Articles | Volume 14, issue 2
https://doi.org/10.5194/esd-14-367-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-367-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The deployment length of solar radiation modification: an interplay of mitigation, net-negative emissions and climate uncertainty
CECI, Université de Toulouse, CERFACS, CNRS, Toulouse, 31100,
France
Climate Analytics, 10969 Berlin, Germany
Alexander Nauels
Climate Analytics, 10969 Berlin, Germany
Australian-German Climate and Energy College, The University of
Melbourne, Parkville, VIC 3010, Australia
Zebedee Nicholls
Australian-German Climate and Energy College, The University of
Melbourne, Parkville, VIC 3010, Australia
Benjamin M. Sanderson
Centre for International Climate and Environmental Research (CICERO),
Oslo, Norway
Carl-Friedrich Schleussner
Climate Analytics, 10969 Berlin, Germany
Geography Department and IRI THESys, Humboldt-Universität zu
Berlin, Berlin, Germany
Related authors
Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray
Earth Syst. Dynam., 16, 667–681, https://doi.org/10.5194/esd-16-667-2025, https://doi.org/10.5194/esd-16-667-2025, 2025
Short summary
Short summary
Stratospheric aerosol injection (SAI) could be used alongside mitigation to reduce global warming. Previous studies suggest that more atmospheric CO2 is taken up when SAI is deployed. Here, we look at the entire SAI deployment from start to after termination. We show how the initial CO2 uptake benefit, and hence lower mitigation burden, is reduced in later stages of SAI, where the reduction in natural CO2 uptake turns into an additional mitigation burden.
Marit Sandstad, Norman Julius Steinert, Susanne Baur, and Benjamin Mark Sanderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1038, https://doi.org/10.5194/egusphere-2025-1038, 2025
Short summary
Short summary
In this article we present METEORv1.0.0, a climate model emulator, that can be trained on full spacially resolved and widely available climate model data to reproduce climate variables, and make predictions from unseen emission trajectories. The methodology which consists of identifying patterns associated with various timescales of impact for one or more forcers using idealised experiments and anomaly calculations. Results for precipitation and temperature show good model performance.
Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray
Earth Syst. Dynam., 15, 307–322, https://doi.org/10.5194/esd-15-307-2024, https://doi.org/10.5194/esd-15-307-2024, 2024
Short summary
Short summary
Most solar radiation modification (SRM) simulations assume no physical coupling between mitigation and SRM. We analyze the impact of SRM on photovoltaic (PV) and concentrated solar power (CSP) and find that almost all regions have reduced PV and CSP potential compared to a mitigated or unmitigated scenario, especially in the middle and high latitudes. This suggests that SRM could pose challenges for meeting energy demands with solar renewable resources.
Benjamin M. Sanderson, Victor Brovkin, Rosie A. Fisher, David Hohn, Tatiana Ilyina, Chris D. Jones, Torben Koenigk, Charles Koven, Hongmei Li, David M. Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew H. MacDougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Séférian, Lori T. Sentman, Isla R. Simpson, Chris Smith, Norman J. Steinert, Abigail L. S. Swann, Jerry Tjiputra, and Tilo Ziehn
Geosci. Model Dev., 18, 5699–5724, https://doi.org/10.5194/gmd-18-5699-2025, https://doi.org/10.5194/gmd-18-5699-2025, 2025
Short summary
Short summary
This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining the understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation of emissions or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated the Zero Emissions Commitment due to emissions rates exceeding historical levels.
Trevor Martin Sloughter, Zebedee Nicholls, Gang Tang, Thomas Kleinen, Zhen Zhang, and Joeri Rogelj
EGUsphere, https://doi.org/10.5194/egusphere-2025-3873, https://doi.org/10.5194/egusphere-2025-3873, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
High resolution models of the earth system exhibit some disagreement and uncertainty on future methane emissions from natural sources, in particular wetlands, with some studies predicting wetlands alone could be very significant sources over the 21st century. Modelling these emissions as a response to global temperature is one option for simple models to approximate the climate impact of wetlands. The effect is a small increase in overall temperatures and a widening of the uncertainty range.
Anna Zehrung, Andrew D. King, Zebedee Nicholls, Mark D. Zelinka, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2252, https://doi.org/10.5194/egusphere-2025-2252, 2025
Short summary
Short summary
The Gregory method is a common approach for calculating the equilibrium climate sensitivity (ECS). However, studies which apply this method lack transparency in how model data is processed prior to calculating the ECS, inhibiting replicability. Different choices of global and annual mean weighting, anomaly calculation, and linear regression fit can affect the ECS estimates. We investigate the impact of these choices and propose a standardised method for future ECS calculations.
Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray
Earth Syst. Dynam., 16, 667–681, https://doi.org/10.5194/esd-16-667-2025, https://doi.org/10.5194/esd-16-667-2025, 2025
Short summary
Short summary
Stratospheric aerosol injection (SAI) could be used alongside mitigation to reduce global warming. Previous studies suggest that more atmospheric CO2 is taken up when SAI is deployed. Here, we look at the entire SAI deployment from start to after termination. We show how the initial CO2 uptake benefit, and hence lower mitigation burden, is reduced in later stages of SAI, where the reduction in natural CO2 uptake turns into an additional mitigation burden.
