Articles | Volume 12, issue 3
https://doi.org/10.5194/esd-12-871-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-12-871-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sea level dynamics and coastal erosion in the Baltic Sea region
Institute of Coastal System Analysis and Modeling, Helmholtz
Zentrum Hereon, 21502 Geesthacht, Germany
Inga Dailidienė
Klaipeda University, Marine Research Institute, Klaipeda 92294,
Lithuania
Birgit Hünicke
Institute of Coastal System Analysis and Modeling, Helmholtz
Zentrum Hereon, 21502 Geesthacht, Germany
Kimmo Kahma
Finnish Meteorological Institute, 00560 Helsinki, Finland
Kristine Madsen
Danish Meteorological Institute, 2100 Copenhagen, Denmark
Anders Omstedt
University of Gothenburg, Department of Marine Sciences,
405 30 Gothenburg, Sweden
Kevin Parnell
Tallinn University of Technology, School of Science, Department of
Cybernetics, 12618 Tallinn, Estonia
Tilo Schöne
German Research Centre for Geosciences GFZ, 14473 Potsdam, Germany
Tarmo Soomere
Tallinn University of Technology, School of Science, Department of
Cybernetics, 12618 Tallinn, Estonia
Wenyan Zhang
Institute of Coastal System Analysis and Modeling, Helmholtz
Zentrum Hereon, 21502 Geesthacht, Germany
Eduardo Zorita
Institute of Coastal System Analysis and Modeling, Helmholtz
Zentrum Hereon, 21502 Geesthacht, Germany
Related authors
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2664, https://doi.org/10.5194/egusphere-2024-2664, 2024
Short summary
Short summary
In recent years, the western Baltic Sea has experienced severe storm surges. By analysing the individual contributions and the total water level, these events can be put into a climate perspective. It was found that individual contributions were not exceptional in all events and no clear trend can be identified, often the combination of the individual contributions leads to the extreme events of recent years. This points to the importance of analysing composite events.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022, https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Xin Liu, Insa Meinke, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 22, 97–116, https://doi.org/10.5194/nhess-22-97-2022, https://doi.org/10.5194/nhess-22-97-2022, 2022
Short summary
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Ina Teutsch, Ralf Weisse, Jens Moeller, and Oliver Krueger
Nat. Hazards Earth Syst. Sci., 20, 2665–2680, https://doi.org/10.5194/nhess-20-2665-2020, https://doi.org/10.5194/nhess-20-2665-2020, 2020
Short summary
Short summary
Rogue waves pose a threat to marine operations and structures. Typically, a wave is called a rogue wave when its height exceeds twice that of the surrounding waves. There is still discussion on the extent to which such waves are unusual. A new data set of about 329 million waves from the southern North Sea was analyzed. While data from wave buoys mostly corresponded to expectations from known distributions, radar measurements showed some deviations pointing towards higher rogue wave frequencies.
Nikolaus Groll and Ralf Weisse
Earth Syst. Sci. Data, 9, 955–968, https://doi.org/10.5194/essd-9-955-2017, https://doi.org/10.5194/essd-9-955-2017, 2017
Short summary
Short summary
A wave hindcast for the North Sea covering the period 1949–2014 using the third-generation spectral wave model WAM was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that, despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis.
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences, 21, 5435–5455, https://doi.org/10.5194/bg-21-5435-2024, https://doi.org/10.5194/bg-21-5435-2024, 2024
Short summary
Short summary
The transformation of dissolved organic carbon (DOC) in estuaries is vital for coastal carbon cycling. We studied source-to-sink pathways of DOC in the Changjiang Estuary using a physics–biogeochemistry model. Results showed a transition of DOC from a sink to a source in the plume area during summer, with a transition from terrestrial-dominant to marine-dominant DOC. Terrigenous and marine DOC exports account for about 31 % and 69 %, respectively.
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2664, https://doi.org/10.5194/egusphere-2024-2664, 2024
Short summary
Short summary
In recent years, the western Baltic Sea has experienced severe storm surges. By analysing the individual contributions and the total water level, these events can be put into a climate perspective. It was found that individual contributions were not exceptional in all events and no clear trend can be identified, often the combination of the individual contributions leads to the extreme events of recent years. This points to the importance of analysing composite events.
Tarmo Soomere, Mikolaj Zbiegniew Jankowski, Maris Eelsalu, Kevin Ellis Parnell, and Maija Viška
EGUsphere, https://doi.org/10.5194/egusphere-2024-2640, https://doi.org/10.5194/egusphere-2024-2640, 2024
Short summary
Short summary
Seemingly interconnected beaches are often separated by man-made obstacles and natural divergence areas of sediment flux. We decompose the sedimentary shores of the Gulf of Riga into five naturally almost isolated compartments based on the analysis of wave-driven sediment flux. The western, southern and eastern shores have quite different and fragmented sediment transport regimes. The transport rates along different shore segments show extensive interannual variations but no explicit trends.
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2222, https://doi.org/10.5194/egusphere-2024-2222, 2024
Short summary
Short summary
We designed a tool to predict the storm surges at the Baltic Sea coast with a satisfactorily predictability (70 % correct predictions) using lead times of a few days. The proportion of false warnings is typically as low as 10 to 20 %. We could identify the relevant predictor regions and their patterns – such as low pressure systems and strong winds. Due to its short computing time the method can be used as a pre-warning system triggering the application of more sophisticated algorithms.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Jakub Miluch, Wenyan Zhang, Jan Harff, Andreas Groh, Peter Arlinghaus, and Celine Denker
EGUsphere, https://doi.org/10.5194/egusphere-2024-1931, https://doi.org/10.5194/egusphere-2024-1931, 2024
Short summary
Short summary
We present a high-resolution paleogeographic reconstruction of the Baltic Sea for the Holocene period by combining eustatic sea-level change, glacio-isostatic movement, and sediment dynamics. In the north-eastern part, morphological change is dominated by regression caused by post-glacial rebound that outpaces the eustatic sea level rise, whereas a transgression together with active sediment erosion/deposition constantly shape the coastal morphology in the south-eastern part.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
Peter Arlinghaus, Corinna Schrum, Ingrid Kröncke, and Wenyan Zhang
Earth Surf. Dynam., 12, 537–558, https://doi.org/10.5194/esurf-12-537-2024, https://doi.org/10.5194/esurf-12-537-2024, 2024
Short summary
Short summary
Benthos is recognized to strongly influence sediment stability, deposition, and erosion. This is well studied on small scales, but large-scale impact on morphological change is largely unknown. We quantify the large-scale impact of benthos by modeling the evolution of a tidal basin. Results indicate a profound impact of benthos by redistributing sediments on large scales. As confirmed by measurements, including benthos significantly improves model results compared to an abiotic scenario.
Marlene Klockmann, Udo von Toussaint, and Eduardo Zorita
Geosci. Model Dev., 17, 1765–1787, https://doi.org/10.5194/gmd-17-1765-2024, https://doi.org/10.5194/gmd-17-1765-2024, 2024
Short summary
Short summary
Reconstructions of climate variability before the observational period rely on climate proxies and sophisticated statistical models to link the proxy information and climate variability. Existing models tend to underestimate the true magnitude of variability, especially if the proxies contain non-climatic noise. We present and test a promising new framework for climate-index reconstructions, based on Gaussian processes, which reconstructs robust variability estimates from noisy and sparse data.
Nele Tim, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-147, https://doi.org/10.5194/nhess-2023-147, 2023
Manuscript not accepted for further review
Short summary
Short summary
Our study analyses extreme precipitation over southern Africa in regional high-resolution atmospheric simulations of the past and future. We investigated heavy precipitation over Southern Africa, coastal South Africa, Cape Town, and the KwaZulu-Natal province in eastern South Africa. Coastal precipitation extremes are projected to intensify, double in intensity in KwaZulu-Natal, and weaken in Cape Town. Extremes are not projected to occur more often in the 21st century than in the last decades.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Elin Andrée, Jian Su, Morten Andreas Dahl Larsen, Martin Drews, Martin Stendel, and Kristine Skovgaard Madsen
Nat. Hazards Earth Syst. Sci., 23, 1817–1834, https://doi.org/10.5194/nhess-23-1817-2023, https://doi.org/10.5194/nhess-23-1817-2023, 2023
Short summary
Short summary
When natural processes interact, they may compound each other. The combined effect can amplify extreme sea levels, such as when a storm occurs at a time when the water level is already higher than usual. We used numerical modelling of a record-breaking storm surge in 1872 to show that other prior sea-level conditions could have further worsened the outcome. Our research highlights the need to consider the physical context of extreme sea levels in measures to reduce coastal flood risk.
Nele Tim, Eduardo Zorita, Birgit Hünicke, and Ioana Ivanciu
Weather Clim. Dynam., 4, 381–397, https://doi.org/10.5194/wcd-4-381-2023, https://doi.org/10.5194/wcd-4-381-2023, 2023
Short summary
Short summary
As stated by the IPCC, southern Africa is one of the two land regions that are projected to suffer from the strongest precipitation reductions in the future. Simulated drying in this region is linked to the adjacent oceans, and prevailing winds as warm and moist air masses are transported towards the continent. Precipitation trends in past and future climate can be partly attributed to the strength of the Agulhas Current system, the current along the east and south coasts of southern Africa.
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-21, https://doi.org/10.5194/nhess-2023-21, 2023
Manuscript not accepted for further review
Short summary
Short summary
The prediction of extreme coastal sea level, e.g. caused by a storm surge, is operationally carried out with dynamical computer models. These models are expensive to run and still display some limitations in predicting the height of extremes. We present a successful purely data-driven machine learning model to predict extreme sea levels along the Baltic Sea coast a few days in advance. The method is also able to identify the critical predictors for the different Baltic Sea regions.
Zeguo Zhang, Sebastian Wagner, Marlene Klockmann, and Eduardo Zorita
Clim. Past, 18, 2643–2668, https://doi.org/10.5194/cp-18-2643-2022, https://doi.org/10.5194/cp-18-2643-2022, 2022
Short summary
Short summary
A bidirectional long short-term memory (LSTM) neural network was employed for the first time for past temperature field reconstructions. The LSTM method tested in our experiments using a limited calibration and validation dataset shows worse reconstruction skills compared to traditional reconstruction methods. However, a certain degree of reconstruction performance achieved by the nonlinear LSTM method shows that skill can be achieved even when using small samples with limited datasets.
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022, https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022, https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
Short summary
We analysed the correlation of sea level and wind waves at a coastal location in the Gulf of Finland using tide gauge data, wave measurements, and wave simulations. The correlation was positive for southwesterly winds and negative for northeasterly winds. Probabilities of high total water levels (sea level + wave crest) are underestimated if sea level and waves are considered independent. Suitably chosen copula functions can account for the dependence.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
Xin Liu, Insa Meinke, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 22, 97–116, https://doi.org/10.5194/nhess-22-97-2022, https://doi.org/10.5194/nhess-22-97-2022, 2022
Short summary
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021, https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Short summary
Ship emissions play an important role in the deposition of gaseous compounds and nanoparticles (Ntot), affecting climate, human health (especially in coastal areas), and eutrophication. Micrometeorological methods showed that ship emissions were mainly responsible for the deposition of Ntot, whereas they only accounted for a minor proportion of CO2 deposition. An uncertainty analysis applied to the fluxes and fuel sulfur content results demonstrated the reliability of the results.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Nadezhda Kudryavtseva, Tarmo Soomere, and Rain Männikus
Nat. Hazards Earth Syst. Sci., 21, 1279–1296, https://doi.org/10.5194/nhess-21-1279-2021, https://doi.org/10.5194/nhess-21-1279-2021, 2021
Short summary
Short summary
We demonstrate a finding of a very sudden change in the nature of water level extremes in the Gulf of Riga which coincides with weakening of correlation with North Atlantic Oscillation. The shape of the distribution is variable with time; it abruptly changed for several years and was suddenly restored. If similar sudden changes happen in other places in the world, not taking into account the non-stationarity can lead to significant underestimation of future risks from extreme-water-level events.
