Articles | Volume 14, issue 4
https://doi.org/10.5194/esd-14-737-2023
https://doi.org/10.5194/esd-14-737-2023
Research article
 | 
04 Aug 2023
Research article |  | 04 Aug 2023

The link between European warm-temperature extremes and atmospheric persistence

Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda

Related authors

Understanding concurrent heatwaves from a meridional heat transport perspective
Valerio Lembo, Gabriele Messori, Davide Faranda, Vera Melinda Galfi, Rune Grand Graversen, and Flavio Emanuele Pons
EGUsphere, https://doi.org/10.5194/egusphere-2025-2189,https://doi.org/10.5194/egusphere-2025-2189, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Dynamics of stratospheric wave reflection over the North Pacific
Michael K. Schutte, Alice Portal, Simon H. Lee, and Gabriele Messori
Weather Clim. Dynam., 6, 521–548, https://doi.org/10.5194/wcd-6-521-2025,https://doi.org/10.5194/wcd-6-521-2025, 2025
Short summary
SHEDIS-Temperature: Linking temperature-related disaster impacts to subnational data on meteorology and human exposure
Sara Lindersson and Gabriele Messori
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-128,https://doi.org/10.5194/essd-2025-128, 2025
Preprint under review for ESSD
Short summary
Anthropogenic climate change has increased severity of mid-latitude storms and impacted airport operations
Lia Rapella, Tommaso Alberti, Davide Faranda, and Philippe Drobinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-1219,https://doi.org/10.5194/egusphere-2025-1219, 2025
Short summary
Ensemble Random Forest for Tropical Cyclone Tracking
Pradeebane Vaittinada Ayar, Stella Bourdin, Davide Faranda, and Mathieu Vrac
EGUsphere, https://doi.org/10.5194/egusphere-2025-252,https://doi.org/10.5194/egusphere-2025-252, 2025
Short summary

Cited articles

Adélaïde, L., Chanel, O., and Pascal, M.: Health effects from heat waves in France: an economic evaluation, Eur. J. Health Econ., 23, 119–131, https://doi.org/10.1007/s10198-021-01357-2, 2021. a
Alvarez-Castro, C., Faranda, D., and Yiou, P.: Atmospheric Dynamics Leading to West European Summer Hot Temperatures since 1851, Complexity, 2018, 2494509, https://doi.org/10.1155/2018/2494509, 2018.  a, b
Barnes, E. A. and Hartmann, D. L.: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change, J. Geophys. Res.-Atmos., 117, 2467–2481, https://doi.org/10.1029/2012JD017469, 2012. a
Bieli, M., Pfahl, S., and Wernli, H.: A lagrangian investigation of hot and cold temperature extremes in europe, Q. J. Roy. Meteor. Soc., 141, 98–108, https://doi.org/10.1002/qj.2339, 2015. a, b
Cameron, A. C., Gelbach, J. B., and Miller, D. L.: Bootstrap-Based Improvements for Inference with Clustered Errors, Rev. Econ. Stat., 90, 414–427, https://doi.org/10.1162/rest.90.3.414, 2008. a
Download
Short summary
We analyse the duration of large-scale patterns of air movement in the atmosphere, referred to as persistence, and whether unusually persistent patterns favour warm-temperature extremes in Europe. We see no clear relationship between summertime heatwaves and unusually persistent patterns. This suggests that heatwaves do not necessarily require the continued flow of warm air over a region and that local effects could be important for their occurrence.
Share
Altmetrics
Final-revised paper
Preprint