Articles | Volume 14, issue 3
https://doi.org/10.5194/esd-14-533-2023
https://doi.org/10.5194/esd-14-533-2023
Research article
 | 
03 May 2023
Research article |  | 03 May 2023

Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics

Georg Feulner, Mona Bukenberger, and Stefan Petri

Related authors

The long-term impact of transgressing planetary boundaries on biophysical atmosphere–land interactions
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024,https://doi.org/10.5194/esd-15-467-2024, 2024
Short summary
Sensitivity of Neoproterozoic snowball-Earth inceptions to continental configuration, orbital geometry, and volcanism
Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023,https://doi.org/10.5194/cp-19-2203-2023, 2023
Short summary
CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021,https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021,https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary
Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond
Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020,https://doi.org/10.5194/sd-28-93-2020, 2020
Short summary

Related subject area

Dynamics of the Earth system: concepts
Rate-induced tipping in natural and human systems
Paul D. L. Ritchie, Hassan Alkhayuon, Peter M. Cox, and Sebastian Wieczorek
Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023,https://doi.org/10.5194/esd-14-669-2023, 2023
Short summary
Multi-million-year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes
Gaëlle Leloup and Didier Paillard
Earth Syst. Dynam., 14, 291–307, https://doi.org/10.5194/esd-14-291-2023,https://doi.org/10.5194/esd-14-291-2023, 2023
Short summary
Reliability of resilience estimation based on multi-instrument time series
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023,https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022,https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
ESD Ideas: planetary antifragility: a new dimension in the definition of the safe operating space for humanity
Oliver López-Corona, Melanie Kolb, Elvia Ramírez-Carrillo, and Jon Lovett
Earth Syst. Dynam., 13, 1145–1155, https://doi.org/10.5194/esd-13-1145-2022,https://doi.org/10.5194/esd-13-1145-2022, 2022
Short summary

Cited articles

Abbot, D. S., Voigt, A., and Koll, D.: The Jormungand global climate state and implications for Neoproterozoic glaciations, J. Geophys. Res., 116, D18103, https://doi.org/10.1029/2011JD015927, 2011. a
Abe, Y., Abe-Ouchi, A., Sleep, N. H., and Zahnle, K. J.: Habitable Zone Limits for Dry Planets, Astrobiology, 11, 443–460, https://doi.org/10.1089/ast.2010.0545, 2011. a
Bendtsen, J.: Climate sensitivity to changes in solar insolation in a simple coupled climate model, Clim. Dynam., 18, 595–609, https://doi.org/10.1007/s00382-001-0198-4, 2002. a
Bonanno, A., Schlattl, H., and Paternò, L.: The age of the Sun and the relativistic corrections in the EOS, Astron. Astrophys., 390, 1115–1118, https://doi.org/10.1051/0004-6361:20020749, 2002. a
Braun, C., Hörner, J., Voigt, A., and Pinto, J. G.: Ice-free tropical waterbelt for Snowball Earth events questioned by uncertain clouds, Nat. Geosci., 15, 489–493, https://doi.org/10.1038/s41561-022-00950-1, 2022. a, b, c, d
Download
Short summary
One limit of planetary habitability is defined by the threshold of global glaciation. If Earth cools, growing ice cover makes it brighter, leading to further cooling, since more sunlight is reflected, eventually leading to global ice cover (Snowball Earth). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
Altmetrics
Final-revised paper
Preprint