Oliver Bothe and Eduardo Zorita
Clim. Past, 17, 721–751, https://doi.org/10.5194/cp-17-721-2021, https://doi.org/10.5194/cp-17-721-2021, 2021
Short summary
Short summary
The similarity between indirect observations of past climates and information from climate simulations can increase our understanding of past climates. The further we look back, the more uncertain our indirect observations become. Here, we discuss the technical background for such a similarity-based approach to reconstruct past climates for up to the last 15 000 years. We highlight the potential and the problems.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021, https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Short summary
The regional research network Water in Central Asia (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPSs) in Central Asia, and they are operated by German and Central Asian institutes and national hydrometeorological services. They provide up to 10 years of raw meteorological and hydrological data, especially in remote areas with extreme climate conditions, for applications in climate and water monitoring in Central Asia.
Ina Teutsch, Ralf Weisse, Jens Moeller, and Oliver Krueger
Nat. Hazards Earth Syst. Sci., 20, 2665–2680, https://doi.org/10.5194/nhess-20-2665-2020, https://doi.org/10.5194/nhess-20-2665-2020, 2020
Short summary
Short summary
Rogue waves pose a threat to marine operations and structures. Typically, a wave is called a rogue wave when its height exceeds twice that of the surrounding waves. There is still discussion on the extent to which such waves are unusual. A new data set of about 329 million waves from the southern North Sea was analyzed. While data from wave buoys mostly corresponded to expectations from known distributions, radar measurements showed some deviations pointing towards higher rogue wave frequencies.
Havu Pellikka, Terhi K. Laurila, Hanna Boman, Anu Karjalainen, Jan-Victor Björkqvist, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 20, 2535–2546, https://doi.org/10.5194/nhess-20-2535-2020, https://doi.org/10.5194/nhess-20-2535-2020, 2020
Short summary
Short summary
Meteotsunamis are long waves created by atmospheric disturbances travelling over the sea. These waves can be hazardous in rare cases. Their occurrence in the Baltic Sea has been poorly known, which is why we examine century-long sea level records from the Gulf of Finland to identify these waves. In total, 121 potential meteotsunamis were found. The strong connection between meteotsunami occurrence and lightning observations indicates that meteotsunamis in this region occur during thunderstorms.
Tarmo Soomere, Katri Pindsoo, Nadezhda Kudryavtseva, and Maris Eelsalu
Ocean Sci., 16, 1047–1065, https://doi.org/10.5194/os-16-1047-2020, https://doi.org/10.5194/os-16-1047-2020, 2020
Short summary
Short summary
Extreme water levels are often created by several drivers with different properties. For example, the contribution from the water volume of the Baltic Sea follows a Gaussian distribution, but storm surges represent a Poisson process. We show that wave set-up heights (the third major component of high water levels) usually follow an exponential distribution and thus also represent a Poisson process. However, at some locations set-up heights better match an inverse Gaussian (Wald) distribution.
Maren Bender, Thomas Mann, Paolo Stocchi, Dominik Kneer, Tilo Schöne, Julia Illigner, Jamaluddin Jompa, and Alessio Rovere
Clim. Past, 16, 1187–1205, https://doi.org/10.5194/cp-16-1187-2020, https://doi.org/10.5194/cp-16-1187-2020, 2020
Short summary
Short summary
This paper presents 24 new sea-level index points in the Spermonde Archipelago, Indonesia, and the reconstruction of the local Holocene relative sea-level history in combination with glacial isostasic adjustment models. We further show the importance of surveying the height of living coral microatolls as modern analogs to the fossil ones. Other interesting aspects are the potential subsidence of one of the densely populated islands, and we present eight samples that are dated to the Common Era.
Oliver Bothe and Eduardo Zorita
Clim. Past, 16, 341–369, https://doi.org/10.5194/cp-16-341-2020, https://doi.org/10.5194/cp-16-341-2020, 2020
Short summary
Short summary
One can use the similarity between sparse indirect observations of past climates and full fields of simulated climates to learn more about past climates. Here, we detail how one can compute uncertainty estimates for such reconstructions of past climates. This highlights the ambiguity of the reconstruction. We further show that such a reconstruction for European summer temperature agrees well with a more common approach.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Jan-Victor Björkqvist, Heidi Pettersson, and Kimmo K. Kahma
Ocean Sci., 15, 1469–1487, https://doi.org/10.5194/os-15-1469-2019, https://doi.org/10.5194/os-15-1469-2019, 2019
Short summary
Short summary
In this paper we present wave buoy measurements from the Finnish archipelago. The properties of the waves inside the archipelago differed from waves in the open sea because of the sheltering effect of the islands. In the archipelago the highest single wave was, on average, only 1.58 times the significant wave height, which is lower than what is predicted by previous research. A more robust way to calculate the wave frequency in the complex archipelago conditions was proposed.
Maria Pyrina, Eduardo Moreno-Chamarro, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-50, https://doi.org/10.5194/esd-2019-50, 2019
Revised manuscript not accepted
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, and Gorm Dybkjær
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-126, https://doi.org/10.5194/tc-2019-126, 2019
Revised manuscript not accepted
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic, ice covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite derived T2m product covers clear sky snow and ice surfaces in the Arctic for the period 2000–2009.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, Eduardo Zorita, and Fernando Jaume-Santero
Clim. Past, 15, 1099–1111, https://doi.org/10.5194/cp-15-1099-2019, https://doi.org/10.5194/cp-15-1099-2019, 2019
Short summary
Short summary
A database of North American long-term ground surface temperatures, from approximately 1300 CE to 1700 CE, was assembled from geothermal data. These temperatures are useful for studying the future stability of permafrost, as well as for evaluating simulations of preindustrial climate that may help to improve estimates of climate models’ equilibrium climate sensitivity. The database will be made available to the climate science community.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus Tonboe, Gorm Dybkjær, and Emy Alerskans
The Cryosphere, 13, 1005–1024, https://doi.org/10.5194/tc-13-1005-2019, https://doi.org/10.5194/tc-13-1005-2019, 2019
Short summary
Short summary
The paper facilitates the construction of a satellite-derived 2 m air temperature (T2m) product for Arctic snow/ice areas. The relationship between skin temperature (Tskin) and T2m is analysed using weather stations. The main factors influencing the relationship are seasonal variations, wind speed and clouds. A clear-sky bias is estimated to assess the effect of cloud-limited satellite observations. The results are valuable when validating satellite Tskin or estimating T2m from satellite Tskin.
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 15, 307–334, https://doi.org/10.5194/cp-15-307-2019, https://doi.org/10.5194/cp-15-307-2019, 2019
Short summary
Short summary
Our understanding of future climate changes increases if different sources of information agree on past climate variations. Changing climates particularly impact local scales for which future changes in precipitation are highly uncertain. Here, we use information from observations, model simulations, and climate reconstructions for regional precipitation over the British Isles. We find these do not agree well on precipitation variations over the past few centuries.
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
Ulpu Leijala, Jan-Victor Björkqvist, Milla M. Johansson, Havu Pellikka, Lauri Laakso, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 18, 2785–2799, https://doi.org/10.5194/nhess-18-2785-2018, https://doi.org/10.5194/nhess-18-2785-2018, 2018
Short summary
Short summary
The coastal flooding risks based on the combined effect of sea level variations and wind-generated waves are estimated for the present, 2050 and 2100. The variability of the wave conditions between the two case study locations in the Helsinki archipelago leads to a difference in the safe building levels of up to 1 m. The rising mean sea level in the Gulf of Finland and the uncertainty of the associated scenarios contribute to the flooding risks notably in 2100.
Xing Yi, Birgit Hünicke, and Eduardo Zorita
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-63, https://doi.org/10.5194/cp-2018-63, 2018
Revised manuscript not accepted
Short summary
Short summary
In this study, we analyse the outputs of Earth System Models to investigate the Arabian Sea upwelling for the last 1000 years and in the 21st century. Due to the orbital forcing of the models, the upwelling in the past is found to reveal a negative long-term trend, which matches the observed sediment records. In the future under the RCP8.5 scenario, the warming of the sea water tends to stabilize the surface layer and thus interrupts the upwelling.
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
Sitar Karabil, Eduardo Zorita, and Birgit Hünicke
Earth Syst. Dynam., 9, 69–90, https://doi.org/10.5194/esd-9-69-2018, https://doi.org/10.5194/esd-9-69-2018, 2018
Short summary
Short summary
We analysed the contribution of atmospheric factors to interannual off-shore sea-level variability in the Baltic Sea region. We identified a different atmospheric circulation pattern that is more closely linked to sea-level variability than the NAO. The inverse barometer effect contributes to that link in the winter and summer seasons. Freshwater flux is connected to the link in summer and net heat flux in winter.The new atmospheric-pattern-related wind forcing plays an important role in summer.
Nikolaus Groll and Ralf Weisse
Earth Syst. Sci. Data, 9, 955–968, https://doi.org/10.5194/essd-9-955-2017, https://doi.org/10.5194/essd-9-955-2017, 2017
Short summary
Short summary
A wave hindcast for the North Sea covering the period 1949–2014 using the third-generation spectral wave model WAM was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that, despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis.
Sitar Karabil, Eduardo Zorita, and Birgit Hünicke
Earth Syst. Dynam., 8, 1031–1046, https://doi.org/10.5194/esd-8-1031-2017, https://doi.org/10.5194/esd-8-1031-2017, 2017
Short summary
Short summary
We statistically analysed the mechanisms of the variability in decadal sea-level trends for the whole Baltic Sea basin over the last century. We used two different sea-level data sets and several climatic data sets. The results of this study showed that precipitation has a lagged effect on decadal sea-level trend variations from which the signature of atmospheric effect is removed. This detected underlying factor is not connected to oceanic forcing driven from the North Atlantic region.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Oxana Kurkina, Tatyana Talipova, Tarmo Soomere, Ayrat Giniyatullin, and Andrey Kurkin
Nonlin. Processes Geophys., 24, 645–660, https://doi.org/10.5194/npg-24-645-2017, https://doi.org/10.5194/npg-24-645-2017, 2017
Short summary
Short summary
Large internal waves may be a great danger to offshore structures. The breaking of such waves may strongly modify the seabed. Their core properties depend on how temperature and salinity vary in the water column. These variations are represented by three vertical locations and four coefficients of the relevant equation. We established how these seven quantities vary in the South China Sea for waves of the second mode (which create compressions or expansions of the intermediate water layer).
Maria Pyrina, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 13, 1339–1354, https://doi.org/10.5194/cp-13-1339-2017, https://doi.org/10.5194/cp-13-1339-2017, 2017
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Nadezhda Kudryavtseva and Tarmo Soomere
Earth Syst. Dynam., 8, 697–706, https://doi.org/10.5194/esd-8-697-2017, https://doi.org/10.5194/esd-8-697-2017, 2017
Short summary
Short summary
We discuss for the first time changes in the wave climate in the Baltic Sea over the last 2 decades derived from satellite altimetry data spanning over 26 years. We found in the study that there are variations in the wave climate of the Baltic Sea, which can be interpreted as being caused predominantly by a rotation of wind direction rather than increased wind speed, implying that associated variations in the airflow direction can be a dominant driver of regional climate changes.
