Articles | Volume 13, issue 2
https://doi.org/10.5194/esd-13-935-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-935-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glacial runoff buffers droughts through the 21st century
Department of Geology, Middlebury College, Middlebury, VT, USA
Sloan Coats
Department of Earth Sciences, University of Hawaii at Mānoa, Honolulu, HI, USA
Jonathan Mackay
British Geological Survey, Environmental Science Centre, Keyworth, UK
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, UK
Related authors
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
The Cryosphere, 19, 1491–1511, https://doi.org/10.5194/tc-19-1491-2025, https://doi.org/10.5194/tc-19-1491-2025, 2025
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 30 km2 of initial glacier cover.
Vincent Verjans, Alexander A. Robel, Lizz Ultee, Helene Seroussi, Andrew F. Thompson, Lars Ackerman, Youngmin Choi, and Uta Krebs-Kanzow
EGUsphere, https://doi.org/10.5194/egusphere-2024-4067, https://doi.org/10.5194/egusphere-2024-4067, 2025
Short summary
Short summary
This study examines how random variations in climate may influence future ice loss from the Greenland Ice Sheet. We find that random climate variations are important for predicting future ice loss from the entire Greenland Ice Sheet over the next 20–30 years, but relatively unimportant after that period. Thus, uncertainty in sea level projections from the effect of climate variability on Greenland may play a role in coastal decision-making about sea level rise over the next few decades.
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024, https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary
Short summary
Predicting how much water will come from glaciers in the future is a complex task, and there are many factors that make it uncertain. Using a glacier model, we explored 1920 scenarios for each glacier in the Patagonian Andes. We found that the choice of the historical climate data was the most important factor, while other factors such as different data sources, climate models and emission scenarios played a smaller role.
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024, https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Short summary
The surface mass balance (SMB) of an ice sheet describes the net gain or loss of mass from ice sheets (such as those in Greenland and Antarctica) through interaction with the atmosphere. We developed a statistical method to generate a wide range of SMB fields that reflect the best understanding of SMB processes. Efficiently sampling the variability of SMB will help us understand sources of uncertainty in ice sheet model projections.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Andrew A. Flaim, Bronwen L. Konecky, and Sloan Coats
EGUsphere, https://doi.org/10.5194/egusphere-2025-4121, https://doi.org/10.5194/egusphere-2025-4121, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The North Atlantic Oscillation is an important driver of year-to-year weather variability in Europe and North America, but its behavior on longer timescales is disputed. We present a new reconstruction of the NAO over the last millennium using water isotope proxy data from ice cores, speleothems, trees, and other archives. We find pronounced but irregular multidecadal to centennial variability. Better accounting for such variability in climate models is crucial to better project future climate.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
The Cryosphere, 19, 1491–1511, https://doi.org/10.5194/tc-19-1491-2025, https://doi.org/10.5194/tc-19-1491-2025, 2025
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 30 km2 of initial glacier cover.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
The Cryosphere, 19, 685–712, https://doi.org/10.5194/tc-19-685-2025, https://doi.org/10.5194/tc-19-685-2025, 2025
Short summary
Short summary
We combine two globally capable glacier evolution models to include processes that are typically neglected but thought to control tropical glacier retreat (e.g. sublimation). We apply the model to Peru's Vilcanota-Urubamba Basin. The model captures observed glacier mass changes,but struggles with surface albedo dynamics. Projections show glacier mass shrinking to 17 % or 6 % of 2000 levels by 2100 under moderate- and high-emission scenarios, respectively.
Vincent Verjans, Alexander A. Robel, Lizz Ultee, Helene Seroussi, Andrew F. Thompson, Lars Ackerman, Youngmin Choi, and Uta Krebs-Kanzow
EGUsphere, https://doi.org/10.5194/egusphere-2024-4067, https://doi.org/10.5194/egusphere-2024-4067, 2025
Short summary
Short summary
This study examines how random variations in climate may influence future ice loss from the Greenland Ice Sheet. We find that random climate variations are important for predicting future ice loss from the entire Greenland Ice Sheet over the next 20–30 years, but relatively unimportant after that period. Thus, uncertainty in sea level projections from the effect of climate variability on Greenland may play a role in coastal decision-making about sea level rise over the next few decades.
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024, https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary
Short summary
Predicting how much water will come from glaciers in the future is a complex task, and there are many factors that make it uncertain. Using a glacier model, we explored 1920 scenarios for each glacier in the Patagonian Andes. We found that the choice of the historical climate data was the most important factor, while other factors such as different data sources, climate models and emission scenarios played a smaller role.