Suqi Guo, Felix Havermann, Steven J. De Hertog, Fei Luo, Iris Manola, Thomas Raddatz, Hongmei Li, Wim Thiery, Quentin Lejeune, Carl-Friedrich Schleussner, David Wårlind, Lars Nieradzik, and Julia Pongratz
Earth Syst. Dynam., 16, 631–666, https://doi.org/10.5194/esd-16-631-2025, https://doi.org/10.5194/esd-16-631-2025, 2025
Short summary
Short summary
Land cover and land management changes (LCLMCs) can alter climate even in intact areas, causing carbon changes in remote areas. This study is the first to assess these effects, finding they substantially alter global carbon dynamics, changing terrestrial stocks by up to dozens of gigatonnes. These results are vital for scientific and policy assessments, given the expected role of LCLMCs in achieving the Paris Agreement's goal to limit global warming below 1.5 °C.
William Lamb, Robbie Andrew, Matthew Jones, Zebedee Nicholls, Glen Peters, Chris Smith, Marielle Saunois, Giacomo Grassi, Julia Pongratz, Steven Smith, Francesco Tubiello, Monica Crippa, Matthew Gidden, Pierre Friedlingstein, Jan Minx, and Piers Forster
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-188, https://doi.org/10.5194/essd-2025-188, 2025
Preprint under review for ESSD
Short summary
Short summary
This study explores why global greenhouse gas (GHG) emissions estimates vary. Key reasons include different coverage of gases and sectors, varying definitions of anthropogenic land use change emissions, and the Paris Agreement not covering all emission sources. The study highlights three main ways emissions data is reported, each with different objectives and resulting in varying global emission totals. It emphasizes the need for transparency in choosing datasets and setting assessment scopes.
Norman J. Steinert and Benjamin M. Sanderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1714, https://doi.org/10.5194/egusphere-2025-1714, 2025
Short summary
Short summary
In this study, we explore how carbon emissions from thawing permafrost, known as the permafrost carbon feedback, affect two important climate metrics: how much the Earth warms per amount of carbon we emit, and how much warming continues after we stop emitting carbon. Our study tackles a major gap in how we estimate future climate change. Using simplified climate models, we find a generalizable relationship between the permafrost carbon feedback and its additional warming impact on climate.
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025, https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Short summary
We studied carbon–nitrogen coupling in Earth system models by developing a global carbon–nitrogen cycle model (CNit v1.0) within the widely used emulator MAGICC. CNit effectively reproduced the global carbon–nitrogen cycle dynamics observed in complex models. Our results show persistent nitrogen limitations on plant growth (net primary production) from 1850 to 2100, suggesting that nitrogen deficiency may constrain future land carbon sequestration.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025, https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from various Earth system models. Our findings reveal significant discrepancies between flux and pool size data, where cumulative imbalances can reach hundreds of gigatons of carbon or nitrogen. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land-use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Marit Sandstad, Norman Julius Steinert, Susanne Baur, and Benjamin Mark Sanderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1038, https://doi.org/10.5194/egusphere-2025-1038, 2025
Short summary
Short summary
In this article we present METEORv1.0.0, a climate model emulator, that can be trained on full spacially resolved and widely available climate model data to reproduce climate variables, and make predictions from unseen emission trajectories. The methodology which consists of identifying patterns associated with various timescales of impact for one or more forcers using idealised experiments and anomaly calculations. Results for precipitation and temperature show good model performance.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
John Patrick Dunne, Helene T. Hewitt, Julie Arblaster, Frédéric Bonou, Olivier Boucher, Tereza Cavazos, Paul J. Durack, Birgit Hassler, Martin Juckes, Tomoki Miyakawa, Matthew Mizielinski, Vaishali Naik, Zebedee Nicholls, Eleanor O’Rourke, Robert Pincus, Benjamin M. Sanderson, Isla R. Simpson, and Karl E. Taylor
EGUsphere, https://doi.org/10.5194/egusphere-2024-3874, https://doi.org/10.5194/egusphere-2024-3874, 2024
Short summary
Short summary
This manuscript provides the motivation and experimental design for the seventh phase of the Coupled Model Intercomparison Project (CMIP7) to coordinate community based efforts to answer key and timely climate science questions and facilitate delivery of relevant multi-model simulations for: prediction and projection, characterization, attribution and process understanding; vulnerability, impacts and adaptations analysis; national and international climate assessments; and society at large.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Saloua Peatier, Benjamin M. Sanderson, and Laurent Terray
Earth Syst. Dynam., 15, 987–1014, https://doi.org/10.5194/esd-15-987-2024, https://doi.org/10.5194/esd-15-987-2024, 2024
Short summary
Short summary
The calibration of Earth system model parameters is a high-dimensionality problem subject to data, time, and computational constraints. In this study, we propose a practical solution for finding diverse near-optimal solutions. We argue that the effective degrees of freedom in the model performance response to parameter input is relatively small. Comparably performing parameter configurations exist and showcase different trade-offs in model errors, providing insights for model development.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray
Earth Syst. Dynam., 15, 307–322, https://doi.org/10.5194/esd-15-307-2024, https://doi.org/10.5194/esd-15-307-2024, 2024
Short summary
Short summary