Svenja E. Bierstedt, Birgit Hünicke, Eduardo Zorita, and Juliane Ludwig
Earth Syst. Dynam., 8, 639–652, https://doi.org/10.5194/esd-8-639-2017, https://doi.org/10.5194/esd-8-639-2017, 2017
Short summary
Short summary
We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Tarmo Soomere and Katri Pindsoo
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2016-76, https://doi.org/10.5194/esd-2016-76, 2017
Revised manuscript not accepted
Short summary
Short summary
Wave-induced set-up is a nonlinear phenomenon that results in a rise in the mean water level at the waterline and may contribute to the formation of coastal flooding. We study the shape of probability distribution of the wave set-up heights near Tallinn in the Baltic Sea. Resulted distribution deviates from the ones that usually reflect the wave heights, this signals that extreme set-up events are more probable that it could be expected from the probability of occurrence of severe seas.
Xing Yi and Eduardo Zorita
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-124, https://doi.org/10.5194/cp-2016-124, 2016
Revised manuscript not accepted
Short summary
Short summary
In this paper we study the upwelling in the Arabian Sea simulated in two Earth System Models for the last millennium and for the 21st century. Revealing a negative long-term trend due to the model orbital forcing, the upwelling over the last millennium is strongly correlated with the SST, the Indian summer Monsoon and the G.bulloides abundance observed in the sediment records. In the future scenarios the warming of the sea water tends to stabilize the surface layer and hinder the upwelling.
Nele Tim, Eduardo Zorita, Birgit Hünicke, Xing Yi, and Kay-Christian Emeis
Ocean Sci., 12, 807–823, https://doi.org/10.5194/os-12-807-2016, https://doi.org/10.5194/os-12-807-2016, 2016
Short summary
Short summary
The impact of external climate forcing on the four eastern boundary upwelling systems is investigated for the recent past and future. Under increased radiative forcing, upwelling-favourable winds should strengthen due to unequal heating of land and oceans. However, coastal upwelling simulated in ensembles of climate simulations do not show any imprint of external forcing neither for the past millennium nor for the future, with the exception of the strongest future scenario.
Svenja E. Bierstedt, Birgit Hünicke, Eduardo Zorita, Sebastian Wagner, and Juan José Gómez-Navarro
Clim. Past, 12, 317–338, https://doi.org/10.5194/cp-12-317-2016, https://doi.org/10.5194/cp-12-317-2016, 2016
X. Yi, B. Hünicke, N. Tim, and E. Zorita
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-2683-2015, https://doi.org/10.5194/osd-12-2683-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
In this paper, we use the vertical water mass transport data provided by a high-resolution global ocean simulation to study the western Arabian Sea coastal upwelling system. Our results show that: 1). no significant long-term trend is detected in the upwelling time series. 2). the impact of Indian summer monsoon on the simulated upwelling is weak. 3). the upwelling is strongly affected by the sea level pressure gradient and the air temperature gradient.
J. J. Gómez-Navarro, O. Bothe, S. Wagner, E. Zorita, J. P. Werner, J. Luterbacher, C. C. Raible, and J. P Montávez
Clim. Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015, https://doi.org/10.5194/cp-11-1077-2015, 2015
N. Tim, E. Zorita, and B. Hünicke
Ocean Sci., 11, 483–502, https://doi.org/10.5194/os-11-483-2015, https://doi.org/10.5194/os-11-483-2015, 2015
Short summary
Short summary
The atmospheric drivers of the Benguela upwelling systems and its variability are statistically analysed with an ocean-only simulation over the last decades. Atmospheric upwelling-favourable conditions are southerly wind/wind stress, a strong subtropical anticyclone, and an ocean-land sea level pressure gradient as well as a negative ENSO and a positive AAO phase. No long-term trends of upwelling and of ocean-minus-land air pressure gradients, as supposed by Bakun, can be seen in our analysis.
J. A. Santos, M. F. Carneiro, A. Correia, M. J. Alcoforado, E. Zorita, and J. J. Gómez-Navarro
Clim. Past, 11, 825–834, https://doi.org/10.5194/cp-11-825-2015, https://doi.org/10.5194/cp-11-825-2015, 2015
O. E. Kurkina, A. A. Kurkin, E. A. Rouvinskaya, and T. Soomere
Nonlin. Processes Geophys., 22, 117–132, https://doi.org/10.5194/npg-22-117-2015, https://doi.org/10.5194/npg-22-117-2015, 2015
Short summary
Short summary
We have derived exact analytical expressions for the coefficients of evolution equations of long wave motion in the three-layer fluid with arbitrary parameters of the layers and established interrelations of these equations for different interfaces. To our understanding, the core advancement is the clarification and mapping of the regimes of soliton appearance and propagation in this environment that is much more realistic for the description of ocean internal waves.
T. Soomere, K. Pindsoo, S. R. Bishop, A. Käärd, and A. Valdmann
Nat. Hazards Earth Syst. Sci., 13, 3049–3061, https://doi.org/10.5194/nhess-13-3049-2013, https://doi.org/10.5194/nhess-13-3049-2013, 2013
J. J. Gómez-Navarro, J. P. Montávez, S. Wagner, and E. Zorita
Clim. Past, 9, 1667–1682, https://doi.org/10.5194/cp-9-1667-2013, https://doi.org/10.5194/cp-9-1667-2013, 2013
G. Esnaola, J. Sáenz, E. Zorita, A. Fontán, V. Valencia, and P. Lazure
Ocean Sci., 9, 655–679, https://doi.org/10.5194/os-9-655-2013, https://doi.org/10.5194/os-9-655-2013, 2013
O. Bothe, J. H. Jungclaus, D. Zanchettin, and E. Zorita
Clim. Past, 9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013, https://doi.org/10.5194/cp-9-1089-2013, 2013
T. Schöne, C. Zech, K. Unger-Shayesteh, V. Rudenko, H. Thoss, H.-U. Wetzel, A. Gafurov, J. Illigner, and A. Zubovich
Geosci. Instrum. Method. Data Syst., 2, 97–111, https://doi.org/10.5194/gi-2-97-2013, https://doi.org/10.5194/gi-2-97-2013, 2013
Related subject area
Dynamics of the Earth system: concepts
Rate-induced tipping in natural and human systems
Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics
Multi-million-year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes
Reliability of resilience estimation based on multi-instrument time series
The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes
ESD Ideas: planetary antifragility: a new dimension in the definition of the safe operating space for humanity
Glacial runoff buffers droughts through the 21st century
Inarticulate past: similarity properties of the ice–climate system and their implications for paleo-record attribution
Extreme weather and societal impacts in the eastern Mediterranean
Sedimentary microplankton distributions are shaped by oceanographically connected areas
Natural hazards and extreme events in the Baltic Sea region
Taxonomies for structuring models for World–Earth systems analysis of the Anthropocene: subsystems, their interactions and social–ecological feedback loops
ESD Ideas: A weak positive feedback between sea level and the planetary albedo
The potential for structural errors in emergent constraints
Earth system economics: a biophysical approach to the human component of the Earth system
The half-order energy balance equation – Part 1: The homogeneous HEBE and long memories
The half-order energy balance equation – Part 2: The inhomogeneous HEBE and 2D energy balance models
A dynamical systems characterization of atmospheric jet regimes
Synchronized spatial shifts of Hadley and Walker circulations
ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability
Temperatures from energy balance models: the effective heat capacity matters
Relating climate sensitivity indices to projection uncertainty
The role of prior assumptions in carbon budget calculations
Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework
π-theorem generalization of the ice-age theory
Earth system data cubes unravel global multivariate dynamics
ESD Ideas: Why are glaciations slower than deglaciations?
Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time
Climate system response to stratospheric sulfate aerosols: sensitivity to altitude of aerosol layer
Minimal dynamical systems model of the Northern Hemisphere jet stream via embedding of climate data
Millennium-length precipitation reconstruction over south-eastern Asia: a pseudo-proxy approach
Including the efficacy of land ice changes in deriving climate sensitivity from paleodata
The role of moisture transport for precipitation in the inter-annual and inter-daily fluctuations of the Arctic sea ice extension
On the assessment of the moisture transport by the Great Plains low-level jet
ESD Ideas: The stochastic climate model shows that underestimated Holocene trends and variability represent two sides of the same coin
Cascading transitions in the climate system
The climate of a retrograde rotating Earth
Diurnal land surface energy balance partitioning estimated from the thermodynamic limit of a cold heat engine
How intermittency affects the rate at which rainfall extremes respond to changes in temperature
Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data
On deeper human dimensions in Earth system analysis and modelling
Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset
Estimating sowing and harvest dates based on the Asian summer monsoon
Quantifying changes in spatial patterns of surface air temperature dynamics over several decades
Systematic Correlation Matrix Evaluation (SCoMaE) – a bottom–up, science-led approach to identifying indicators
Climate indices for the Baltic states from principal component analysis
Fractal scaling analysis of groundwater dynamics in confined aquifers
An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle
Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques
Young people's burden: requirement of negative CO2 emissions
Paul D. L. Ritchie, Hassan Alkhayuon, Peter M. Cox, and Sebastian Wieczorek
Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023, https://doi.org/10.5194/esd-14-669-2023, 2023
Short summary
Short summary
Complex systems can undergo abrupt changes or tipping points when external forcing crosses a critical level and are of increasing concern because of their severe impacts. However, tipping points can also occur when the external forcing changes too quickly without crossing any critical levels, which is very relevant for Earth’s systems and contemporary climate. We give an intuitive explanation of such rate-induced tipping and provide illustrative examples from natural and human systems.
Georg Feulner, Mona Bukenberger, and Stefan Petri
Earth Syst. Dynam., 14, 533–547, https://doi.org/10.5194/esd-14-533-2023, https://doi.org/10.5194/esd-14-533-2023, 2023
Short summary
Short summary
One limit of planetary habitability is defined by the threshold of global glaciation. If Earth cools, growing ice cover makes it brighter, leading to further cooling, since more sunlight is reflected, eventually leading to global ice cover (Snowball Earth). We study how much carbon dioxide is needed to prevent global glaciation in Earth's history given the slow increase in the Sun's brightness. We find an unexpected change in the characteristics of climate states close to the Snowball limit.
Gaëlle Leloup and Didier Paillard
Earth Syst. Dynam., 14, 291–307, https://doi.org/10.5194/esd-14-291-2023, https://doi.org/10.5194/esd-14-291-2023, 2023
Short summary
Short summary
Records of past carbon isotopes exhibit oscillations. It is clear over very different time periods that oscillations of 400 kyr take place. Also, strong oscillations of approximately 8–9 Myr are seen over different time periods. While earlier modelling studies have been able to produce 400 kyr oscillations, none of them produced 8–9 Myr cycles. Here, we propose a simple model for the carbon cycle that is able to produce 8–9 Myr oscillations in the modelled carbon isotopes.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Oliver López-Corona, Melanie Kolb, Elvia Ramírez-Carrillo, and Jon Lovett
Earth Syst. Dynam., 13, 1145–1155, https://doi.org/10.5194/esd-13-1145-2022, https://doi.org/10.5194/esd-13-1145-2022, 2022
Short summary
Short summary
Climate change, the loss of biodiversity and land-use change, among others, have been recognized as main human perturbations to Earth system dynamics, the so-called planetary boundaries. Effort has been made to understand how to define a safe operating space for humanity (accepted levels of these perturbations). In this work we address the problem by assessing the Earth's capacity to respond to these perturbations, a capacity that the planet is losing.
