Articles | Volume 14, issue 3 
            
                
                    
            
            
            https://doi.org/10.5194/esd-14-533-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-533-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics
                                            Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
                                        
                                    Mona Bukenberger
                                            Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
                                        
                                    
                                            Institute for Atmospheric and Climate Science, ETH Zürich,  Zurich, Switzerland
                                        
                                    Stefan Petri
                                            Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
                                        
                                    Related authors
Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
                                    Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
                                            
                                            
                                        Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
                                    Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, https://doi.org/10.5194/cp-19-2203-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
                                            
                                            
                                        Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
                                    Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
                                            
                                            
                                        Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
                                    Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
                                            
                                            
                                        Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
                                    Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, https://doi.org/10.5194/sd-28-93-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
                                            
                                            
                                        Anurag Dipankar, Mauro Bianco, Mona Bukenberger, Till Ehrengruber, Nicoletta Farabullini, Abishek Gopal, Daniel Hupp, Andreas Jocksch, Samuel Kellerhals, Clarissa A. Kroll, Xavier Lapillonne, Matthieu Leclair, Magdalena Luz, Christoph Müller, Chia Rui Ong, Carlos Osuna, Praveen Pothapakula, Matthias Röthlin, William Sawyer, Giacomo Serafini, Hannes Vogt, Ben Weber, and Thomas Schulthess
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-4808, https://doi.org/10.5194/egusphere-2025-4808, 2025
                                    This preprint is open for discussion and under review for Geoscientific Model Development (GMD). 
                                    Short summary
                                    Short summary
                                            
                                                Climate models are becoming more detailed and accurate by simulating weather at scales of just a few kilometers. Simulating at km-scale is computationally demanding requiring powerful supercomputers and efficient code. This work presents a refactored dynamical core of a state-of-the-art climate model using a Python-based approach. The refactored code has passed through a sequence of verification and validation demonstrating its usability in performing km-scale global simulations.
                                            
                                            
                                        Mona Bukenberger, Lena Fasnacht, Stefan Rüdisühli, and Sebastian Schemm
                                    Weather Clim. Dynam., 6, 279–316, https://doi.org/10.5194/wcd-6-279-2025, https://doi.org/10.5194/wcd-6-279-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                The jet stream is a band of strong westerly winds, within which jet streaks are regions of faster wind speeds that can aid storm development. This study analyses jet streaks over the North Atlantic during winter. Jet streaks are linked to pairs of surface anticyclones and cyclones and are often accompanied by intense precipitation, especially extreme jet streaks. With cloud processes playing an increased role in extreme jet streaks, follow-up studies concerning their role are warranted.
                                            
                                            
                                        Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke
                                    Earth Syst. Dynam., 15, 467–483, https://doi.org/10.5194/esd-15-467-2024, https://doi.org/10.5194/esd-15-467-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The planetary boundary framework characterizes major risks of destabilization of the Earth system. We use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, as well as the need to investigate both boundaries simultaneously and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.
                                            
                                            
                                        Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
                                    Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, https://doi.org/10.5194/cp-19-2203-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
                                            
                                            
                                        Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
                                    Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
                                            
                                            
                                        Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
                                    Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
                                            
                                            
                                        Gerilyn S. Soreghan, Laurent Beccaletto, Kathleen C. Benison, Sylvie Bourquin, Georg Feulner, Natsuko Hamamura, Michael Hamilton, Nicholas G. Heavens, Linda Hinnov, Adam Huttenlocker, Cindy Looy, Lily S. Pfeifer, Stephane Pochat, Mehrdad Sardar Abadi, James Zambito, and the Deep Dust workshop participants
                                    Sci. Dril., 28, 93–112, https://doi.org/10.5194/sd-28-93-2020, https://doi.org/10.5194/sd-28-93-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                The events of the Permian — the orogenies, biospheric turnovers, icehouse and greenhouse antitheses, and Mars-analog lithofacies — boggle the imagination and present us with great opportunities to explore Earth system behavior. Here we outline results of workshops to propose continuous coring of continental Permian sections in western (Anadarko Basin) and eastern (Paris Basin) equatorial Pangaea to retrieve continental records spanning 50 Myr of Earth's history.
                                            