Most solar radiation modification (SRM) simulations assume no physical coupling between mitigation and SRM. We analyze the impact of SRM on photovoltaic (PV) and concentrated solar power (CSP) and find that almost all regions have reduced PV and CSP potential compared to a mitigated or unmitigated scenario, especially in the middle and high latitudes. This suggests that SRM could pose challenges for meeting energy demands with solar renewable resources.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 14, 629–667, https://doi.org/10.5194/esd-14-629-2023, https://doi.org/10.5194/esd-14-629-2023, 2023
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occur and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Benjamin M. Sanderson and Maria Rugenstein
Earth Syst. Dynam., 13, 1715–1736, https://doi.org/10.5194/esd-13-1715-2022, https://doi.org/10.5194/esd-13-1715-2022, 2022
Short summary
Short summary
Equilibrium climate sensitivity (ECS) is a measure of how much long-term warming should be expected in response to a change in greenhouse gas concentrations. It is generally calculated in climate models by extrapolating global average temperatures to a point of where the planet is no longer a net absorber of energy. Here we show that some climate models experience energy leaks which change as the planet warms, undermining the standard approach and biasing some existing model estimates of ECS.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022, https://doi.org/10.5194/esd-13-1305-2022, 2022
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation, and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occurs and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Shruti Nath, Quentin Lejeune, Lea Beusch, Sonia I. Seneviratne, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 13, 851–877, https://doi.org/10.5194/esd-13-851-2022, https://doi.org/10.5194/esd-13-851-2022, 2022
Short summary
Short summary
Uncertainty within climate model projections on inter-annual timescales is largely affected by natural climate variability. Emulators are valuable tools for approximating climate model runs, allowing for easy exploration of such uncertainty spaces. This study takes a first step at building a spatially resolved, monthly temperature emulator that takes local yearly temperatures as the sole input, thus providing monthly temperature distributions which are of critical value to impact assessments.
Peter Pfleiderer, Shruti Nath, and Carl-Friedrich Schleussner
Weather Clim. Dynam., 3, 471–482, https://doi.org/10.5194/wcd-3-471-2022, https://doi.org/10.5194/wcd-3-471-2022, 2022
Short summary
Short summary
Tropical cyclones are amongst the most dangerous weather events. Here we develop an empirical model that allows us to estimate the number and strengths of tropical cyclones for given atmospheric conditions and sea surface temperatures. An application of the model shows that atmospheric circulation is the dominant factor for seasonal tropical cyclone activity. However, warming sea surface temperatures have doubled the likelihood of extremely active hurricane seasons in the past decades.
Lea Beusch, Zebedee Nicholls, Lukas Gudmundsson, Mathias Hauser, Malte Meinshausen, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, https://doi.org/10.5194/gmd-15-2085-2022, 2022
Short summary
Short summary
We introduce the first chain of computationally efficient Earth system model (ESM) emulators to translate user-defined greenhouse gas emission pathways into regional temperature change time series accounting for all major sources of climate change projection uncertainty. By combining the global mean emulator MAGICC with the spatially resolved emulator MESMER, we can derive ESM-specific and constrained probabilistic emulations to rapidly provide targeted climate information at the local scale.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Camille Besombes, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and Olivier Thual
Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021, https://doi.org/10.5194/npg-28-347-2021, 2021
Short summary
Short summary
This paper investigates the potential of a type of deep generative neural network to produce realistic weather situations when trained from the climate of a general circulation model. The generator represents the climate in a compact latent space. It is able to reproduce many aspects of the targeted multivariate distribution. Some properties of our method open new perspectives such as the exploration of the extremes close to a given state or how to connect two realistic weather states.
Nicholas J. Leach, Stuart Jenkins, Zebedee Nicholls, Christopher J. Smith, John Lynch, Michelle Cain, Tristram Walsh, Bill Wu, Junichi Tsutsui, and Myles R. Allen
Geosci. Model Dev., 14, 3007–3036, https://doi.org/10.5194/gmd-14-3007-2021, https://doi.org/10.5194/gmd-14-3007-2021, 2021
Short summary
Short summary
This paper presents an update of the FaIR simple climate model, which can estimate the impact of anthropogenic greenhouse gas and aerosol emissions on the global climate. This update aims to significantly increase the structural simplicity of the model, making it more understandable and transparent. This simplicity allows it to be implemented in a wide range of environments, including Excel. We suggest that it could be used widely in academia, corporate research, and education.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Katherine Dagon, Benjamin M. Sanderson, Rosie A. Fisher, and David M. Lawrence
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, https://doi.org/10.5194/ascmo-6-223-2020, https://doi.org/10.5194/ascmo-6-223-2020, 2020
Short summary
Short summary
Uncertainties in land model projections are important to understand in order to build confidence in Earth system modeling. In this paper, we introduce a framework for estimating uncertain land model parameters with machine learning. This method increases the computational efficiency of this process relative to traditional hand tuning approaches and provides objective methods to assess the results. We further identify key processes and parameters that are important for accurate land modeling.