Lizz Ultee, Sloan Coats, and Jonathan Mackay
Earth Syst. Dynam., 13, 935–959, https://doi.org/10.5194/esd-13-935-2022, https://doi.org/10.5194/esd-13-935-2022, 2022
Short summary
Short summary
Global climate models suggest that droughts could worsen over the coming century. In mountain basins with glaciers, glacial runoff can ease droughts, but glaciers are retreating worldwide. We analyzed how one measure of drought conditions changes when accounting for glacial runoff that changes over time. Surprisingly, we found that glacial runoff can continue to buffer drought throughout the 21st century in most cases, even as the total amount of runoff declines.
Mikhail Y. Verbitsky
Earth Syst. Dynam., 13, 879–884, https://doi.org/10.5194/esd-13-879-2022, https://doi.org/10.5194/esd-13-879-2022, 2022
Short summary
Short summary
Reconstruction and explanation of past climate evolution using proxy records is the essence of paleoclimatology. In this study, we use dimensional analysis of a dynamical model on orbital timescales to recognize theoretical limits of such forensic inquiries. Specifically, we demonstrate that major past events could have been produced by physically dissimilar processes making the task of paleo-record attribution to a particular phenomenon fundamentally difficult if not impossible.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Jonathan F. Donges, Wolfgang Lucht, Sarah E. Cornell, Jobst Heitzig, Wolfram Barfuss, Steven J. Lade, and Maja Schlüter
Earth Syst. Dynam., 12, 1115–1137, https://doi.org/10.5194/esd-12-1115-2021, https://doi.org/10.5194/esd-12-1115-2021, 2021
Ben Marzeion
Earth Syst. Dynam., 12, 1057–1060, https://doi.org/10.5194/esd-12-1057-2021, https://doi.org/10.5194/esd-12-1057-2021, 2021
Short summary
Short summary
The oceans are typically darker than land surfaces. Expanding oceans through sea-level rise may thus lead to a darker planet Earth, reflecting less sunlight. The additionally absorbed sunlight may heat planet Earth, leading to further sea-level rise. Here, we provide a rough estimate of the strength of this feedback: it turns out to be very weak, but clearly positive, thereby destabilizing the Earth system.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Eric D. Galbraith
Earth Syst. Dynam., 12, 671–687, https://doi.org/10.5194/esd-12-671-2021, https://doi.org/10.5194/esd-12-671-2021, 2021
Short summary
Short summary
Scientific tradition has left a gap between the study of humans and the rest of the Earth system. Here, a holistic approach to the global human system is proposed, intended to provide seamless integration with natural sciences. At the core, this focuses on what humans are doing with their time, what the bio-physical outcomes of those activities are, and what the lived experience is. The quantitative approach can facilitate data analysis across scales and integrated human–Earth system modeling.
Shaun Lovejoy
Earth Syst. Dynam., 12, 469–487, https://doi.org/10.5194/esd-12-469-2021, https://doi.org/10.5194/esd-12-469-2021, 2021
Short summary
Short summary
Monthly scale, seasonal-scale, and decadal-scale modeling of the atmosphere is possible using the principle of energy balance. Yet the scope of classical approaches is limited because they do not adequately deal with energy storage in the Earth system. We show that the introduction of a vertical coordinate implies that the storage has a huge memory. This memory can be used for macroweather (long-range) forecasts and climate projections.
Shaun Lovejoy
Earth Syst. Dynam., 12, 489–511, https://doi.org/10.5194/esd-12-489-2021, https://doi.org/10.5194/esd-12-489-2021, 2021
Short summary
Short summary
Radiant energy is exchanged between the Earth's surface and outer space. Some of the local imbalances are stored in the subsurface, and some are transported horizontally. In Part 1 I showed how – in a horizontally homogeneous Earth – these classical approaches imply long-memory storage useful for seasonal forecasting and multidecadal projections. In this Part 2, I show how to apply these results to the heterogeneous real Earth.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Kyung-Sook Yun, Axel Timmermann, and Malte F. Stuecker
Earth Syst. Dynam., 12, 121–132, https://doi.org/10.5194/esd-12-121-2021, https://doi.org/10.5194/esd-12-121-2021, 2021
Short summary
Short summary
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What has been overlooked so far is the question of whether these two circulations can shift their positions in a synchronized manner. We here show the synchronized spatial shifts between Walker and Hadley cells and further highlight a novel aspect of how tropical sea surface temperature anomalies can couple these two circulations. The re-positioning has important implications for extratropical rainfall.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 12, 63–67, https://doi.org/10.5194/esd-12-63-2021, https://doi.org/10.5194/esd-12-63-2021, 2021
Short summary
Short summary
We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.
Gerrit Lohmann
Earth Syst. Dynam., 11, 1195–1208, https://doi.org/10.5194/esd-11-1195-2020, https://doi.org/10.5194/esd-11-1195-2020, 2020
Short summary
Short summary
With the development of computer capacities, simpler models like energy balance models have not disappeared, and a stronger emphasis has been given to the concept of a hierarchy of models. The global temperature is calculated by the radiation budget through the incoming energy from the Sun and the outgoing energy from the Earth. The argument that the temperature can be calculated by a simple radiation budget is revisited, and it is found that the effective heat capacity matters.
Benjamin Sanderson
Earth Syst. Dynam., 11, 721–735, https://doi.org/10.5194/esd-11-721-2020, https://doi.org/10.5194/esd-11-721-2020, 2020
Short summary
Short summary
Here, we assess the degree to which the idealized responses to transient forcing increase and step change forcing increase relate to warming under future scenarios. We find a possible explanation for the poor performance of transient metrics (relative to equilibrium response) as a metric of high-emission future warming in terms of their sensitivity to non-equilibrated initial conditions, and propose alternative metrics which better describe warming under high mitigation scenarios.
Benjamin Sanderson
Earth Syst. Dynam., 11, 563–577, https://doi.org/10.5194/esd-11-563-2020, https://doi.org/10.5194/esd-11-563-2020, 2020
Short summary
Short summary
Levels of future temperature change are often used interchangeably with carbon budget allowances in climate policy, a relatively robust relationship on the timescale of this century. However, recent advances in understanding underline that continued warming after net-zero emissions have been achieved cannot be ruled out by observations of warming to date. We consider here how such behavior could be constrained and how policy can be framed in the context of these uncertainties.
Jonathan F. Donges, Jobst Heitzig, Wolfram Barfuss, Marc Wiedermann, Johannes A. Kassel, Tim Kittel, Jakob J. Kolb, Till Kolster, Finn Müller-Hansen, Ilona M. Otto, Kilian B. Zimmerer, and Wolfgang Lucht
Earth Syst. Dynam., 11, 395–413, https://doi.org/10.5194/esd-11-395-2020, https://doi.org/10.5194/esd-11-395-2020, 2020
Short summary
Short summary
We present an open-source software framework for developing so-called
world–Earth modelsthat link physical, chemical and biological processes with social, economic and cultural processes to study the Earth system's future trajectories in the Anthropocene. Due to its modular structure, the software allows interdisciplinary studies of global change and sustainable development that combine stylized model components from Earth system science, climatology, economics, ecology and sociology.
Mikhail Y. Verbitsky and Michel Crucifix
Earth Syst. Dynam., 11, 281–289, https://doi.org/10.5194/esd-11-281-2020, https://doi.org/10.5194/esd-11-281-2020, 2020
Short summary
Short summary
Using the central theorem of dimensional analysis, the π theorem, we show that the relationship between the amplitude and duration of glacial cycles is governed by a property of scale invariance that does not depend on the physical nature of the underlying positive and negative feedbacks incorporated by the system. It thus turns out to be one of the most fundamental properties of the Pleistocene climate.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Christine Ramadhin and Chuixiang Yi
Earth Syst. Dynam., 11, 13–16, https://doi.org/10.5194/esd-11-13-2020, https://doi.org/10.5194/esd-11-13-2020, 2020
Short summary
Short summary
Here we explore ancient climate transitions from warm periods to ice ages and from ice ages to warm periods of the last 400 000 years. The changeovers from warm to ice age conditions are slower than those from ice age to warm conditions. We propose the presence of strong negative sea–ice feedbacks may be responsible for slowing the transition from warm to full ice age conditions. By improving understanding of past abrupt changes, we may have improved knowledge of future system behavior.
M. Levent Kavvas, Tongbi Tu, Ali Ercan, and James Polsinelli
Earth Syst. Dynam., 11, 1–12, https://doi.org/10.5194/esd-11-1-2020, https://doi.org/10.5194/esd-11-1-2020, 2020
Short summary
Short summary
After deriving a fractional continuity equation, a previously-developed equation for water flux in porous media was combined with the Dupuit approximation to obtain an equation for groundwater motion in multi-fractional space in unconfined aquifers. As demonstrated in the numerical application, the orders of the fractional space and time derivatives modulate the speed of groundwater table evolution, slowing the process with the decrease in the powers of the fractional derivatives from 1.
Krishna-Pillai Sukumara-Pillai Krishnamohan, Govindasamy Bala, Long Cao, Lei Duan, and Ken Caldeira
Earth Syst. Dynam., 10, 885–900, https://doi.org/10.5194/esd-10-885-2019, https://doi.org/10.5194/esd-10-885-2019, 2019
Short summary
Short summary
We find that sulfate aerosols are more effective in cooling the climate system when they reside higher in the stratosphere. We explain this sensitivity in terms of radiative forcing at the top of the atmosphere. Sulfate aerosols heat the stratospheric layers, causing an increase in stratospheric water vapor content and a reduction in high clouds. These changes are larger when aerosols are prescribed near the tropopause, offsetting part of the aerosol-induced negative radiative forcing/cooling.
Davide Faranda, Yuzuru Sato, Gabriele Messori, Nicholas R. Moloney, and Pascal Yiou
Earth Syst. Dynam., 10, 555–567, https://doi.org/10.5194/esd-10-555-2019, https://doi.org/10.5194/esd-10-555-2019, 2019
Short summary
Short summary
We show how the complex dynamics of the jet stream at midlatitude can be described by a simple mathematical model. We match the properties of the model to those obtained by the jet data derived from observations.
Stefanie Talento, Lea Schneider, Johannes Werner, and Jürg Luterbacher
Earth Syst. Dynam., 10, 347–364, https://doi.org/10.5194/esd-10-347-2019, https://doi.org/10.5194/esd-10-347-2019, 2019
Short summary
Short summary
Quantifying hydroclimate variability beyond the instrumental period is essential for putting fluctuations into long-term perspective and providing a validation for climate models. We evaluate, in a virtual setup, the potential for generating millennium-long summer precipitation reconstructions over south-eastern Asia.
We find that performing a real-world reconstruction with the current available proxy network is indeed feasible, as virtual-world reconstructions are skilful in most areas.
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019, https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Short summary
Processes causing the same global-average radiative forcing might lead to different global temperature changes. We expand the theoretical framework by which we calculate paleoclimate sensitivity with an efficacy factor. Applying the revised approach to radiative forcing caused by CO2 and land ice albedo perturbations, inferred from data of the past 800 000 years, gives a new paleo-based estimate of climate sensitivity.