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024, https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Short summary
The surface mass balance (SMB) of an ice sheet describes the net gain or loss of mass from ice sheets (such as those in Greenland and Antarctica) through interaction with the atmosphere. We developed a statistical method to generate a wide range of SMB fields that reflect the best understanding of SMB processes. Efficiently sampling the variability of SMB will help us understand sources of uncertainty in ice sheet model projections.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Cited articles
Aizen, V. B., Aizen, E. M., and Nikitin, S. A.: Glacier regime on the northern
slope of the Himalaya (Xixibangma glaciers), Quatern. Int.,
97-98, 27–39, https://doi.org/10.1016/S1040-6182(02)00049-6, 2002. a
Ault, T. R.: On the essentials of drought in a changing climate, Science, 368,
256–260, https://doi.org/10.1126/science.aaz5492, 2020. a, b
Ayala, Á., Farías-Barahona, D., Huss, M., Pellicciotti, F., McPhee, J., and Farinotti, D.: Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile, The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, 2020. a, b
Barandun, M., Fiddes, J., Scherler, M., Mathys, T., Saks, T., Petrakov, D., and
Hoelzle, M.: The state and future of the cryosphere in Central Asia,
Water Security, 11, 100072, https://doi.org/10.1016/j.wasec.2020.100072,
2020. a
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature, 438,
303–309, https://doi.org/10.1038/nature04141, 2005. a
Biemans, H., Siderius, C., Lutz, A. F., Nepal, S., Ahmad, B., Hassan, T., von
Bloh, W., Wijngaard, R. R., Wester, P., Shrestha, A. B., and Immerzeel,
W. W.: Importance of snow and glacier meltwater for agriculture on the
Indo-Gangetic Plain, Nature Sustainability, 2, 594–601,
https://doi.org/10.1038/s41893-019-0305-3, 2019. a, b
Bliss, A., Hock, R., and Radić, V.: Global response of glacier runoff to
twenty-first century climate change,
J. Geophys. Res.-Earth, 119, 717–730, https://doi.org/10.1002/2013JF002931, 2014. a
Brunner, M. I., Farinotti, D., Zekollari, H., Huss, M., and Zappa, M.: Future shifts in extreme flow regimes in Alpine regions, Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, 2019. a
Cáceres, D., Marzeion, B., Malles, J. H., Gutknecht, B. D., Müller Schmied, H., and Döll, P.: Assessing global water mass transfers from continents to oceans over the period 1948–2016, Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, 2020. a
Carey, M., Molden, O. C., Rasmussen, M. B., Jackson, M., Nolin, A. W., and
Mark, B. G.: Impacts of Glacier Recession and Declining Meltwater on Mountain
Societies, Ann. Am. Assoc. Geogr., 107, 350–359,
https://doi.org/10.1080/24694452.2016.1243039, 2017. a
Chen, J. and Ohmura, A.: On the influence of Alpine glaciers on runoff, IAHS
Publ., 193, 117–125, 1990. a
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and 21st
century drying, Clim. Dynam., 43, 2607–2627,
https://doi.org/10.1007/s00382-014-2075-y, 2014. a, b, c, d
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., and
Anchukaitis, K. J.: Twenty-first century drought projections in the CMIP6
forcing scenarios, Earth's Future, 8, e2019EF001461,
https://doi.org/10.1029/2019EF001461, 2020. a
Danandeh Mehr, A. and Vaheddoost, B.: Identification of the trends associated
with the SPI and SPEI indices across Ankara, Turkey,
Theor. Appl. Climatol., 139, 1531–1542,
https://doi.org/10.1007/s00704-019-03071-9, 2020. a
Decharme, B., Delire, C., Minvielle, M., Colin, J., Vergnes, J.-P., Alias, A.,
Saint-Martin, D., Séférian, R., Sénési, S., and Voldoire, A.:
Recent changes in the ISBA-CTRIP land surface system for use in the CNRM-CM6
climate model and in global off-line hydrological applications,
J. Adv. Model. Earth Sy., 11, 1207–1252,
https://doi.org/10.1029/2018MS001545, 2019. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system,
Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Farahmand, A. and AghaKouchak, A.: A generalized framework for deriving
nonparametric standardized drought indicators, Adv. Water Resour.,
76, 140–145, https://doi.org/10.1016/j.advwatres.2014.11.012, 2015. a, b
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of Climate Models, in: Climate change 2013: The physical science
basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, chapter 9, 741–866, https://www.ipcc.ch/report/ar5/wg1/evaluation-of-climate-models/ (last access: 25 May 2022), 2013. a
Fleming, S. W. and Clarke, G. K.: Attenuation of High-Frequency Interannual
Streamflow Variability by Watershed Glacial Cover,
J. Hydraul. Eng., 131, 615–618, https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(615),
2005. a, b
Fountain, A. G. and Tangborn, W. V.: The Effect of Glaciers on Streamflow
Variations, Water Resour. Res., 21, 579–586,
https://doi.org/10.1029/WR021i004p00579, 1985. a, b
Frans, C., Istanbulluoglu, E., Lettenmaier, D. P., Clarke, G., Bohn, T. J., and
Stumbaugh, M.: Implications of decadal to century scale glacio-hydrological
change for water resources of the Hood River basin, OR, USA,
Hydrol. Process., 30, 4314–4329, https://doi.org/10.1002/hyp.10872, 2016. a, b
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013. a
Hagg, W., Hoelzle, M., Wagner, S., Mayr, E., and Klose, Z.: Glacier and runoff
changes in the Rukhk catchment, upper Amu-Darya basin until 2050,
Global Planet. Change, 110, 62–73,
https://doi.org/10.1016/j.gloplacha.2013.05.005, 2013. a
Head, L., Atchison, J., Gates, A., and Muir, P.: A fine-grained study of the
experience of drought, risk and climate change among Australian wheat farming
households, Ann. Assoc. Am. Geogr., 101,
1089–1108, https://doi.org/10.1080/00045608.2011.579533, 2011. a
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate change
will affect the Asian water towers, Science, 328, 1382,
https://doi.org/10.1126/science.1183188, 2010. a, b
Immerzeel, W. W., van Beek, L. P. H., Konz, M., Shrestha, A. B., and Bierkens,
M. F. P.: Hydrological response to climate change in a glacierized catchment
in the Himalayas, Climatic Change, 110, 721–736,
https://doi.org/10.1007/s10584-011-0143-4, 2012. a
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T.,
Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink,
P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter,
T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha,
A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world's water towers, Nature, 577,
364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020. a, b
Juen, I., Kaser, G., and Georges, C.: Modelling observed and future runoff
from a glacierized tropical catchment (Cordillera Blanca, Perú), Global Planet. Change, 59, 37–48, https://doi.org/10.1016/j.gloplacha.2006.11.038, 2007. a, b
Kaser, G., Großhauser, M., and Marzeion, B.: Contribution potential of
glaciers to water availability in different climate regimes,
P. Ntl. Acad. Sci. USA, 107, 20223–20227,
https://doi.org/10.1073/pnas.1008162107, 2010. a, b
Kingston, D. G., Stagge, J. H., Tallaksen, L. M., and Hannah, D. M.:
European-Scale Drought: Understanding Connections between Atmospheric
Circulation and Meteorological Drought Indices, J. Climate, 28,
505–516, https://doi.org/10.1175/JCLI-D-14-00001.1, 2014. a
Lawrence, D., Fisher, R., Koven, C., Oleson, K., Swenson, S., and Vertenstein,
M.: Technical description of version 5.0 of the Community Land Model (CLM),
Tech. rep., National Center for Atmospheric Research, 337 pp., https://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf (last access: August 2019), 2018. a
Lehner, F., Wood, A. W., Vano, J. A., Lawrence, D. M., Clark, M. P., and
Mankin, J. S.: The potential to reduce uncertainty in regional runoff
projections from climate models, Nat. Clim. Change, 9, 926–933, 2019. a
López-Moreno, J., Vicente-Serrano, S., Zabalza, J., Beguería, S.,
Lorenzo-Lacruz, J., Azorin-Molina, C., and Morán-Tejeda, E.: Hydrological
response to climate variability at different time scales: A study in the Ebro
basin, J. Hydrol., 477, 175–188,
https://doi.org/10.1016/j.jhydrol.2012.11.028, 2013. a
Lorenzo-Lacruz, J., Vicente-Serrano, S. M., López-Moreno, J. I.,
Beguería, S., García-Ruiz, J. M., and Cuadrat, J. M.: The impact
of droughts and water management on various hydrological systems in the
headwaters of the Tagus River (central Spain), J. Hydrol., 386,
13–26, https://doi.org/10.1016/j.jhydrol.2010.01.001, 2010. a
Mackay, J. D., Barrand, N. E., Hannah, D. M., Krause, S., Jackson, C. R., Everest, J., Aðalgeirsdóttir, G., and Black, A. R.: Future evolution and uncertainty of river flow regime change in a deglaciating river basin, Hydrol. Earth Syst. Sci., 23, 1833–1865, https://doi.org/10.5194/hess-23-1833-2019, 2019. a