Robin D. Lamboll, Zebedee R. J. Nicholls, Jarmo S. Kikstra, Malte Meinshausen, and Joeri Rogelj
Geosci. Model Dev., 13, 5259–5275, https://doi.org/10.5194/gmd-13-5259-2020, https://doi.org/10.5194/gmd-13-5259-2020, 2020
Short summary
Short summary
Many models project how human activity can lead to more or less climate change, but most of these models do not project all climate-relevant emissions, potentially biasing climate projections. This paper outlines a Python package called Silicone, which can add missing emissions in a flexible yet high-throughput manner. It does this
infillingbased on more complete literature projections. It facilitates a more complete understanding of the climate impact of alternative emission pathways.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Cited articles
Allen, M. R., Dube, O. P., Solecki, W., Aragoìn-Durand, F., Cramer, W.,
Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez,
R., Wairiu, M., and Zickfeld, K.: Framing and Context, in: Global
Warming of 1.5 ∘C, An IPCC Special Report on the impacts of global
warming of 1.5 ∘C above pre-industrial levels and related global
greenhouse gas emission pathways, in the context of strengthening the global
response to the threat of climate change, Vol. 2, https://doi.org/10.1017/9781009157940.003, 2018.
Andrews, T. M., Delton, A. W., and Kline, R.: Anticipating moral hazard
undermines climate mitigation in an experimental geoengineering game,
Ecol. Econ., 196, 107421,
https://doi.org/10.1016/j.ecolecon.2022.107421, 2022.
Arino, Y., Akimoto, K., Sano, F., Homma, T., Oda, J., and Tomoda, T.:
Estimating option values of solar radiation management assuming that climate
sensitivity is uncertain, P. Natl. Acad. Sci. USA, 113, 5886–5891,
https://doi.org/10.1073/pnas.1520795113, 2016.
Asayama, S. and Hulme, M.: Engineering climate debt: temperature overshoot
and peak-shaving as risky subprime mortgage lending, Clim. Policy, 19,
937–946, https://doi.org/10.1080/14693062.2019.1623165, 2019.
Austin, M. M. K. and Converse, B. A.: In search of weakened resolve: Does
climate-engineering awareness decrease individuals' commitment to
mitigation?, J. Environ. Psychol., 78, 101690,
https://doi.org/10.1016/j.jenvp.2021.101690, 2021.
Baatz, C.: Can we have it both ways? On potential trade-offs between
mitigation and solar radiation management, Environ. Values, 25, 29–49,
https://doi.org/10.3197/096327115X14497392134847, 2016.
Baur, S. and Nicholls, Z.: susannebaur/deployment-length-srm: Clean version, Zenodo [code], https://doi.org/10.5281/zenodo.7707967, 2023.
Belaia, M., Moreno-Cruz, J. B., and Keith, D. W.: Optimal climate policy in
3D: mitigation, carbon removal, and solar geoengineering, Clim. Change
Econ., 12, 2150008, https://doi.org/10.1142/S2010007821500081, 2021.
Bellamy, R., Chilvers, J., and Vaughan, N. E.: Deliberative Mapping of
options for tackling climate change: Citizens and specialists “open up”
appraisal of geoengineering, Public Underst. Sci., 25, 269–286,
https://doi.org/10.1177/0963662514548628, 2016.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in: Climate Change 2013: The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–658, https://doi.org/10.1017/CBO9781107415324.016,
2013.
Brack, D. and King, R.: Managing Land-based CDR: BECCS, Forests and Carbon
Sequestration: Managing Land-based CDR, Glob. Policy, 12, 45–56,
https://doi.org/10.1111/1758-5899.12827, 2020.
Buck, H. J., Martin, L. J., Geden, O., Kareiva, P., Koslov, L., Krantz, W.,
Kravitz, B., Noël, J., Parson, E. A., Preston, C. J., Sanchez, D. L.,
Scarlett, L., and Talati, S.: Evaluating the efficacy and equity of
environmental stopgap measures, Nat. Sustain., 3, 499–504,
https://doi.org/10.1038/s41893-020-0497-6, 2020.
Burns, E. T., Flegal, J. A., Keith, D. W., Mahajan, A., Tingley, D., and
Wagner, G.: What do people think when they think about solar geoengineering?
A review of empirical social science literature, and prospects for future
research, Earth's Future, 4, 536–542, https://doi.org/10.1002/2016EF000461,
2016.