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 10, 121–133, https://doi.org/10.5194/esd-10-121-2019, https://doi.org/10.5194/esd-10-121-2019, 2019
Short summary
Short summary
Ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring. On a daily basis extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons it thus contributes to Arctic sea ice melting. These patterns differ sharply from that linked to decline, especially in summer when the opposite trend applies.
Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raquel Nieto, and Luis Gimeno
Earth Syst. Dynam., 10, 107–119, https://doi.org/10.5194/esd-10-107-2019, https://doi.org/10.5194/esd-10-107-2019, 2019
Short summary
Short summary
We analyse moisture transport triggered by the Great Plains low-level jet (GPLLJ), a maximum in wind speed fields located within the first kilometre of the US Great Plain's troposphere, through the innovative Eulerian Weather Research and Forecasting Model tracer tool. Much moisture associated with this low-level jet has been found in northern regions located in a vast extension of the continent, highlighting the key role played by the GPLLJ in North America's advective transport of moisture.
Gerrit Lohmann
Earth Syst. Dynam., 9, 1279–1281, https://doi.org/10.5194/esd-9-1279-2018, https://doi.org/10.5194/esd-9-1279-2018, 2018
Short summary
Short summary
Long-term sea surface temperature trends and variability are underestimated in models compared to paleoclimate data. The idea is presented that the trends and variability are related, which is elaborated in a conceptual model framework. The temperature spectrum can be used to estimate the timescale-dependent climate sensitivity.
Mark M. Dekker, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1243–1260, https://doi.org/10.5194/esd-9-1243-2018, https://doi.org/10.5194/esd-9-1243-2018, 2018
Short summary
Short summary
We introduce a framework of cascading tipping, i.e. a sequence of abrupt transitions occurring because a transition in one system affects the background conditions of another system. Using bifurcation theory, various types of these events are considered and early warning indicators are suggested. An illustration of such an event is found in a conceptual model, coupling the North Atlantic Ocean with the equatorial Pacific. This demonstrates the possibility of events such as this in nature.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 9, 1127–1140, https://doi.org/10.5194/esd-9-1127-2018, https://doi.org/10.5194/esd-9-1127-2018, 2018
Short summary
Short summary
Turbulent fluxes represent an efficient way to transport heat and moisture from the surface into the atmosphere. Due to their inherently highly complex nature, they are commonly described by semiempirical relationships. What we show here is that these fluxes can also be predicted by viewing them as the outcome of a heat engine that operates between the warm surface and the cooler atmosphere and that works at its limit.
Marc Schleiss
Earth Syst. Dynam., 9, 955–968, https://doi.org/10.5194/esd-9-955-2018, https://doi.org/10.5194/esd-9-955-2018, 2018
Short summary
Short summary
The present study aims at explaining how intermittency (i.e., the alternation of dry and rainy periods) affects the rate at which precipitation extremes increase with temperature. Using high-resolution rainfall data from 99 stations in the United States, we show that at scales beyond a few hours, intermittency causes rainfall extremes to deviate substantially from Clausius–Clapeyron. A new model is proposed to better represent and predict these changes across scales.
Ragnhild Bieltvedt Skeie, Terje Berntsen, Magne Aldrin, Marit Holden, and Gunnar Myhre
Earth Syst. Dynam., 9, 879–894, https://doi.org/10.5194/esd-9-879-2018, https://doi.org/10.5194/esd-9-879-2018, 2018
Short summary
Short summary
A key question in climate science is how the global mean surface temperature responds to changes in greenhouse gases. This dependency is quantified by the climate sensitivity, which is determined by the complex feedbacks in the climate system. In this study observations of past climate change are used to estimate this sensitivity. Our estimate is consistent with values for the equilibrium climate sensitivity estimated by complex climate models but sensitive to the use of uncertain input data.
Dieter Gerten, Martin Schönfeld, and Bernhard Schauberger
Earth Syst. Dynam., 9, 849–863, https://doi.org/10.5194/esd-9-849-2018, https://doi.org/10.5194/esd-9-849-2018, 2018
Short summary
Short summary
Cultural processes are underrepresented in Earth system models, although they decisively shape humanity’s planetary imprint. We set forth ideas on how Earth system analysis can be enriched by formalising aspects of religion (understood broadly as a collective belief in things held sacred). We sketch possible modelling avenues (extensions of existing Earth system models and new co-evolutionary models) and suggest research primers to explicate and quantify mental aspects of the Anthropocene.
Stefan Lange
Earth Syst. Dynam., 9, 627–645, https://doi.org/10.5194/esd-9-627-2018, https://doi.org/10.5194/esd-9-627-2018, 2018
Short summary
Short summary
The bias correction of surface downwelling longwave and shortwave radiation using parametric quantile mapping methods is shown to be more effective (i) at the daily than at the monthly timescale, (ii) if the spatial resolution gap between the reference data and the data to be corrected is bridged in a more suitable manner than by bilinear interpolation, and (iii) if physical upper limits are taken into account during the adjustment of either radiation component.
Camilla Mathison, Chetan Deva, Pete Falloon, and Andrew J. Challinor
Earth Syst. Dynam., 9, 563–592, https://doi.org/10.5194/esd-9-563-2018, https://doi.org/10.5194/esd-9-563-2018, 2018
Short summary
Short summary
Sowing and harvest dates are a significant source of uncertainty within crop models. South Asia is one region with a large uncertainty. We aim to provide more accurate sowing and harvest dates than currently available and that are relevant for climate impact assessments. This method reproduces the present day sowing and harvest dates for most parts of India and when applied to two future periods provides a useful way of modelling potential growing season adaptations to changes in future climate.
Dario A. Zappalà, Marcelo Barreiro, and Cristina Masoller
Earth Syst. Dynam., 9, 383–391, https://doi.org/10.5194/esd-9-383-2018, https://doi.org/10.5194/esd-9-383-2018, 2018
Short summary
Short summary
The dynamics of our climate involves multiple timescales, and while a lot of work has been devoted to quantifying variations in time-averaged variables or variations in their seasonal cycles, variations in daily variability that occur over several decades still remain poorly understood. Here we analyse daily surface air temperature and demonstrate that inter-decadal changes can be precisely identified and quantified with the Hilbert analysis tool.
Nadine Mengis, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 9, 15–31, https://doi.org/10.5194/esd-9-15-2018, https://doi.org/10.5194/esd-9-15-2018, 2018
Short summary
Short summary
The Systematic Correlation Matrix Evaluation (SCoMaE) method applies statistical information to systematically select, transparent, nonredundant indicators for a comprehensive assessment of the Earth system state. We show that due to changing climate forcing, such as anthropogenic climate change, the ad hoc assessment indicators might need to be reevaluated. Within an iterative process, this method would allow us to select scientifically consistent and societally relevant assessment indicators.
Liga Bethere, Juris Sennikovs, and Uldis Bethers
Earth Syst. Dynam., 8, 951–962, https://doi.org/10.5194/esd-8-951-2017, https://doi.org/10.5194/esd-8-951-2017, 2017
Short summary
Short summary
We define three new climate indices based on monthly mean temperature and total precipitation values that describe the main features of the climate in the Baltic states. Higher values in each index correspond to (1) less distinct seasonality and (2) warmer and (3) wetter climate. It was calculated that in the future all three indices will increase. Such indices summarize and illustrate the spatial features of the Baltic climate, and they can be used in further analysis of climate change impact.
Tongbi Tu, Ali Ercan, and M. Levent Kavvas
Earth Syst. Dynam., 8, 931–949, https://doi.org/10.5194/esd-8-931-2017, https://doi.org/10.5194/esd-8-931-2017, 2017
Short summary
Short summary
Groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior, and the underlying distribution exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics. The estimated Hurst exponent is highly dependent on the length and the specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist.
Axel Kleidon and Maik Renner
Earth Syst. Dynam., 8, 849–864, https://doi.org/10.5194/esd-8-849-2017, https://doi.org/10.5194/esd-8-849-2017, 2017
Short summary
Short summary
We provide an explanation why land temperatures respond more strongly to global warming than ocean temperatures, a robust finding in observations and models that has so far not been understood well. We explain it by the different ways by which ocean and land surfaces buffer the strong variation in solar radiation and demonstrate this with a simple, physically based model. Our explanation also illustrates why nighttime temperatures warm more strongly, another robust finding of global warming.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017, https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Short summary
Global temperature now exceeds +1.25 °C relative to 1880–1920, similar to warmth of the Eemian period. Keeping warming less than 1.5 °C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.
Cited articles
Albrecht, F., Wahl, T., Jensen, J., and Weisse, R.: Determining sea level
change in the German Bight, Ocean Dynam., 61, 2037–2050,
https://doi.org/10.1007/s10236-011-0462-z, 2011.
Arns, A., Wahl, T., Dangendorf, S., and Jensen, J.: The impact of sea level
rise on storm surge water levels in the northern part of the German Bight,
Coast. Eng., 96, 118–131, https://doi.org/10.1016/j.coastaleng.2014.12.002, 2015.
Ashton, A., Murray, A. B., and Arnault, O.: Formation of coastline features
by large-scale instabilities induced by high-angle waves, Nature, 414,
296–300, https://doi.org/10.1038/35104541, 2001.
Averkiev, A. S. and Klevannyy, K. A.: A case study of the impact of cyclonic
trajectories on sea-level extremes in the Gulf of Finland, Cont. Shelf Res., 30, 707–714, https://doi.org/10.1016/j.csr.2009.10.010, 2010.
BACC Author Team (Ed.): Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies, Springer-Verlag, Berlin, Heidelberg, 2008.
BACC II Author Team (Ed.): Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies, Springer International Publishing, Cham, 2015.
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R.
M.: Ice sheet contributions to future sea-level rise from structured expert
judgment, P. Natl. Acad. Sci. USA, 116, 11195–11200, https://doi.org/10.1073/pnas.1817205116, 2019.
Barbosa, S. M.: Quantile trends in Baltic sea level, Geophys. Res. Lett., 35, L22704, https://doi.org/10.1029/2008GL035182, 2008.
BIFROST project members: GPS measurements to constrain geodynamic processes
in Fennoscandia, Eos Trans. AGU, 77, 337–341, https://doi.org/10.1029/96EO00233, 1996.
Björkqvist, J.-V., Tuomi, L., Fortelius, C., Pettersson, H., Tikka, K., and Kahma, K. K.: Improved estimates of nearshore wave conditions in the
Gulf of Finland, J. Mar. Syst., 171, 43–53,
https://doi.org/10.1016/j.jmarsys.2016.07.005, 2017.
Björkqvist, J.-V., Lukas, I., Alari, V., van Vledder, G. P., Hulst, S.,
Pettersson, H., Behrens, A., and Männik, A.: Comparing a 41-year model
hindcast with decades of wave measurements from the Baltic Sea, Ocean Eng., 152, 57–71, https://doi.org/10.1016/j.oceaneng.2018.01.048, 2018.
Björkqvist, J.-V., Rikka, S., Alari, V., Männik, A., Tuomi, L., and
Pettersson, H.: Wave height return periods from combined measurement–model data: A Baltic Sea case study, Nat. Hazards Earth Syst. Sci., 20,
3593–3609, https://doi.org/10.5194/nhess-20-3593-2020, 2020.