                                            
                                        Cited articles
                        
                        Abbot, D. S., Voigt, A., and Koll, D.: The Jormungand global climate
state and implications for Neoproterozoic glaciations, J. Geophys. Res.,
116, D18103, https://doi.org/10.1029/2011JD015927, 2011. a
                    
                
                        
                        Abe, Y., Abe-Ouchi, A., Sleep, N. H., and Zahnle, K. J.: Habitable
Zone Limits for Dry Planets, Astrobiology, 11, 443–460,
https://doi.org/10.1089/ast.2010.0545, 2011. a
                    
                
                        
                        Bendtsen, J.: Climate sensitivity to changes in solar insolation in a simple
coupled climate model, Clim. Dynam., 18, 595–609,
https://doi.org/10.1007/s00382-001-0198-4, 2002. a
                    
                
                        
                        Bonanno, A., Schlattl, H., and Paternò, L.: The age of the Sun and
the relativistic corrections in the EOS, Astron. Astrophys., 390,
1115–1118, https://doi.org/10.1051/0004-6361:20020749, 2002. a
                    
                
                        
                        Braun, C., Hörner, J., Voigt, A., and Pinto, J. G.: Ice-free
tropical waterbelt for Snowball Earth events questioned by uncertain clouds,
Nat. Geosci., 15, 489–493, https://doi.org/10.1038/s41561-022-00950-1, 2022. a, b, c, d
                    
                
                        
                        Budyko, M. I.: The effect of solar radiation variations on the climate of
the earth, Tellus, 21, 611–619, https://doi.org/10.1111/j.2153-3490.1969.tb00466.x,
1969. a, b
                    
                
                        
                        Cahalan, R. F. and North, G. R.: A Stability Theorem for Energy-Balance
Climate Models, J. Atmos. Sci., 36, 1178–1188,
https://doi.org/10.1175/1520-0469(1979)036<1178:ASTFEB>2.0.CO;2, 1979. a
                    
                
                        
                        Chandler, M. A. and Sohl, L. E.: Climate forcings and the initiation of
low-latitude ice sheets during the Neoproterozoic Varanger glacial interval,
J. Geophys. Res., 105, 20737–20756, https://doi.org/10.1029/2000JD900221, 2000. a, b, c, d
                    
                
                        
                        Charnay, B., Forget, F., Wordsworth, R., Leconte, J., Millour, E.,
Codron, F., and Spiga, A.: Exploring the faint young Sun problem and the
possible climates of the Archean Earth with a 3-D GCM, J. Geophys. Res.,
118, 10414–10431, https://doi.org/10.1002/jgrd.50808, 2013. a, b, c
                    
                
                        
                        Charnay, B., Wolf, E. T., Marty, B., and Forget, F.: Is the Faint
Young Sun Problem for Earth Solved?, Space Sci. Rev., 216, 90,
https://doi.org/10.1007/s11214-020-00711-9, 2020. a, b, c
                    
                
                        
                        Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet,
T., Loutre, M.-F., Weber, S. L., Alcamo, J., Alexeev, V. A.,
Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohmann, G.,
Lunkeit, F., Mokhov, I. I., Petoukhov, V., Stone, P., and Wang, Z.:
Earth system models of intermediate complexity: closing the gap in the
spectrum of climate system models, Clim. Dynam., 18, 579–586,
https://doi.org/10.1007/s00382-001-0200-1, 2002. a
                    
                
                        
                        Donnadieu, Y., Ramstein, G., Fluteau, F., Roche, D., and Ganopolski,
A.: The impact of atmospheric and oceanic heat transports on the
sea-ice-albedo instability during the Neoproterozoic, Clim. Dynam., 22,
293–306, https://doi.org/10.1007/s00382-003-0378-5, 2004. a
                    