Byers, E., Krey, V., Kriegler E., Riahi, K., Schaeffer, R., Kikstra, J.,
Lamboll, R., Nicholls, Z., Sanstad, M., Smith, C., van der Wijst, K.I., Al
Khourdajie, A., Lecocq, F., Portugal-Pereira, J., Saheb, Y., Strømann,
A., Winkler, H., Auer, C., Brutschin, E., Gidden, M., Hackstock, P.,
Harmsen, M., Huppmann, D., Kolp, P., Lepault, C., Lewis, J., Marangoni, G.,
Müller-Casseres, E., Skeie, R., Werning, M., Calvin, K., Forster, P.,
Guivarch, C., Hasegawa, T., Meinshausen, M., Peters, G., Rogelj, J., Samset,
B., Steinberger, J., Tavoni, M., and van Vuuren, D.: AR6 Scenarios Database, in: Climate Change 2022: Mitigation of Climate Change (1.1), Intergovernmental Panel on Climate Change, Zenodo [data set],
https://doi.org/10.5281/zenodo.7197970, 2022.
Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M.,
Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A.,
Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.:
Global Carbon and other Biogeochemical Cycles and Feedbacks, in: Climate
Change 2021: The Physical Science Basis. Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R.,
and Zhou, B., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 673–816, 2021.
CAT (Climate Action Tracker): 2100 Warming Projections: Emissions and
expected warming based on pledges and current policies, https://climateactiontracker.org/global/temperatures/ (last access: 16 December 2022), 2022.
Coninck, H., Revi, A., Babiker, M., Bertoldi, P., Buckeridge, M.,
Cartwright, A., Dong, W., Ford, J., Fuss, S., Hourcade, J.-C., Ley, D.,
Mechler, R., Newman, P., Revokatova, A., Schultz, S., Steg, L., and
Sugiyama, T.: Chap. 4 – Strengthening and implementing the global
response, in: Global warming of 1.5 ∘C, 313–443,
https://www.ipcc.ch/site/assets/uploads/sites/2/2018/11/SR15_Chapter4_Low_Res.pdf (last access: 20 October 2022), 2018.
Corner, A. and Pidgeon, N.: Geoengineering, climate change scepticism and
the “moral hazard” argument: an experimental study of UK public perceptions,
Philos. T. R. Soc. A., 372, 20140063,
https://doi.org/10.1098/rsta.2014.0063, 2014.
Dooley, J. J.: Estimating the supply and demand for deep geologic CO2
storage capacity over the course of the 21st century: A meta-analysis of the
literature, Energy Proced., 37, 5141–5150,
https://doi.org/10.1016/j.egypro.2013.06.429, 2013.
Dooley, K. and Kartha, S.: Land-based negative emissions: Risks for
climate mitigation and impacts on sustainable development, Int. Environ. Agreem.-P., 18,
79–98, https://doi.org/10.1007/s10784-017-9382-9, 2018.
Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M.,
Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam
Mba, W., Rosenfeld, D., Tierney, J., and Zolina, O.: Water Cycle Changes, in:
Climate Change 2021: The Physical Science Basis, Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 1055–1210, 2021.
Fairbrother, M.: Geoengineering, moral hazard, and trust in climate science:
evidence from a survey experiment in Britain, Clim. Change, 139,
477–489, https://doi.org/10.1007/s10584-016-1818-7, 2016.
Flegal, J. A., Hubert, A. M., Morrow, D. R., and Moreno-Cruz, J. B.: Solar
Geoengineering: Social Science, Legal, Ethical, and Economic Frameworks,
Ann. Rev. Environ. Resour., 44, 399–423,
https://doi.org/10.1146/annurev-environ-102017-030032, 2019.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D.,
Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and Zhang, H.:
The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity, in:
Climate Change 2021: The Physical Science Basis, Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 923–1054, 2021.
Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais,
P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le
Quéré, C., Raupach, M. R., Sharifi, A., Smith, P., and Yamagata, Y.:
Betting on negative emissions, Nat. Clim. Change, 4, 850–853,
https://doi.org/10.1038/nclimate2392, 2014.
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann,
T., Beringer, T., De Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer,
G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. V., Wilcox, J., Del Mar
Zamora Dominguez, M., and Minx, J. C.: Negative emissions – Part 2: Costs,
potentials and side effects, Environ. Res. Lett., 13, 063002,
https://doi.org/10.1088/1748-9326/aabf9f, 2018.
Fyson, C. L., Baur, S., Gidden, M., and Schleussner, C. F.: Fair-share
carbon dioxide removal increases major emitter responsibility, Nat.
Clim. Change, 10, 836–841, https://doi.org/10.1038/s41558-020-0857-2,
2020.
Goeschl, T., Heyen, D., and Moreno-Cruz, J.: The Intergenerational Transfer
of Solar Radiation Management Capabilities and Atmospheric Carbon Stocks,
Environ. Resour. Econ., 56, 85–104,
https://doi.org/10.1007/s10640-013-9647-x, 2013.
Grant, N., Hawkes, A., Mittal, S., and Gambhir, A.: The policy implications
of an uncertain carbon dioxide removal potential, Joule, 5, 2593–2605,
https://doi.org/10.1016/j.joule.2021.09.004, 2021.
Gregory, J. M., Jones, C. D., Cadule, P., and Friedlingstein, P.:
Quantifying Carbon Cycle Feedbacks, J. Clim., 22, 5232–5250,
https://doi.org/10.1175/2009JCLI2949.1, 2009.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp.,
https://doi.org/10.1017/9781009157896, 2021.