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I., Williams, A. P., and
Horton, R. M.: Blue water trade-offs with vegetation in a CO2-enriched
climate, Geophys. Res. Lett., 45, 3115–3125,
https://doi.org/10.1002/2018GL077051, 2018. a
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I., and Williams, A. P.:
Mid-latitude freshwater availability reduced by projected vegetation
responses to climate change, Nat. Geosci., 18, 1–6,
https://doi.org/10.1038/s41561-019-0480-x, 2019. a
Marzeion, B., Kaser, G., Maussion, F., and Champollion, N.: Limited influence
of climate change mitigation on short-term glacier mass loss, Nat. Clim. Change, 8, 305–308, https://doi.org/10.1038/s41558-018-0093-1, 2018. a, b, c
Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K.,
Huss, M., Immerzeel, W., Kraaijenbrink, P., Malles, J.-H., Maussion, F.,
Radić, V., Rounce, D. R., Sakai, A., Shannon, S., van de Wal, R., and
Zekollari, H.: Partitioning the Uncertainty of Ensemble Projections of Global
Glacier Mass Change, Earth's Future, 8, e2019EF001470,
https://doi.org/10.1029/2019EF001470, 2020. a, b
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1, Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, 2019. a
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, in: Proceedings of the 8th Conference
on Applied Climatology, Anaheim, CA, 17–22 January 1993, American
Meteorological Society, Boston, MA, 179–184, https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (last access: 31 May 2022), 1993. a
Milly, P. C. and Dunne, K. A.: Potential evapotranspiration and continental
drying, Nat. Clim. Change, 6, 946, https://doi.org/10.1038/nclimate3046, 2016. a
Milly, P. C., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W.,
Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead: Whither Water
Management?, Science, 319, 573, https://doi.org/10.1126/science.1151915, 2008. a
Ming, B., Guo, Y.-q., Tao, H.-b., Liu, G.-z., Li, S.-k., and Wang, P.:
SPEIPM-based research on drought impact on maize yield in North China Plain,
J. Integr. Agr., 14, 660–669,
https://doi.org/10.1016/S2095-3119(14)60778-4, 2015. a
Noël, B., van de Berg, W. J., van Meijgaard, E., Kuipers Munneke, P., van de Wal, R. S. W., and van den Broeke, M. R.: Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet, The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, 2015. a
Obleitner, F.: Climatological features of glacier and valley winds at the
Hintereisferner (Ötztal Alps, Austria), Theor. Appl. Climatol., 49, 225–239, https://doi.org/10.1007/BF00867462, 1994. a
Palmer, W. C.: Meteorological Drought, US Weather Bureau, Washington, DC, Tech. Rep. Research Paper No. 45, 1965. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python,
J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Peña-Gallardo, M., Vicente-Serrano, S. M., Hannaford, J., Lorenzo-Lacruz,
J., Svoboda, M., Domínguez-Castro, F., Maneta, M., Tomas-Burguera, M.,
and Kenawy, A. E.: Complex influences of meteorological drought time-scales
on hydrological droughts in natural basins of the contiguous Unites States,
J. Hydrol., 568, 611–625, https://doi.org/10.1016/j.jhydrol.2018.11.026, 2019. a
Potop, V., Možný, M., and Soukup, J.: Drought evolution at various
time scales in the lowland regions and their impact on vegetable crops in the
Czech Republic, Agr. Forest Meteorol., 156, 121–133,
https://doi.org/10.1016/j.agrformet.2012.01.002, 2012. a
Pritchard, H. D.: Asia's shrinking glaciers protect large populations from
drought stress, Nature, 569, 649–654, https://doi.org/10.1038/s41586-019-1240-1, 2019. a, b, c
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 4.0, Technical Report, Global Land Ice Measurements from
Space, National Snow and Ice Data Center (NSIDC) [data set], https://doi.org/10.7265/N5-RGI-60, 2014 (updated 2017). a
Rounce, D. R., Hock, R., and Shean, D. E.: Glacier Mass Change in High
Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution
Model (PyGEM), Front. Earth Sci., 7, 331,
https://doi.org/10.3389/feart.2019.00331, 2020. a
Rowan, A. V., Quincey, D. J., Gibson, M. J., Glasser, N. F., Westoby, M. J.,
Irvine-Fynn, T. D. L., Porter, P. R., and Hambrey, M. J.: The sustainability