                
                        
                        Drazin, P. G. and Griffel, D. H.: On the Branching Structure of Diffusive
Climatological Models., J. Atmos. Sci., 34, 1696–1706,
https://doi.org/10.1175/1520-0469(1977)034<1696:OTBSOD>2.0.CO;2, 1977. a
                    
                
                        
                        Driese, S. G., Jirsa, M. A., Ren, M., Brantley, S. L., Sheldon,
N. D., Parker, D., and Schmitz, M.: Neoarchean paleoweathering of
tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early
terrestrial ecosystems and paleoatmospheric chemistry, Precambrian Res.,
189, 1–17, https://doi.org/10.1016/j.precamres.2011.04.003, 2011. a
                    
                
                        
                        Faegre, A.: An Intransitive Model of the Earth-Atmosphere-Ocean System,
J. Appl. Meteorol., 11, 4–6,
https://doi.org/10.1175/1520-0450(1972)011<0004:AIMOTE>2.0.CO;2, 1972. a
                    
                
                        
                        Feulner, G.: Are the most recent estimates for Maunder Minimum solar
irradiance in agreement with temperature reconstructions?, Geophys. Res. Lett., 38, L16706, https://doi.org/10.1029/2011GL048529, 2011. a
                    
                
                        
                        Feulner, G.: The Faint Young Sun Problem, Rev. Geophys., 50, RG2006,
https://doi.org/10.1029/2011RG000375, 2012. a, b, c
                    
                
                        
                        Feulner, G.: Formation of most of our coal brought Earth close to global
glaciation, P. Natl. Acad. Sci., 114, 11333–11337,
https://doi.org/10.1073/pnas.1712062114, 2017. a, b, c
                    
                
                        
                        Feulner, G., Hallmann, C., and Kienert, H.: Snowball cooling after algal
rise, Nature Geosci., 8, 659–662, https://doi.org/10.1038/ngeo2523, 2015. a
                    
                
                        
                        Feulner, G., Bukenberger, M. S., and Petri, S.: Simulation data for tracing
snowball bifurcation on an earth-like aquaplanet over 4 billion years,
Scientific Data Set, V. 2022-07-27, GFZ Data Services [data set],
https://doi.org/10.5880/PIK.2022.003, 2022. a
                    
                
                        
                        Fichefet, T. and Morales Maqueda, M. A.: Sensitivity of a global sea ice model
to the treatment of ice thermodynamics and dynamics, J. Geophys. Res.-Oceans, 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997. a
                    
                
                        
                        Fiorella, R. P. and Sheldon, N. D.: Equable end Mesoproterozoic climate in
the absence of high CO2, Geology, 45, 231–234, https://doi.org/10.1130/G38682.1,
2017. a, b
                    
                
                        
                        Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat.
Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017. a
                    
                
                        
                        Frierson, D. M. W., Lu, J., and Chen, G.: Width of the Hadley cell in
simple and comprehensive general circulation models, Geophys. Res. Lett.,
34, L18804, https://doi.org/10.1029/2007GL031115, 2007. a
                    
                
                        
                        Gal-Chen, T. and Schneider, S. H.: Energy balance climate modeling:
Comparison of radiative and dynamic feedback mechanisms, Tellus, 28,
108–121, https://doi.org/10.3402/tellusa.v28i2.10261, 1976. a
                    
                
                        
                        Ghil, M.: Climate Stability for a Sellers-Type Model, J.
Atmos. Sci., 33, 3–20,
https://doi.org/10.1175/1520-0469(1976)033<0003:CSFAST>2.0.CO;2, 1976. a
                    
                
                        
                        Gough, D. O.: Solar interior structure and luminosity variations, Sol. Phys., 74, 21–34, https://doi.org/10.1007/BF00151270, 1981. a, b
                    