Bogdanov, V. I., Medvedev, M. Y., Solodov, V. A., Trapeznikov, Y. A., Troshkov, G. A., and Trubitsina, A. A.: Mean monthly series of sea level
observations (1777–1993) at the Kronstadt gauge, Reports of the Finnish
Geodetic Institute, 2000, 1, Geodeettinen Laitos, Kirkkonummi, 34 pp., 2000.
Börgel, F., Frauen, C., Neumann, T., Schimanke, S., and Meier, H. E. M.:
Impact of the Atlantic Multidecadal Oscillation on Baltic Sea Variability,
Geophys. Res. Lett., 45, 9880–9888, https://doi.org/10.1029/2018GL078943, 2018.
Brenninkmeyer, B. M.: Cut and fill, in: Beaches and Coastal Geology, edited by: Schwartz, M., Springer US, New York, NY, 1984.
Broman, B., Hammarklint, T., Rannat, K., Soomere, T., and Valdmann, A.: Trends and extremes of wave fields in the north–eastern part of the Baltic
Proper, Oceanologia, 48, 165–184, 2006.
Caliskan, H. and Valle-Levinson, A.: Wind-wave transformations in an elongated bay, Cont. Shelf Res., 28, 1702–1710, https://doi.org/10.1016/j.csr.2008.03.009, 2008.
Carrère, L. and Lyard, F.: Modeling the barotropic response of the
global ocean to atmospheric wind and pressure forcing – comparisons with
observations, Geophys. Res. Lett., 30, 1275, https://doi.org/10.1029/2002GL016473, 2003.
Carrere, L., Faugère, Y., and Ablain, M.: Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis, Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, 2016.
Celsius, A.: Anmärkning om vattnets förminskande så I
Östersiön som Vesterhafvet, Kongl. Swenska Wetenskaps Academiens,
Handlingar, 33–50, 1743.
Chen, D. and Omstedt, A.: Climate-induced variability of sea level in Stockholm: Influence of air temperature and atmospheric circulation, Adv.
Atmos. Sci., 22, 655–664, https://doi.org/10.1007/BF02918709, 2005.
Christensen, O. B., Kjellström, E., and Zorita, E.: Projected Change – Atmosphere, in: Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies, edited by: The BACC II Author Team, Springer, Cham, https://doi.org/10.1007/978-3-319-16006-1_11, 2015.
Cieślikiewicz, W. and Paplińska-Swerpel, B.: A 44-year hindcast of wind wave fields over the Baltic Sea, Coast. Eng., 55, 894–905,
https://doi.org/10.1016/j.coastaleng.2008.02.017, 2008.
Cooper, J. A. G. and Pilkey, O. H.: Sea-level rise and shoreline retreat: Time to abandon the Bruun Rule, Global Planet. Change, 43, 157–171,
https://doi.org/10.1016/j.gloplacha.2004.07.001, 2004.
Cooper, J. A. G., Masselink, G., Coco, G., Short, A. D., Castelle, B., Rogers, K., Anthony, E., Green, A. N., Kelley, J. T., Pilkey, O. H., and
Jackson, D. W. T.: Sandy beaches can survive sea-level rise, Nat. Clim. Change, 10, 993–995, https://doi.org/10.1038/s41558-020-00934-2, 2020.
Dailidienė, I., Davuliene, L., Tilickis, B., Stankevicius, A., and Myrberg, K.: Sea level variability at the Lithuanian coast of the Baltic Sea, Boreal Environ. Res., 11, 109–121, 2006.
Dailidienė, I., Davulienė, L., Kelpšaitė, L., and Razinkovas, A.: Analysis of the Climate Change in Lithuanian Coastal Areas of the Baltic Sea, J. Coast. Res., 282, 557–569, https://doi.org/10.2112/JCOASTRES-D-10-00077.1, 2012.
Dangendorf, S., Hay, C., Calafat, F. M., Marcos, M., Piecuch, C. G., Berk, K., and Jensen, J.: Persistent acceleration in global sea-level rise since
the 1960s, Nat. Clim. Change, 9, 705–710, https://doi.org/10.1038/s41558-019-0531-8, 2019.
Dean, R. G. and Bender, C. J.: Static wave setup with emphasis on damping
effects by vegetation and bottom friction, Coast. Eng., 53, 149–156, https://doi.org/10.1016/j.coastaleng.2005.10.005, 2006.
Defant, A.: Physical Oceanography, Pergamon Press, New York, NY, 729 pp.,
1961.
Deng, J., Zhang, W., Harff, J., Schneider, R., Dudzinska-Nowak, J., Terefenko, P., Giza, A., and Furmanczyk, K.: A numerical approach for
approximating the historical morphology of wave-dominated coasts – A case study of the Pomeranian Bight, southern Baltic Sea, Geomorphology, 204,
425–443, https://doi.org/10.1016/j.geomorph.2013.08.023, 2014.
Deng, J., Harff, J., Schimanke, S., and Meier, H. E. M.: A method for
assessing the coastline recession due to the sea level rise by assuming
stationary wind-wave climate, Oceanol. Hydrobiol. Stud., 44, 362–380, https://doi.org/10.1515/ohs-2015-0035, 2015.
Deng, J., Harff, J., Giza, A., Hartleib, J., Dudzinska-Nowak, J., Bobertz,
B., Furmanczyk, K., and Zölitz, R.: Reconstruction of coastline changes
by the comparisons of historical maps at the Pomeranian Bay, southern Baltic
Sea, in: Coastline Changes of the Baltic Sea from South to East, 19, edited by: Harff, J., Furmańczyk, K. and von Storch, H., Springer International
Publishing, Cham, 271–287, 2017a.
Deng, J., Woodroffe, C. D., Rogers, K., and Harff, J.: Morphogenetic modelling of coastal and estuarine evolution, Earth-Sci. Rev., 171, 254–271, https://doi.org/10.1016/j.earscirev.2017.05.011, 2017b.
Deng, J., Wu, J., Zhang, W., Dudzinska-Nowak, J., and Harff, J.: Characterising the relaxation distance of nearshore submarine morphology: A
southern Baltic Sea case study, Geomorphology, 327, 365–376,
https://doi.org/10.1016/j.geomorph.2018.11.018, 2019.
Dinardo, S., Fenoglio-Marc, L., Buchhaupt, C., Becker, M., Scharroo, R.,
Joana Fernandes, M., and Benveniste, J.: Coastal SAR and PLRM altimetry in
German Bight and West Baltic Sea, Adv. Space Res., 62, 1371–1404, https://doi.org/10.1016/j.asr.2017.12.018, 2018.
Dreier, N., Nehlsen, E., Fröhle, P., Rechid, D., Bouwer, L., and Pfeifer, S.: Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change Projections, Water, 13, 167, https://doi.org/10.3390/w13020167, 2021.
Dudzinska-Nowak, P.: Morphodynamic processes of the Swina Gate coasta zone
development (Southern Baltic Sea), in: Coastline Changes of the Baltic Sea
from South to East, 19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer International Publishing, Cham, 219–255, 2017.
Eakins, B. W. and Sharman, G. F.: Volumes of the World's Oceans from ETOPO1, available at: https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html (last access: 18 April 2018), 2010.
Eelsalu, M., Soomere, T., Pindsoo, K., and Lagemaa, P.: Ensemble approach for projections of return periods of extreme water levels in Estonian waters, Cont. Shelf Res., 91, 201–210, https://doi.org/10.1016/j.csr.2014.09.012, 2014.
Eelsalu, M., Soomere, T., and Julge, K.: Quantification of changes in the
beach volume by the application of an inverse of the Bruun Rule and laser
scanning technology, Proc. Estonian Acad. Sci., 64, 240–248, https://doi.org/10.3176/proc.2015.3.06, 2015.
Ekman, M.: The world's longest sea level series and a winter oscillation index for Northern Europe, 1774–2000, Summer Institute for Historical Geophysics, Åland Islands, 31 pp., available at: https://www.historicalgeophysics.ax/sp/12.pdf (last access: 13 August 2021), 2003.
Ekman, M.: The changing level of the Baltic Sea during 300 years: A clue to
understanding the earth, Summer Institute for Historical Geophysics, Godby,
155 pp., 2009.
Ekman, M.: The Man behind “Degrees Celsius”: A Pioneer in Investigating the
Earth and its Changes, Åland Islands, 159 pp., available at: https://www.historicalgeophysics.ax/books/degrees_celsius.pdf (last access: 13 August 2021), 2016.
Ekman, M. and Mäkinen, J.: Mean sea surface topography in the Baltic Sea
and its transition area to the North Sea: A geodetic solution and comparisons with oceanographic models, J. Geophys. Res., 101, 11993–11999,
https://doi.org/10.1029/96JC00318, 1996.
Esselborn, S., Rudenko, S., and Schöne, T.: Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales, Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, 2018.
Fernandes, M. J., Lázaro, C., Ablain, M., and Pires, N.: Improved wet path delays for all ESA and reference altimetric missions, Remote Sens. Environ., 169, 50–74, https://doi.org/10.1016/j.rse.2015.07.023, 2015.
Feuchter, D., Jörg, C., Rosenhagen, G., Auchmann, R., Martius, O., and
Brönnimann, S.: The 1872 Baltic Sea storm surge, in: Weather extremes
during the past 140 years, edited by: Brönnimann, S. and Martius, O.,
Geographica Bernensia, G89, 91–98, 2013.
Furmanczyk, K. and Musielak, S.: Polish spits and barriers, in: Sand and
gravel spits, Coastal research library, 12, edited by: Randazzo, G., Jackson, D. W. T., and Cooper, J. A. G., Springer, Cham, 181–194, 2015.
Furmanczyk, K. K., Dudzinska-Nowak, J., Furmanczyk, K. A., Paplinska-Swerpel, B., and Brzezowska, N.: Dune erosion as a result of the significant storms at the western Polish coast (Dziwnow Spit example), J. Coast. Res., 64, 756–759, 2011.
Gerkensmeier, B. and Ratter, B. M. W.: Governing coastal risks as a social
process – Facilitating integrative risk management by enhanced multi-stakeholder collaboration, Environ. Sci. Policy, 80, 144–151, https://doi.org/10.1016/j.envsci.2017.11.011, 2018.
Girjatowicz, J. P.: Ice thrusts and piles on the shores of the southern Baltic Sea coast (Poland) lagoons, Baltic Coast. Zone, 8, 5–22, 2004.
González-Riancho, P., Gerkensmeier, B., and Ratter, B. M. W.: Storm surge
resilience and the Sendai Framework: Risk perception, intention to prepare and enhanced collaboration along the German North Sea coast, Ocean Coast. Manage., 141, 118–131, https://doi.org/10.1016/j.ocecoaman.2017.03.006, 2017.
Gräwe, U. and Burchard, H.: Storm surges in the Western Baltic Sea: The
present and a possible future, Clim. Dynam., 39, 165–183,
https://doi.org/10.1007/s00382-011-1185-z, 2012.
Gräwe, U., Klingbeil, K., Kelln, J., and Dangendorf, S.: Decomposing Mean Sea Level Rise in a Semi-Enclosed Basin, the Baltic Sea, J. Climate, 32, 3089–3108, https://doi.org/10.1175/JCLI-D-18-0174.1, 2019.
Grinsted, A.: Projected Change – Sea Level, in: Second Assessment of Climate
Change for the Baltic Sea Basin, Regional Climate Studies, edited by: BACC II Author Team, Springer International Publishing, Cham, 253–263, 2015.
