minimum
precipitation occurs.
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Figure 8. Geography of ENSO phase influence. Maximum and minimum precipitation values in the six phase bins given by the low-
frequency ENSO phase: (a) maximum precipitation value, (b) minimum precipitation value, (c) ENSO phase bin in which maximum precip-
itation occurs, and (d) ENSO phase bin in which minimum precipitation occurs.

Figure 9. Local ENSO phase effects. Precipitation conditional means in the six ENSO phase bins at various coordinates: (a) 36° N, 110° E;
(b) 33° N, 114° E; (c) 36° N, 111° E; (d) 33° N, 120° E; (e) 36° N, 117° E; and (f) 28° N, 117° E. Red represents the difference between two
adjacent bins.

state of the LF ENSO cycle in this area. Moving southeast-
ward within the YWRB area, the behavior of CM is slightly
different (Fig. 9b), reminding us that the ENSO component
driving APAC is not exactly biennial but quasi-biennial. Its
interactions with the precipitation annual cycle lead to fre-
quent phase shifts, disturbing or reversing the weak–strong

monsoon year alternation sequence. The minimum CM re-
mains in the positive state of the LF ENSO cycle; however,
the maximum CM moves to the last bin, number 6, i.e., to
the negative state of the LF ENSO cycle. Let us be reminded
that the maximum CM given by the ENSO state is located in
the ENSO negative state in this area. The CM patterns in the
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next three points (Fig. 9c–e) are similar, with the minimum
CM in the positive state of the LF ENSO cycle (middle bins
3 and 4), while the maximum CMs are located either in the
negative (bins 1 and 6) or neutral (bins 2 and 5) state of the
LF ENSO cycle.

The strength of the influence of the ENSO LF mode on
the APQBC determines the location of precipitation CM ex-
trema within the LF cycle. The strongest synchronization of
the APQBC with the ENSO LF mode can be seen in Fig. 9a.
Due to the markedly largest APQBC in the positive state of
the LF cycle, both the precipitation minimum and maximum
occur there (bins 3 and 4). With weaker synchrony, the pre-
cipitation maximum moves to the neutral or negative state of
the LF cycle, while the minimum is kept in the positive state.

On the other hand, in the grid point located south of the
Yangtze River, there is practically no modulation of the CM
by the ENSO oscillatory components (Fig. 9f). The maxi-
mum CM is located in the positive phase, while the minimum
CM is located in the neutral phase of the LF ENSO cycle. Let
us be reminded that this is the area where the causal effect of
the ENSO amplitude dominates, and CMs, conditioned on
the ENSO states, reach maxima in the ENSO positive state
and minima in the ENSO neutral state.

4 Conclusions

The El Niño–Southern Oscillation (ENSO) is an important
global climate variability mode influencing precipitation in
the Yangtze (YZRB) and Yellow (YWRB) river basins of
eastern China. Considerable effort has been expended to an-
alyze and describe this influence; see Table 1 and related
references (Yang et al., 2005; Li and Zeng, 2013; Zhang et
al., 2013, 2017; Xiao et al., 2015; Gao and Wang, 2017;
Cao et al., 2017; Chang et al., 2016; Hardiman et al., 2018;
Lv et al., 2019; Liu et al., 2020). In such analyses, ENSO,
as the cause variable, is characterized using SST-based in-
dices and/or ENSO states, derived from these indices or their
anomalies. ENSO is a recurring phenomenon, regarded as
an irregular oscillation with variable period and amplitude.
Jajcay et al. (2018) decomposed the ENSO dynamics into
quasi-periodic modes which mutually interact and temporar-
ily synchronize, giving the rise to extreme ENSO events.
In this study, we analyze the possible causal influence of
instantaneous phases of ENSO oscillatory components, ex-
tracted from the Niño 3.4 index using the complex continu-
ous wavelet transform (CCWT), on precipitation variability
at different timescales. The precipitation data from eastern
China are also decomposed using CCWT. We have detected,
with statistical significance, a causal influence of the phase
of the ENSO quasi-biennial (QB) mode on the amplitude of
the precipitation annual cycle. As the second statistically sig-
nificant causal relation, the amplitude of the precipitation QB
mode is influenced by the phase of the ENSO low-frequency

(LF) mode with periods between 4 and 7 years, mostly con-
centrated around the period of 6 years.

The conditional mutual information with the surrogate
data testing provides statistical evidence for the existence
of the causal relations described above. In order to estimate
their effect in physical quantities, we employ the method of
conditional means (CM) (Jajcay et al., 2016). Precipitation
CM were conditioned on the ENSO states (positive, negative,
and neutral), thus estimating the causal effect of the ENSO
amplitude, or the effect of phases was assessed by divid-
ing the LF (approximately 6-year period) ENSO cycle into
six bins equidistantly defined using the phase of the ENSO
LF mode. The instantaneous phases of the ENSO oscillatory
modes are found the principal cause influencing the precip-
itation variability in the YWRB area. In the YZRB and ad-
jacent areas, the ENSO amplitude dominates the causal in-
fluence on the precipitation variability. In the latter area, the
phase-conditioned CMs do not reflect any influence of the
ENSO oscillatory modes, and CM maxima and minima occur
in positive and neutral states, respectively, of the LF ENSO
mode, in agreement with the culmination of the precipitation
maxima in ENSO positive states and the occurrence of pre-
cipitation minima in the ENSO neutral states.