                
                        
                        Heinemann, M., Jungclaus, J. H., and Marotzke, J.: Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM, Clim. Past, 5, 785–802, https://doi.org/10.5194/cp-5-785-2009, 2009. a
                    
                
                        
                        Held, I. M. and Suarez, M. J.: Simple albedo feedback models of the
icecaps, Tellus, 26, 613–629, https://doi.org/10.3402/tellusa.v26i6.9870, 1974. a
                    
                
                        
                        Hessler, A. M., Lowe, D. R., Jones, R. L., and Bird, D. K.: A lower
limit for atmospheric carbon dioxide levels 3.2 billion years ago, Nature,
428, 736–738, https://doi.org/10.1038/nature02471, 2004. a
                    
                
                        
                        Hoffman, P. F. and Schrag, D. P.: The snowball Earth hypothesis: testing
the limits of global change, Terra Nova, 14, 129–155,
https://doi.org/10.1046/j.1365-3121.2002.00408.x, 2002. a, b
                    
                
                        
                        Hofmann, M. and Morales Maqueda, M. A.: Performance of a second-order
moments advection scheme in an Ocean General Circulation Model, J. Geophys. Res., 111, C05006, https://doi.org/10.1029/2005JC003279, 2006. a
                    
                
                        
                        Hörner, J., Voigt, A., and Braun, C.: Snowball Earth initiation and
the thermodynamics of sea ice, J. Adv. Model. Earth
Syst., 14, e2021MS002734, https://doi.org/10.1029/2021MS002734, 2022. a, b, c
                    
                
                        
                        Huang, J. and Bowman, K. P.: The small ice cap instability in seasonal
energy balance models, Clim. Dynam., 7, 205–215,
https://doi.org/10.1007/BF00206862, 1992. a
                    
                
                        
                        Huang, Y. and Bani Shahabadi, M.: Why logarithmic? A note on the
dependence of radiative forcing on gas concentration, J. Geophys.
Res.-Atmos., 119, 13683–13689, https://doi.org/10.1002/2014JD022466,
2014. a
                    
                
                        
                        Ikeda, T. and Tajika, E.: A study of the energy balance climate model with
CO2-dependent outgoing radiation: implication for the glaciation during
the Cenozoic, Geophys. Res. Lett., 26, 349–352,
https://doi.org/10.1029/1998GL900298, 1999. a
                    
                
                        
                        Kanzaki, Y. and Murakami, T.: Estimates of atmospheric CO2 in the
Neoarchean-Paleoproterozoic from paleosols, Geochim. Cosmochim. Acta,
159, 190–219, https://doi.org/10.1016/j.gca.2015.03.011, 2015. a
                    
                
                        
                        Kasting, J. F.: Theoretical Constraints on Oxygen and Carbon Dioxide
Concentrations in the Precambrian Atmosphere, Precambrian Res., 34,
205–229, https://doi.org/10.1016/0301-9268(87)90001-5, 1987. a
                    
                
                        
                        Kienert, H., Feulner, G., and Petoukhov, V.: Faint young Sun problem
more severe due to ice-albedo feedback and higher rotation rate of the early
Earth, Geophys. Res. Lett., 39, L23710, https://doi.org/10.1029/2012GL054381, 2012. a, b, c, d
                    
                
                        
                        Kienert, H., Feulner, G., and Petoukhov, V.: Albedo and heat transport in 3-D model simulations of the early Archean climate, Clim. Past, 9, 1841–1862, https://doi.org/10.5194/cp-9-1841-2013, 2013. a
                    
                
                        
                        Kopp, G. and Lean, J. L.: A new, lower value of total solar irradiance:
Evidence and climate significance, Geophys. Res. Lett., 38, L01706,
https://doi.org/10.1029/2010GL045777, 2011. a, b
                    
                
                        