Groh, A., Richter, A., and Dietrich, R.: Recent Baltic Sea Level Changes Induced by Past and Present Ice Masses, in: Coastline Changes of the Baltic
Sea from South to East, 19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer International Publishing, Cham, 55–68, 2017.
Groll, N., Grabemann, I., Hünicke, B., and Meese, M.: Baltic Sea wave
conditions under climate change scenarios, Boreal Environ. Res., 22, 1–12, 2017.
Harff, J., Lemke, W., Lampe, R., Lüth, F., Lübke, H., Meyer, M., Tauber, F., and Schmölcke, U.: The Baltic Sea coast – A model of interrelations among geosphere, climate, and anthroposphere, in: Coastline Changes: Interrelation of Climate and Geological Processes, edited by: Harff, J., Hay, W. W., and Tetzlaff, D. M., Geological Society of America Special Paper 426, Geological Society of America, Penrose Place, USA, 133–142, 2007.
Harff, J., Meyer, M., Zhang, W., Barthel, A., and Naumann, M.: Holocene
sediment dynamics at the southern Baltic Sea, Berichte der Römisch-Germanischen Kommission, 92, 41–76, 2011.
Harff, J., Deng, J., Dudzińska-Nowak, J., Fröhle, P., Groh, A., Hünicke, B., Soomere, T., and Zhang, W.: What Determines the Change of Coastlines in the Baltic Sea?, in: Coastline Changes of the Baltic Sea from South to East, 19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer International Publishing, Cham, 15–36, 2017.
Hartleib, J. and Bobertz, B.: New Demands on Old Maps – An Approach for
Estimating Aspects of Accuracy of Old Maps as Basis for Landscape Development Research, in: Coastline Changes of the Baltic Sea from South to East, 19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer International Publishing, Cham, 257–270, 2017.
Hieronymus, M. and Kalén, O.: Sea-level rise projections for Sweden based on the new IPCC special report: The ocean and cryosphere in a changing climate, Ambio, 49, 1587–1600, https://doi.org/10.1007/s13280-019-01313-8, 2020.
Hinkel, J., Nicholls, R. J., Tol, R. S.J., Wang, Z. B., Hamilton, J. M., Boot, G., Vafeidis, A. T., McFadden, L., Ganopolski, A., and Klein, R. J. T.:
A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA, Global Planet. Change, 111, 150–158,
https://doi.org/10.1016/j.gloplacha.2013.09.002, 2013.
Holfort, J., Perlet, I., and Stanislawczyk, I.: Rapid changes in sea level,
in: Multiple drivers for Earth system changes in the Baltic Sea region, International Baltic Earth Secretariat Publications 9, edited by: Reckermann, M. and Köppen, S., First Baltic Earth Conference, 13–17 June 2016, Nida, Curonian Spit, Lithuania, p. 119, avaliable at: https://www.baltic-earth.eu/imperia/md/assets/baltic_earth/baltic_earth/baltic_earth/ibesp_no9_jun2016_nidaconf.pdf (last access: 13 August 2021), 2016.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.: New Data Systems and Products at the Permanent Service for Mean Sea Level, J. Coast. Res., 29, 493–504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.
Hünicke, B.: Contribution of regional climate drivers to future winter
sea-level changes in the Baltic Sea estimated by statistical methods and
simulations of climate models, Int. J. Earth Sci., 99, 1721–1730, https://doi.org/10.1007/s00531-009-0470-0, 2010.
Hünicke, B. and Zorita, E.: Influence of temperature and precipitation
on decadal Baltic Sea level variations in the 20th century, Tellus A, 58, 141–153, https://doi.org/10.1111/j.1600-0870.2006.00157.x, 2006.
Hünicke, B. and Zorita, E.: Statistical Analysis of the Acceleration of
Baltic Mean Sea-Level Rise, 1900–2012, Front. Mar. Sci., 3, 125,
https://doi.org/10.3389/fmars.2016.00125, 2016.
Hünicke, B., Zorita, E., Soomere, T., Madsen, K. S., Johansson, M., and
Suursaar, Ü.: Recent Change – Sea Level and Wind Waves, in: Second
Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies, edited by: BACC II Author Team, Springer International Publishing, Cham, 155–185, 2015.
Hünicke, B., Zorita, E., and von Storch, H.: The Challenge of Baltic Sea
Level Change, in: Coastline Changes of the Baltic Sea from South to East,
19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer
International Publishing, Cham, 37–54, 2017.
Idžanović, M., Ophaug, V., and Andersen, O. B.: Coastal sea level from CryoSat-2 SARIn altimetry in Norway, Adv. Space Res., 62, 1344–1357, https://doi.org/10.1016/j.asr.2017.07.043, 2018.
Jakobsson, M., Stranne, C., O'Regan, M., Greenwood, S. L., Gustafsson, B.,
Humborg, C., and Weidner, E.: Bathymetric properties of the Baltic Sea, Ocean Sci., 15, 905–924, https://doi.org/10.5194/os-15-905-2019, 2019.
Jamieson, T. F.: On the History of the Last Geological Changes in Scotland,
Quart. J. Geol. Soc., 21, 161–204, https://doi.org/10.1144/GSL.JGS.1865.021.01-02.24, 1865.
Jevrejeva, S., Grinsted, A., Moore, J. C., and Holgate, S.: Nonlinear trends
and multiyear cycles in sea level records, J. Geophys. Res.-Oceans, 111, C09012, https://doi.org/10.1029/2005JC003229, 2006.
Jevrejeva, S., Moore, J. C., Grinsted, A., and Woodworth, P. L.: Recent global sea level acceleration started over 200 years ago?, Geophys. Res. Lett., 35, L08715, https://doi.org/10.1029/2008GL033611, 2008.
Johansson, J.: Total and Regional Runoff to the Baltic Sea, available at:
https://helcom.fi/media/documents/BSEFS_Total-and-regional-runoff-to-the-Baltic-Sea-in-2015.pdf (last access: 9 June 2021), 2016.
Johansson, M., Boman, H., Kahma, K. K., and Launiainen, J.: Trends in sea
level variability in the Baltic Sea, Boreal Environ. Res., 6, 159–179, 2001.
Johansson, M. M.: Sea level changes on the finnish coast and their relationship to atmospheric factors, getr. Zählung, Contributions/Finnish Meteorological Institute, Finnish Meteorological Inst., Helsinki, 54 pp., 2014.
Johansson, M. M. and Kahma, K. K.: On the statistical relationship between the geostrophic wind and sea level variations in the Baltic Sea, Boreal Environ. Res., 21, 25–43, 2016.
Jönsson, B., Döös, K., Nycander, J., and Lundberg, P.: Standing
waves in the Gulf of Finland and their relationship to the basin-wide Baltic
seiches, J. Geophys. Res., 113, C03004,, https://doi.org/10.1029/2006JC003862, 2008.
Kahma, K.: Atlantin ilmanpaine vaikuttaa Itämereen [NAO is reflected in the Baltic sea level], Annual Report 1999, Finnish Institute of Marine Research, Helsinki, 1999.
Karabil, S.: Influence of Atmospheric Circulation on the Baltic Sea Level
Rise under the RCP8.5 Scenario over the 21st Century, Climate, 5, 71,
https://doi.org/10.3390/cli5030071, 2017.
Karabil, S., Zorita, E., and Hünicke, B.: Contribution of atmospheric
circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea, Earth Syst. Dynam., 9, 69–90, https://doi.org/10.5194/esd-9-69-2018,
2018.
Keilhack, K.: Die Verlandung der Swinepforte, Jahrbuch der
Königliche-Preussischen Geologischen Landesanstalt, XXXII, Königliche-Preussische Geologische Landesanstalt, Berlin, 209–244, 1912.
Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu, R., Camilloni,I., Doblas-Reyes, F. J., Fiore, A. M., Kimoto, M., Meehl, G. A., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G. J., Vecchi, G., and Wang, H. J.: Near-term Climate Change: Projections and Predictability, in: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Kleinherenbrink, M., Riva, R., and Scharroo, R.: A revised acceleration rate
from the altimetry-derived global mean sea level record, Scient. Rep., 9, 10908, https://doi.org/10.1038/s41598-019-47340-z, 2019.
Kliewe, H.: Zeit- und Klimamarken in Sedimenten der südlichen Ostsee und
ihrer Vorpommerschen Boddenküste, J. Coast. Res., 17, 181–186, 1995.
Kniebusch, M., Meier, H. M., and Radtke, H.: Changing Salinity Gradients in
the Baltic Sea As a Consequence of Altered Freshwater Budgets, Geophys. Res.
Lett., 46, 9739–9747, https://doi.org/10.1029/2019GL083902, 2019.
Kolp, O.: Das Wachstum der Landspitze Darsser Ort, Petermanns Geogr. Mitt.,
122, 3–111, 1978.
Kovaleva, O., Eelsalu, M., and Soomere, T.: Hot-spots of large wave energy
resources in relatively sheltered sections of the Baltic Sea coast, Renew. Sustain. Energ. Rev., 74, 424–437, https://doi.org/10.1016/j.rser.2017.02.033, 2017.
Kowalewska-Kalkowska, H. and Marks, R.: 200 years of sea level measurements
at the Swinoujscie tide gauge, in: Scientific symposium 200 years of oldest
continuous record of tide-gauge in Swinoujscie, 18 November 2011, Swinoujscie, Poland, 2011.
Kudryavtseva, N. and Soomere, T.: Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate, Earth Syst. Dynam.,
8, 697–706, https://doi.org/10.5194/esd-8-697-2017, 2017.
Kudryavtseva, N., Pindsoo, K., and Soomere, T.: Non-stationary Modeling of
Trends in Extreme Water Level Changes Along the Baltic Sea Coast, J. Coast. Res., 85, 586–590, https://doi.org/10.2112/SI85-118.1, 2018.
Kudryavtseva, N., Soomere, T., and Männikus, R.: Non-stationary analysis
of water level extremes in Latvian waters, Baltic Sea, during 1961–2018,
Nat. Hazards Earth Syst. Sci., 21, 1279–1296,
https://doi.org/10.5194/nhess-21-1279-2021, 2021.
Kulikov, E. A., Medvedev, I. P., and Koltermann, K. P.: Baltic sea level
low-frequency variability, Tellus A, 67, 25642, https://doi.org/10.3402/tellusa.v67.25642, 2015.
Łabuz, T.: Environmental Impacts – Coastal Erosion and Coastline Changes. in: Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies, edited by: The BACC II Author Team, Springer, Cham, https://doi.org/10.1007/978-3-319-16006-1_20, 2015.
Łabuz, T. A., Grunewald, R., Bobykina, V., Chubarenko, B.,
Česnulevičius, A., Bautrėnas, A., Morkūnaitė, R., and
Tõnisson, H.: Coastal Dunes of the Baltic Sea Shores: A Review, Quaest. Geogr., 37, 47–71, https://doi.org/10.2478/quageo-2018-0005, 2018.
Lampe, R., Meyer, H., Ziekur, R., Janke, W., and Endtmann, E.: Holocene
evolution of the irregularly sinking southern Baltic Sea coast and the interactions of sea-level rise, Berichte der Römisch-Germanischen
Kommission, 88, 9–14, 2007.
Le Cozannet, G., Oliveros, C., Castelle, B., Garcin, M., Idier, D., Pedreros, R., and Rohmer, J.: Uncertainties in Sandy Shorelines Evolution under the Bruun Rule Assumption, Front. Mar. Sci., 3, 434, https://doi.org/10.3389/fmars.2016.00049, 2016.