of water resources in High Mountain Asia in the context of recent and future
glacier change, Geological Society, London, Special Publications, 462, 189, https://doi.org/10.1144/SP462.12, 2018. a, b
Schaefli, B., Manso, P., Fischer, M., Huss, M., and Farinotti, D.: The role of
glacier retreat for Swiss hydropower production, Renewable Energy, 132,
615–627, https://doi.org/10.1016/j.renene.2018.07.104, 2019. a
Scheff, J., Seager, R., Liu, H., and Coats, S.: Are glacials dry? Consequences
for paleoclimatology and for greenhouse warming, J. Climate, 30,
6593–6609, https://doi.org/10.1175/JCLI-D-16-0854.1, 2017. a
Shaw, T. E., Ulloa, G., Farías-Barahona, D., Fernandez, R., Lattus, J. M.,
and McPhee, J.: Glacier albedo reduction and drought effects in the
extratropical Andes, 1986–2020, J. Glaciol., 67, 158–169,
https://doi.org/10.1017/jog.2020.102, 2021. a
Shukla, S. and Wood, A. W.: Use of a standardized runoff index for
characterizing hydrologic drought, Geophys. Res. Lett., 35, L02405,
https://doi.org/10.1029/2007GL032487, 2008. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J.,
Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A
description of the Advanced Research WRF version 4, NCAR Tech. Note
NCAR/TN-556+STR, https://doi.org/10.5065/1dfh-6p97, 2019. a
Soruco, A., Vincent, C., Rabatel, A., Francou, B., Thibert, E., Sicart, J. E.,
and Condom, T.: Contribution of glacier runoff to water resources of La Paz
city, Bolivia (16∘ S), Ann. Glaciol., 56, 147–154,
https://doi.org/10.3189/2015AoG70A001, 2015. a, b
Swann, A. L., Hoffman, F. M., Koven, C. D., and Randerson, J. T.: Plant
responses to increasing CO2 reduce estimates of climate impacts on drought
severity, P. Ntl. Acad. Sci. USA, 113,
10019–10024, https://doi.org/10.1073/pnas.1604581113, 2016. a
Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced
treatments of surface interaction and runoff, Global Planet. Change,
38, 209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2003. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2011. a, b, c
Ultee, L., Coats, S., and Mackay, J.: ehultee/glacial-SPEI: Initial release (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5711935, 2021. a
Ultee, L., Coats, S., and Mackay, J.: ehultee/glacial-SPEI: Publication release (v1.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6510185, 2022. a
van de Wal, R. S. W. and Wild, M.: Modelling the response of glaciers to
climate change by applying volume-area scaling in combination with a high
resolution GCM, Clim. Dynam., 18, 359–366, https://doi.org/10.1007/s003820100184,
2001. a
van den Broeke, M. R.: Structure and diurnal variation of the atmospheric
boundary layer over a mid-latitude glacier in summer,
Bound.-Lay. Meteorol., 83, 183–205, https://doi.org/10.1023/A:1000268825998, 1997. a
van Loon, A. F.: Hydrological drought explained, WIREs Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
a
van Tiel, M., Kohn, I., Van Loon, A. F., and Stahl, K.: The compensating
effect of glaciers: Characterizing the relation between interannual
streamflow variability and glacier cover, Hydrol. Process., 34,
553–568, https://doi.org/10.1002/hyp.13603, 2020. a
Vergara, W., Deeb, A., Valencia, A., Bradley, R., Francou, B., Zarzar, A.,
Grünwaldt, A., and Haeussling, S.: Economic impacts of rapid glacier
retreat in the Andes, Eos, Transactions American Geophysical Union, 88,
261–264, https://doi.org/10.1029/2007EO250001, 2007. a
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2009. a, b, c
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., and Donohue, R. J.:
Hydrologic implications of vegetation response to elevated CO2 in climate
projections, Nat. Clim. Change, 9, 44, https://doi.org/10.1038/s41558-018-0361-0,
2019. a, b, c, d
Short summary
Global climate models suggest that droughts could worsen over the coming century. In mountain basins with glaciers, glacial runoff can ease droughts, but glaciers are retreating worldwide. We analyzed how one measure of drought conditions changes when accounting for glacial runoff that changes over time. Surprisingly, we found that glacial runoff can continue to buffer drought throughout the 21st century in most cases, even as the total amount of runoff declines.
Global climate models suggest that droughts could worsen over the coming century. In mountain...
Altmetrics
Final-revised paper
Preprint