                        Kunze, M., Godolt, M., Langematz, U., Grenfell, J. L., Hamann-Reinus,
A., and Rauer, H.: Investigating the Early Earth Faint Young Sun Problem
with a General Circulation Model, Planet. Space Sci., 98, 77–92,
https://doi.org/10.1016/j.pss.2013.09.011, 2014. a, b, c, d
                    
                
                        
                        Le Hir, G., Teitler, Y., Fluteau, F., Donnadieu, Y., and Philippot, P.: The faint young Sun problem revisited with a 3-D climate–carbon model – Part 1, Clim. Past, 10, 697–713, https://doi.org/10.5194/cp-10-697-2014, 2014. a, b, c
                    
                
                        
                        Lehmer, O. R., Catling, D. C., Buick, R., Brownlee, D. E., and
Newport, S.: Atmospheric CO2 levels from 2.7 billion years ago inferred
from micrometeorite oxidation, Sci. Adv., 6, eaay4644,
https://doi.org/10.1126/sciadv.aay4644, 2020. a
                    
                
                        
                        Lewis, J. P., Weaver, A. J., and Eby, M.: Snowball versus slushball
Earth: Dynamic versus nondynamic sea ice?, J. Geophys. Res., 112, C11014,
https://doi.org/10.1029/2006JC004037, 2007. a, b, c
                    
                
                        
                        Lindzen, R. S. and Farrell, B.: Some Realistic Modifications of Simple
Climate Models, J. Atmos. Sci., 34, 1487–1501,
https://doi.org/10.1175/1520-0469(1977)034<1487:SRMOSC>2.0.CO;2, 1977. a
                    
                
                        
                        Liu, Y., Peltier, W. R., Yang, J., Vettoretti, G., and Wang, Y.:
Strong effects of tropical ice-sheet coverage and thickness on the hard
snowball Earth bifurcation point, Clim. Dyn., 48, 3459–3474,
https://doi.org/10.1007/s00382-016-3278-1, 2017. a, b, c, d
                    
                
                        
                        Montoya, M., Griesel, A., Levermann, A., Mignot, J., Hofmann, M., Ganopolski,
A., and Rahmstorf, S.: The earth system model of intermediate complexity
CLIMBER-3α. Part 1: description and performance for present-day
conditions, Clim. Dyn., 25, 237–263, https://doi.org/10.1007/s00382-005-0044-1,
2005. a
                    
                
                        
                        North, G. R.: Analytical Solution to a Simple Climate Model with Diffusive
Heat Transport., J. Atmos. Sci., 32, 1301–1307,
https://doi.org/10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2, 1975a. a
                    
                
                        
                        North, G. R.: Theory of Energy-Balance Climate Models, J.
Atmos. Sci., 32, 2033–2043,
https://doi.org/10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2, 1975b. a
                    
                
                        
                        North, G. R.: Multiple solutions in energy balance climate models, Global
Planet. Change, 2, 225–235, https://doi.org/10.1016/0921-8181(90)90003-U, 1990. a, b
                    
                
                        
                        North, G. R. and Coakley, James A., J.: Differences between Seasonal and
Mean Annual Energy Balance Model Calculations of Climate and Climate
Sensitivity., J. Atmos. Sci., 36, 1189–1204,
https://doi.org/10.1175/1520-0469(1979)036<1189:DBSAMA>2.0.CO;2, 1979. a
                    
                
                        
                        North, G. R., Cahalan, R. F., and Coakley, James A., J.: Energy Balance
Climate Models, Rev. Geophys. Space Phys., 19, 91,
https://doi.org/10.1029/RG019i001p00091, 1981. a, b, c
                    
                
                        
                        North, G. R., Short, D. A., and Mengel, J. G.: Simple energy balance
model resolving the seasons and the continents – Application to the
astronomical theory of the ice ages, J. Geophys. Res., 88, 6576–6586,
https://doi.org/10.1029/JC088iC11p06576, 1983. a
                    