On the other hand, in the YWRB, the phase-conditioned
CMs are modulated by both QB and LF ENSO modes. The
cross-scale information flow from the QB mode to the am-
plitude of the precipitation annual cycle causes the alter-
nation of strong and weak monsoon years (Meehl, 1987).
The timescale of this cause is not exactly biennial but quasi-
biennial; therefore its interactions with the precipitation an-
nual cycle lead to frequent phase shifts, disturbing or revers-
ing the weak–strong monsoon year alternation sequence. The
differences between the adjacent CM represent the amplitude
of the precipitation QB mode, which is apparently modulated
by the LF (approximately 6-year) ENSO mode. The strength
of this modulation determines the position of precipitation
CM maxima within the ENSO LF cycle, while the precipi-
tation CM minima occur in the positive state of the ENSO
LF cycle. When the precipitation CM are evaluated using
the ENSO states, the minima are located in the ENSO neu-
tral and the maxima are located in the ENSO negative state.
This inconsistency can be explained by the observation (see
Fig. 4 in Jajcay et al., 2018) that the ENSO extreme events
do not necessarily coincide with the minima or maxima of
the ENSO LF cycle but are determined by intermittent syn-
chronization of ENSO QB modes.

Some recent studies (Yu et al., 2022a, b) report a robust
contribution of the Tropospheric Biennial Oscillation (TBO)
to the East Asian summer monsoon transitions. The relation
between the TBO and the QB mode extracted from the ENSO
dynamics is a challenge for further research. Other studies,
e.g., Xiao et al. (2015), observed that, besides ENSO, the
North Atlantic Oscillation, Indian Ocean Dipole, and Pacific
Decadal Oscillation also have an effect on seasonal precip-
itation regimes in the Yangtze River basin. Our cross-scale
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information flow detection method can also be used to es-
tablish a causal relationship between precipitation and other
large-scale climate variability modes, or it can be applied
to uncover causal interactions in diverse Earth science prob-
lems involving multiple timescales. In a broader perspective,
the framework we used here is applicable to analyzing phe-
nomena across a wide range of disciplines; for example, in
neuroscience, the cross-frequency phase–amplitude coupling
has recently been observed in electrophysiological signals re-
flecting the brain dynamics (Canolty and Knight, 2010), and
the conditional mutual information has proven to be a robust
tool for its detection (Arinyo-i-Prats et al., 2024).

The fact that complex evolution of climate, atmosphere,
or circulation regimes is influenced by interactions of dy-
namics on multiple timescales is known (Muñoz et al., 2017;
Zhang et al., 2023). For instance, Muñoz et al. (2015) sug-
gest that cross-timescale interactions between different cli-
mate drivers improve the predictive skill of extreme precip-
itation. Hsu et al. (2023) show that multiscale interactions
(in particular, scale interactions between the monsoon mean
field, two modes of intraseasonal oscillation, and synoptic
disturbances) drove the devastating floods in Henan, China,
during July 2021. J. Liu et al. (2023) used the multiscale
window transform (MWT) and MWT-based energy and vor-
ticity analysis (MS-EVA) to identify three scale fields: ba-
sic flow fields (> 64 d), intraseasonal oscillation fields (8–
64 d), and synoptic-scale eddy fields (< 8 d), responsible for
the torrential rainfall event which hit Zhengzhou on 20 July
2021. Ungerovich et al. (2023) emphasize the role of the
large-scale circulation anomalies associated with ENSO tele-
connections in the simulation of extreme rainfall events in
Uruguay, while Pineda et al. (2023) suggest that the early
onset of heavy rainfall on the northern coast of Ecuador in
the aftermath of El Niño 2015/16 was favored by the con-
vective environment in late January due to cross-timescale
interference of the very strong El Niño event and a strong
and persistent Madden–Julian oscillation. The presented re-
search, however, is a first step in developing a methodol-
ogy able to establish solid statistical evidence for existence
of cross-scale causal interactions and to estimate their effect
in measurable physical quantities. In particular, the results
presented here can open new doorways in understanding
and predicting precipitation anomalies in eastern Asia. Al-
though physical mechanisms explaining the observed cross-
scale information transfers are yet to be established, the un-
covered causal relations can already be used in statistical or
machine learning tools to forecast precipitation anomalies.
In related considerations, Muñoz et al. (2023) propose to
find “windows of opportunity” in forecasts across timescales
by combining wavelet spectral analysis and a non-stationary
time–frequency causality analysis. Materia et al. (2024) try
to understand the causal factors behind these windows of
opportunity using Liang–Kleeman information flow (Liang,
2013). This study demonstrates the ability to identify sources
of cross-scale predictability by using complex continuous

wavelet transform and an information-theoretic approach to
causality (Paluš, 2014).

Code availability. FORTRAN codes for CMI estimation are
available at http://www.cs.cas.cz/mp/projects/sw/ (Paluš, 2014).
The scale-wise decomposition was performed using the complex
continuous wavelet transform algorithm of Torrence and Compo
(1998); codes are available at https://github.com/ct6502/wavelets
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tional means or circularly shifted surrogate data are available from
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