IPCC: Climate Change 2022: Mitigation of Climate Change. Contribution of
Working Group III to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A.,
van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R.,
Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge
University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157926, 2022.
Irvine, P. J., Kravitz, B., Lawrence, M. G., and Muri, H.: An overview of
the Earth system science of solar geoengineering, Wiley Interdisciplinary
Reviews, Climate Change, 7, 815–833, https://doi.org/10.1002/wcc.423, 2016.
Jenkins, S., Sanderson, B., Peters, G., Frölicher, T. L.,
Friedlingstein, P., and Allen, M.: The Multi-Decadal Response to Net Zero CO
2 Emissions and Implications for Emissions Policy, Geophys. Res.
Lett., 49, e2022GL101047, https://doi.org/10.1029/2022GL101047, 2022.
Johansson, D. J. A., Azar, C., Lehtveer, M., and Peters, G. P.: The role of
negative carbon emissions in reaching the Paris climate targets: The impact
of target formulation in integrated assessment models, Environ. Res. Lett.,
15, 124024, https://doi.org/10.1088/1748-9326/abc3f0, 2020.
Jones, A. C., Hawcroft, M. K., Haywood, J. M., Jones, A., Guo, X., and
Moore, J. C.: Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering, Earth's Future, 6, 230–251,
https://doi.org/10.1002/2017EF000720, 2018.
Jones, C. D., Frölicher, T. L., Koven, C., MacDougall, A. H., Matthews,
H. D., Zickfeld, K., Rogelj, J., Tokarska, K. B., Gillett, N. P., Ilyina,
T., Meinshausen, M., Mengis, N., Séférian, R., Eby, M., and Burger,
F. A.: The Zero Emissions Commitment Model Intercomparison Project (ZECMIP)
contribution to C4MIP: quantifying committed climate changes following zero
carbon emissions, Geosci. Model Dev., 12, 4375–4385,
https://doi.org/10.5194/gmd-12-4375-2019, 2019.
Kahan, D. M., Jenkins-Smith, H., Tarantola, T., Silva, C. L., and Braman,
D.: Geoengineering and Climate Change Polarization: Testing a Two-Channel
Model of Science Communication, Ann. Am. Acad. Polit. SS, 658, 192–222,
https://doi.org/10.1177/0002716214559002, 2015.
Kearns, J., Teletzke, G., Palmer, J., Thomann, H., Kheshgi, H., Chen, Y.-H.
H., Paltsev, S., and Herzog, H.: Developing a Consistent Database for
Regional Geologic CO2 Storage Capacity Worldwide, Energy Proced., 114,
4697–4709, https://doi.org/10.1016/j.egypro.2017.03.1603, 2017.
Keith, D. W.: Geoengineering the climate: History and Prospect, Annu. Rev.
Energy Environ., 25, 245–84, 2000.
Keith, D. W. and MacMartin, D. G.: A temporary, moderate and responsive
scenario for solar geoengineering, Nat. Clim. Change, 5, 201–206,
https://doi.org/10.1038/nclimate2493, 2015.
Lawrence, M. G., Schäfer, S., Muri, H., Scott, V., Oschlies, A.,
Vaughan, N. E., Boucher, O., Schmidt, H., Haywood, J., and Scheffran, J.:
Evaluating climate geoengineering proposals in the context of the Paris
Agreement temperature goals, Nat. Commun., 9, 3734,
https://doi.org/10.1038/s41467-018-05938-3, 2018.
Leduc, M., Matthews, H. D., and de Elía, R.: Quantifying the Limits of
a Linear Temperature Response to Cumulative CO2 Emissions, J.
Clim., 28, 9955–9968, https://doi.org/10.1175/JCLI-D-14-00500.1, 2015.
Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P.,
Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycock, A., Mutemi, J.,
Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based
Projections and Near- Term Information, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S. L., Peìan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,
Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
553–672, 2021.
MacDougall, A. H., Frölicher, T. L., Jones, C. D., Rogelj, J., Matthews,
H. D., Zickfeld, K., Arora, V. K., Barrett, N. J., Brovkin, V., Burger, F.
A., Eby, M., Eliseev, A. V., Hajima, T., Holden, P. B., Jeltsch-Thömmes,
A., Koven, C., Mengis, N., Menviel, L., Michou, M., Mokhov, I. I., Oka, A.,
Schwinger, J., Séférian, R., Shaffer, G., Sokolov, A., Tachiiri, K.,
Tjiputra, J., Wiltshire, A., and Ziehn, T.: Is there warming in the
pipeline? A multi-model analysis of the Zero Emissions Commitment from
CO2, Biogeosciences, 17, 2987–3016,
https://doi.org/10.5194/bg-17-2987-2020, 2020.
MacMartin, D. G., Ricke, K. L., and Keith, D. W.: Solar geoengineering as
part of an overall strategy for meeting the 1.5 ∘C Paris target,
Philos. T. R. Soc. A, 376, 20160454, https://doi.org/10.1098/rsta.2016.0454, 2018.