                
                        
                        Öpik, E. J.: On the causes of palaeoclimatic variations and of the ice
ages in particular, J. Glaciol., 2, 213–218,
https://doi.org/10.1017/S0022143000025752, 1953. a
                    
                
                        
                        Pacanowski, R. C. and Griffies, S. M.: The MOM-3 manual, Tech. Rep. 4,
NOAA/Geophyical Fluid Dynamics Laboratory, Princeton, NJ, USA,
https://mom-ocean.github.io/assets/pdfs/MOM3_manual.pdf (last access: 29 April 2023),
1999. a
                    
                
                        
                        Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A.,
Kubatzki, C., and Rahmstorf, S.: CLIMBER-2: a climate system model of
intermediate complexity. Part I: model description and performance for
present climate, Clim. Dyn., 16, 1–17, https://doi.org/10.1007/pl00007919, 2000. a, b, c
                    
                
                        
                        Pierrehumbert, R. T., Abbot, D. S., Voigt, A., and Koll, D.: Climate
of the Neoproterozoic, Annu. Rev. Earth Pl. Sc, 39, 417–460,
https://doi.org/10.1146/annurev-earth-040809-152447, 2011. a, b, c, d
                    
                
                        
                        Poulsen, C. J. and Jacob, R. L.: Factors that inhibit snowball Earth
simulation, Paleoceanography, 19, PA4021, https://doi.org/10.1029/2004PA001056, 2004. a
                    
                
                        
                        Poulsen, C. J., Jacob, R. L., Pierrehumbert, R. T., and Huynh, T. T.:
Testing paleogeographic controls on a Neoproterozoic snowball Earth,
Geophys. Res. Lett., 29, 1515, https://doi.org/10.1029/2001GL014352, 2002. a, b, c, d
                    
                
                        
                        Ramanathan, V. and Coakley, J. A., J.: Climate Modeling Through
Radiative-Convective Models (Paper 8R0533), Rev. Geophys. Space
Phys., 16, 465, https://doi.org/10.1029/RG016i004p00465, 1978. a
                    
                
                        
                        Roe, G. H. and Baker, M. B.: Notes on a Catastrophe: A Feedback Analysis
of Snowball Earth, J. Climate, 23, 4694–4703,
https://doi.org/10.1175/2010JCLI3545.1, 2010. a
                    
                
                        
                        Romanova, V., Lohmann, G., and Grosfeld, K.: Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates, Clim. Past, 2, 31–42, https://doi.org/10.5194/cp-2-31-2006, 2006. a, b, c
                    
                
                        
                        Rose, B. E. J.: Stable “Waterbelt” climates controlled by tropical ocean
heat transport: A nonlinear coupled climate mechanism of relevance to
Snowball Earth, J. Geophys. Res., 120, 1404–1423,
https://doi.org/10.1002/2014JD022659, 2015. a
                    
                
                        
                        Rose, B. E. J. and Marshall, J.: Ocean Heat Transport, Sea Ice, and
Multiple Climate States: Insights from Energy Balance Models, J.
Atmos. Sci., 66, 2828, https://doi.org/10.1175/2009JAS3039.1, 2009. a
                    
                
                        
                        Rosing, M. T., Bird, D. K., Sleep, N. H., and Bjerrum, C. J.: No
climate paradox under the faint early Sun, Nature, 464, 744–747,
https://doi.org/10.1038/nature08955, 2010. a
                    
                
                        
                        Rye, R., Kuo, P. H., and Holland, H. D.: Atmospheric carbon dioxide
concentrations before 2.2 billion years ago, Nature, 378, 603–605,
https://doi.org/10.1038/378603a0, 1995. a
                    
                
                        
                        Schneider, S. H. and Gal-Chen, T.: Numerical experiments in climate
stability, J. Geophys. Res., 78, 6182–6194,
https://doi.org/10.1029/JC078i027p06182, 1973. a
                    