MacMartin, D. G., Visioni, D., Kravitz, B., Richter, J. H., Felgenhauer, T.,
Lee, W. R., Morrow, D. R., Parson, E. A., and Sugiyama, M.: Scenarios for
modeling solar radiation modification, P. Natl. Acad.
Sci. USA, 119, e2202230119, https://doi.org/10.1073/pnas.2202230119,
2022.
Matthews, H. D., Gillett, N. P., Stott, P. A., and Zickfeld, K.: The
proportionality of global warming to cumulative carbon emissions, Nature,
459, 829–832, https://doi.org/10.1038/nature08047, 2009.
Matthews, H. D., Tokarska, K. B., Nicholls, Z. R. J., Rogelj, J., Canadell,
J. G., Friedlingstein, P., Frölicher, T. L., Forster, P. M., Gillett, N.
P., Ilyina, T., Jackson, R. B., Jones, C. D., Koven, C., Knutti, R.,
MacDougall, A. H., Meinshausen, M., Mengis, N., Séférian, R., and
Zickfeld, K.: Opportunities and challenges in using remaining carbon budgets
to guide climate policy, Nat. Geosci., 13, 769–779,
https://doi.org/10.1038/s41561-020-00663-3, 2020.
Matthews, H. D., Tokarska, K. B., Rogelj, J., Smith, C. J., MacDougall, A.
H., Haustein, K., Mengis, N., Sippel, S., Forster, P. M., and Knutti, R.:
An integrated approach to quantifying uncertainties in the remaining carbon
budget, Commun. Earth Environ., 2, 7,
https://doi.org/10.1038/s43247-020-00064-9, 2021.
McLaren, D.: Mitigation deterrence and the “moral hazard” of solar
radiation management, Earth's Future, 4, 596–602,
https://doi.org/10.1002/2016EF000445, 2016.
Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K.,
Knutti, R., Frame, D. J., and Allen, M. R.: Greenhouse-gas emission targets
for limiting global warming to 2 ∘C, Nature, 458, 1158–1162,
https://doi.org/10.1038/nature08017, 2009.
Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled
atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 –
Part 1: Model description and calibration, Atmos. Chem.
Phys., 11, 1417–1456, https://doi.org/10.5194/acp-11-1417-2011, 2011a.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Climatic Change,
109, 213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011b.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E.,
Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J.
G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N.,
Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M.,
Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared
socio-economic pathway (SSP) greenhouse gas concentrations and their
extensions to 2500, Geosci. Model Dev., 13, 3571–3605,
https://doi.org/10.5194/gmd-13-3571-2020, 2020.
Merk, C., Pönitzsch, G., and Rehdanz, K.: Knowledge about aerosol
injection does not reduce individual mitigation efforts, Environ.
Res. Lett., 11, 054009, https://doi.org/10.1088/1748-9326/11/5/054009, 2016.
Moreno-Cruz, J.: Mitigation and the geoengineering threat, Resour.
Energ. Econ., 41, 248–263,
https://doi.org/10.1016/j.reseneeco.2015.06.001, 2015.
Möller, I.: Political Perspectives on Geoengineering: Navigating Problem
Definition and Institutional Fit, Global Environ. Polit., 20, 57–82,
https://doi.org/10.1162/glep_a_00547, 2020.
Nauels, A., Meinshausen, M., Mengel, M., Lorbacher, K., and Wigley, T. M.
L.: Synthesizing long-Term sea level rise projections-The MAGICC sea level
model v2.0, Geosci. Model Dev., 10, 2495–2524,
https://doi.org/10.5194/gmd-10-2495-2017, 2017.
Neuber, F. and Ott, K.: The buying time argument within the solar radiation
management discourse, Appl. Sci., 10, 4637,
https://doi.org/10.3390/app10134637, 2020.
Parker, A. and Irvine, P. J.: The Risk of Termination Shock From Solar
Geoengineering, Earth's Future, 6, 456–467,
https://doi.org/10.1002/2017EF000735, 2018.
Pathak, R. Slade, Shukla, P. R., Skea, J., Pichs-Madruga, R.,
and Ürge-Vorsatz, D.: Technical Summary, in: Climate Change 2022: Mitigation of
Climate Change, Contribution of Working Group III to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R.,
Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M.,
Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and
Malley, J., Cambridge University Press, Cambridge, UK and New York, NY,
USA, 2022.
Pierrehumbert, R.: There is no Plan B for dealing with the climate crisis,
Bull. Atom. Sci., 75, 215–221,
https://doi.org/10.1080/00963402.2019.1654255, 2019.
Raimi, K. T., Maki, A., Dana, D., and Vandenbergh, M. P.: Framing of
Geoengineering Affects Support for Climate Change Mitigation, Environ.
Commun., 13, 300–319, https://doi.org/10.1080/17524032.2019.1575258,
2019.
Reynolds, J. L.: Solar geoengineering to reduce climate change: A review of
governance proposals, Proc. Roy. Soc. A, 475, 20190255,
https://doi.org/10.1098/rspa.2019.0255, 2019.