                
                        
                        Schneider, T.: The General Circulation of the Atmosphere, Annu. Rev.
Earth Planet. Sci., 34, 655–688,
https://doi.org/10.1146/annurev.earth.34.031405.125144, 2006.
 a
                    
                
                        
                        Sellers, W. D.: A Global Climatic Model Based on the Energy Balance of the
Earth-Atmosphere System, J. Appl. Meteorol., 8, 392–400,
https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2, 1969. a, b
                    
                
                        
                        Sheldon, N. D.: Precambrian paleosols and atmospheric CO2 levels,
Precambrian Res., 147, 148–155, https://doi.org/10.1016/j.precamres.2006.02.004, 2006. a
                    
                
                        
                        Shen, S. and North, G.: A simple proof of the slope stability theorem for
energy balance climate models, Canadian Applied Mathematics Quarterly, 7,
203–215, 1999. a
                    
                
                        
                        Strauss, J. V. and Tosca, N. J.: Mineralogical constraints on
Neoproterozoic pCO2 and marine carbonate chemistry, Geology, 48, 599–603,
https://doi.org/10.1130/G47506.1, 2020. a
                    
                
                        
                        Tang, H. and Chen, Y.: Global glaciations and atmospheric change at ca.
2.3 Ga, Geosci. Front., 4, 583–596, https://doi.org/10.1016/j.gsf.2013.02.003,
2013. a, b
                    
                
                        
                        Teitler, Y., Le Hir, G., Fluteau, F., Philippot, P., and Donnadieu,
Y.: Investigating the Paleoproterozoic glaciations with 3-D climate
modeling, Earth Planet. Sci. Lett., 395, 71–80,
https://doi.org/10.1016/j.epsl.2014.03.044, 2014. a, b
                    
                
                        
                        Voigt, A. and Marotzke, J.: The transition from the present-day climate to
a modern Snowball Earth, Clim. Dynam., 35, 887–905,
https://doi.org/10.1007/s00382-009-0633-5, 2010. a, b, c, d
                    
                
                        
                        von Paris, P., Rauer, H., Lee Grenfell, J., Patzer, B., Hedelt, P.,
Stracke, B., Trautmann, T., and Schreier, F.: Warming the early earth
– CO2 reconsidered, Planet. Space Sci., 56, 1244–1259,
https://doi.org/10.1016/j.pss.2008.04.008, 2008. a
                    
                
                        
                        Wolf, E. T. and Toon, O. B.: Hospitable Archean Climates Simulated by a
General Circulation Model, Astrobiology, 13, 656–673,
https://doi.org/10.1089/ast.2012.0936, 2013. a, b, c
                    
                
                        
                        Yang, J., Peltier, W. R., and Hu, Y.: The Initiation of Modern “Soft
Snowball” and “Hard Snowball” Climates in CCSM3. Part I: The Influences of
Solar Luminosity, CO2 Concentration, and the Sea Ice/Snow Albedo
Parameterization, J. Climate, 25, 2711–2736,
https://doi.org/10.1175/JCLI-D-11-00189.1, 2012a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
                    
                
                        
                        Yang, J., Peltier, W. R., and Hu, Y.: The Initiation of Modern “Soft
Snowball“ and “Hard Snowball” Climates in CCSM3. Part II: Climate Dynamic
Feedbacks, J. Climate, 25, 2737–2754,
https://doi.org/10.1175/JCLI-D-11-00190.1, 2012b. a, b, c
                    
                Short summary
                    One limit of planetary habitability is defined by the threshold of global glaciation. If Earth cools, growing ice cover makes it brighter, leading to further cooling, since more sunlight is reflected, eventually leading to global ice cover (Snowball Earth). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
                    One limit of planetary habitability is defined by the threshold of global glaciation. If Earth...
                    
                Altmetrics
                
                Final-revised paper
            
            
                    Preprint
                
                     
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                     
                     
                    