Riahi, K., Schaeffer, R., Arango, J., Calvin, K., Guivarch, C., Hasegawa, T.,
Jiang, K., Kriegler, E., Matthews, R., Peters, G. P., Rao, A., Robertson, S.,
Sebbit, A. M., Steinberger, J., Tavoni, M., and van Vuuren, D. P.: Mitigation pathways
compatible with long-term goals, in: IPCC, 2022: Climate Change 2022:
Mitigation of Climate Change, Contribution of Working Group III to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D.,
Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G.,
Luz, S., and Malley, J., Cambridge University Press, Cambridge, UK and New
York, NY, USA, 2022.
Rogelj, J., Huppmann, D., Krey, V., Riahi, K., Clarke, L., Gidden, M.,
Nicholls, Z., and Meinshausen, M.: A new scenario logic for the Paris
Agreement long-term temperature goal, Nature, 573, 357–363,
https://doi.org/10.1038/s41586-019-1541-4, 2019.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L.,
Séférian, R., and Vilariño, M. V.: Mitigation Pathways
Compatible with 1.5 ∘C in the Context of Sustainable Development,
in: Global Warming of 1.5 ∘C, An IPCC Special Report on the
impacts of global warming of 1.5 ∘C above pre-industrial levels
and related global greenhouse gas emission pathw, IPCC Special Report Global
Warming of 1.5 ∘C, 82 pp.
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter2_Low_Res.pdf (last access: 11 October 2022), 2018.
Schleussner, C.-F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R.,
Fischer, E. M., Knutti, R., Levermann, A., Frieler, K., and Hare, W.:
Science and policy characteristics of the Paris Agreement temperature goal,
Nat. Clim. Change, 6, 827–835, https://doi.org/10.1038/nclimate3096, 2016.
Shepherd, J., Caldeira, K., Haigh, J., Keith, D., Launder, B., Mace, G., MacKerron, G.,
Pyle, J., Rayner, S., Redgwell, C., and Watson, A.: Geoengineering the climate:
science, governance and uncertainty, Roy. Acad., RS1636, ISBN: 978-0-85403-773-5, 2009.
Shue, H.: Climate dreaming: Negative emissions, risk transfer, and
irreversibility, J. Human Right. Environ., 8,
203–216, https://doi.org/10.4337/jhre.2017.02.02, 2017.
Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B.,
Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., Van Vuuren, D. P.,
Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G.,
Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T.,
Grübler, A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F.,
Littleton, E., Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M.,
Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata,
Y., Edmonds, J., and Yongsung, C.: Biophysical and economic limits to
negative CO2 emissions, Nat. Clim. Change, 6, 42–50,
https://doi.org/10.1038/nclimate2870, 2015.
Svoboda, T., Keller, K., Goes, M., and Tuana, N.: Sulfate aerosol
geoengineering: the question of justice, Public Aff. Q., 25, 157–179, 2011.
Tilmes, S., Sanderson, B. M., and O'Neill, B. C.: Climate impacts of
geoengineering in a delayed mitigation scenario, Geophys. Res.
Lett., 43, 8222–8229, https://doi.org/10.1002/2016GL070122, 2016.
Tjiputra, J. F., Grini, A., and Lee, H.: Impact of idealized future
stratospheric aerosol injection on the large-scale ocean and land carbon
cycles, J. Geophys. Res.-Biogeo., 121, 2–27,
https://doi.org/10.1002/2015JG003045, 2016.
Tokarska, K. B., Gillett, N. P., Weaver, A. J., Arora, V. K., and Eby, M.:
The climate response to five trillion tonnes of carbon, Nat. Clim. Change,
6, 851–855, https://doi.org/10.1038/nclimate3036, 2016.
UNFCCC: Conference of the Parties (COP), 30 November–11 December 2015, Paris, France, 2015.
Vakilifard, N., Williams, R. G., Holden, P. B., Turner, K., Edwards, N. R.,
and Beerling, D. J.: Impact of negative and positive CO2 emissions on global
warming metrics using an ensemble of Earth system model simulations,
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022,
2022.
Wibeck, V., Hansson, A., and Anshelm, J.: Questioning the technological fix to
climate change – Lay sense-making of geoengineering in Sweden, Energ.
Res. Soc. Sci., 7, 23–30,
https://doi.org/10.1016/j.erss.2015.03.001, 2015.
Zickfeld, K., MacDougall, A. H., and Matthews, H. D.: On the proportionality
between global temperature change and cumulative CO2 emissions during
periods of net negative CO2 emissions, Environ. Res. Lett., 11, 055006,
https://doi.org/10.1088/1748-9326/11/5/055006, 2016.
Short summary
Solar radiation modification (SRM) artificially cools global temperature without acting on the cause of climate change. This study looks at how long SRM would have to be deployed to limit warming to 1.5 °C and how this timeframe is affected by different levels of mitigation, negative emissions and climate uncertainty. None of the three factors alone can guarantee short SRM deployment. Due to their uncertainty at the time of SRM initialization, any deployment risks may be several centuries long.
Solar radiation modification (SRM) artificially cools global temperature without acting on the...
Altmetrics
Final-revised paper
Preprint