Le Cozannet, G., Bulteau, T., Castelle, B., Ranasinghe, R., Wöppelmann,
G., Rohmer, J., Bernon, N., Idier, D., Louisor, J., and Salas-Y-Mélia,
D.: Quantifying uncertainties of sandy shoreline change projections as sea
level rises, Scient. Rep., 9, 42, https://doi.org/10.1038/s41598-018-37017-4, 2019.
Legeais, J.-F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J. A.,
Scharffenberg, M. G., Fenoglio-Marc, L., Fernandes, M. J., Andersen, O. B.,
Rudenko, S., Cipollini, P., Quartly, G. D., Passaro, M., Cazenave, A., and
Benveniste, J.: An improved and homogeneous altimeter sea level record from
the ESA Climate Change Initiative, Earth Syst. Sci. Data, 10, 281–301,
https://doi.org/10.5194/essd-10-281-2018, 2018.
Lehmann, A., Krauss, W., and Hinrichsen, H.-H.: Effects of remote and local
atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus A, 54, 299–316, https://doi.org/10.1034/j.1600-0870.2002.00289.x, 2002.
Leppäranta, M.: Land–ice interaction in the Baltic Sea, Estonian J.
Earth Sci., 62, 2–14, https://doi.org/10.3176/earth.2013.01, 2013.
Leppäranta, M. and Myrberg, K.: Physical oceanography of the Baltic Sea,
Springer-Praxis books in geophysical sciences, Springer/Praxis Pub., Berlin,
Chichester, UK, 2009.
Lidberg, M., Johansson, J. M., Scherneck, H.-G., and Milne, G. A.: Recent
results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST, J. Geodynam., 50, 8–18, https://doi.org/10.1016/j.jog.2009.11.010, 2010.
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and
Aarninkhof, S.: The State of the World's Beaches, Scient. Rep., 8, 6641, https://doi.org/10.1038/s41598-018-24630-6, 2018.
Madsen, K. S., Høyer, J. L., Fu, W., and Donlon, C.: Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea, J. Geophys. Res.-Oceans, 120, 6405–6418, https://doi.org/10.1002/2015JC011070, 2015.
Madsen, K. S., She, J., Soomere, T., Pindsoo, K., Männikus, R., and
Kudryavtseva, N.: Growth and innovation in ocean economy – gaps and priorities in Baltic Sea basin observation and data, EMODNET Baltic Sea
Check Point for Challenge Area: Coastal Protection, available at: http://eurogoos.eu/download/project_deliverables/EMODnet-2016-Baltic-Checkpoint-First-Data-Adequacy
-Report-2016.pdf (last access: 13 August 2021), 2018.
Madsen, K. S., Høyer, J. L., Suursaar, Ü., She, J., and Knudsen, P.:
Sea Level Trends and Variability of the Baltic Sea From 2D Statistical
Reconstruction and Altimetry, Front. Earth Sci., 7, 67,
https://doi.org/10.3389/feart.2019.00243, 2019a.
Madsen, K. S., Murawski, J., Blokhina, M., and Su, J.: Sea Level Change:
Mapping Danish Municipality Needs for Climate Information, Front. Earth Sci., 7, 113, https://doi.org/10.3389/feart.2019.00081, 2019b.
Männikus, R., Soomere, T., and Kudryavtseva, N.: Identification of
mechanisms that drive water level extremes from in situ measurements in the
Gulf of Riga during 1961–2017, Cont. Shelf Res., 182, 22–36,
https://doi.org/10.1016/j.csr.2019.05.014, 2019.
Männikus, R., Soomere, T., and Viška, M.: Variations in the mean,
seasonal and extreme water level on the Latvian coast, the eastern Baltic Sea, during 1961–2018, Estuar. Coast. Shelf Sci., 245, 106827,
https://doi.org/10.1016/j.ecss.2020.106827, 2020.
Marcos, M. and Woodworth, P. L.: Spatiotemporal changes in extreme sea levels along the coasts of the North Atlantic and the Gulf of Mexico, J. Geophys. Res.-Oceans, 122, 7031–7048, https://doi.org/10.1002/2017JC013065, 2017.
Marcos, M. and Woodworth, P. L.: Changes in extreme sea levels, in: Sea level rise, edited by: Church, J., CLIVAR Exchanges, UCAR – University Corporation For Atmospheric Research, CLIVAR Exchanges, 74, 20–24, 2018.
Masselink, G. and Pattiaratchi, C. B.: Seasonal changes in beach morphology
along the sheltered coastline of Perth, Western Australia, Mar. Geol., 172, 243–263, https://doi.org/10.1016/S0025-3227(00)00128-6, 2001.
Matthäus, W. and Franck, H.: Characteristics of major Baltic inflows – a
statistical analysis, Cont. Shelf Res., 12, 1375–1400, https://doi.org/10.1016/0278-4343(92)90060-W, 1992.
Mattsson, J.: Some comments on the barotropic flow through the Danish Straits and the division of the flow between the Belt Sea and the Oresund, Tellus A, 48, 456–464, https://doi.org/10.1034/j.1600-0870.1996.t01-2-00007.x, 1996.
Medvedev, I. P., Rabinovich, A. B., and Kulikov, E. A.: Tidal oscillations in the Baltic Sea, Oceanology, 53, 526–538, https://doi.org/10.1134/S0001437013050123, 2013.
Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., Dixon, K., Giorgetta, M. A., Greene, A. M., Hawkins, E., Hegerl, G., Karoly, D., Keenlyside, N., Kimoto, M., Kirtman, B., Navarra,
A., Pulwarty, R., Smith, D., Stammer, D., and Stockdale, T.: Decadal Prediction, B. Am. Meteorol. Soc., 90, 1467–1485, https://doi.org/10.1175/2009BAMS2778.1, 2009.
Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A., Pohlmann, H., Rienecker, M., Rosati, T., Schneider, E., Smith, D., Sutton,
R., Teng, H., van Oldenborgh, G. J., Vecchi, G., and Yeager, S.: Decadal
Climate Prediction: An Update from the Trenches, B. Am. Meteorol. Soc., 95, 243–267, https://doi.org/10.1175/BAMS-D-12-00241.1, 2014.
Meier, H. E. M.: Baltic Sea climate in the late twenty-first century: A dynamical downscaling approach using two global models and two emission
scenarios, Clim. Dynam., 27, 39–68, https://doi.org/10.1007/s00382-006-0124-x, 2006.
Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G.: Under-estimated
wave contribution to coastal sea-level rise, Nat. Clim. Change, 8, 234–239, https://doi.org/10.1038/s41558-018-0088-y, 2018.
Milanković, M.: Théorie mathématique des phénomènes thermiques produits par la radiation solaire, Académie Yougoslave des Sciences et des Arts de Zagreb/Gauthier-Villars et Cie, Paris, 338 pp., 1920.
Mitrovica, J. X., Tamisiea, M. E., Davis, J. L., and Milne, G. A.: Recent mass balance of polar ice sheets inferred from patterns of global sea-level
change, Nature, 409, 1026–1029, https://doi.org/10.1038/35059054, 2001.
Mohrholz, V.: Major Baltic Inflow Statistics – Revised, Front. Mar. Sci.,
5, 280, https://doi.org/10.3389/fmars.2018.00384, 2018.
Müller, W. A., Pohlmann, H., Sienz, F., and Smith, D.: Decadal climate
predictions for the period 1901–2010 with a coupled climate model, Geophys.
Res. Lett., 41, 2100–2107, https://doi.org/10.1002/2014GL059259, 2014.
Musielak, S., Furmanczyk, K., and Bugajny, N.: Factors and processes forming
the Polish southern Baltic Sea coast on various temporal and spatial scales,
in: Coastline Changes of the Baltic Sea from South to East, 19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer International
Publishing, Cham, 69–86, 2017.
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., and Mitchum, G. T.: Climate-change-driven accelerated sea-level rise detected in the altimeter era, P. Natl. Acad. Sci. USA, 115, 2022–2025,
https://doi.org/10.1073/pnas.1717312115, 2018.
Nikolkina, I., Soomere, T., and Raamet, A.: Multidecadal ensemble hindcast
of wave fields in the Baltic Sea, in: 2014 IEEE/OES Baltic International
Symposium (BALTIC), Tallinn, Estonia, 1–9, 2014.
Nilsson, E., Rutgersson, A., Dingwell, A., Björkqvist, J.-V., Pettersson, H., Axell, L., Nyberg, J., and Strömstedt, E.: Characterization of Wave Energy Potential for the Baltic Sea with Focus on the Swedish Exclusive Economic Zone, Energies, 12, 793, https://doi.org/10.3390/en12050793, 2019.
Omstedt, A.: Guide to Process Based Modeling of Lakes and Coastal Seas, Springer International Publishing, Cham, 2015.
Omstedt, A.: The Development of Climate Science of the Baltic Sea Region,
in: Oxford Research Encycolpedia, Climate Science, 1, Oxford University Press, Oxford, 2017.
Omstedt, A. and Nyberg, L.: Sea level variations during ice-covered periods in the Baltic Sea, Geophysica, 27, 41–61, 1991.
Omstedt, A., Pettersen, C., Rodhe, J., and Winsor, P.: Baltic Sea climate:
200 yr of data on air temperature, sea level variation, ice cover, and
atmospheric circulation, Clim. Res., 25, 205–216, https://doi.org/10.3354/cr025205,
2004.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N. M., IPCC, 2019.
Orviku, K., Jaagus, J., Kont, A., Ratas, U., and Rivis, R.: Increasing Activity of Coastal Processes Associated with Climate Change in Estonia, J. Coast. Res., 19, 364–375, 2003.
Orviku, K., Jaagus, J., and Tõnisson, H.: Sea ice shaping the shores, J. Coast. Res., SI64, 681–685, 2011.
Otsmann, M., Suursaar, Ü., and Kullas, T.: The oscillatory nature of the
flows in the system of straits and small semienclosed basins of the Baltic Sea, Cont. Shelf Res., 21, 1577–1603, https://doi.org/10.1016/S0278-4343(01)00002-4, 2001.
Passaro, M., Müller, F. L., Oelsmann, J., Rautiainen, L., Dettmering, D., Hart-Davis, M. G., Abulaitijiang, A., Andersen, O. B., Høyer, J. L., Madsen, K. S., Ringgaard, I. M., Särkkä, J., Scarrott, R., Schwatke,
C., Seitz, F., Tuomi, L., Restano, M., and Benveniste, J.: Absolute Baltic Sea Level Trends in the Satellite Altimetry Era: A Revisit, Front. Mar. Sci., 8, 7, https://doi.org/10.3389/fmars.2021.647607, 2021.
Pellikka, H., Rauhala, J., Kahma, K. K., Stipa, T., Boman, H., and Kangas, A.: Recent observations of meteotsunamis on the Finnish coast, Nat. Hazards,
74, 197–215, https://doi.org/10.1007/s11069-014-1150-3, 2014.
Pellikka, H., Leijala, U., Johansson, M. M., Leinonen, K., and Kahma, K. K.:
Future probabilities of coastal floods in Finland, Cont. Shelf Res., 157, 32–42, https://doi.org/10.1016/j.csr.2018.02.006, 2018.
Pellikka, H., Laurila, T. K., Boman, H., Karjalainen, A., Björkqvist, J.-V., and Kahma, K. K.: Meteotsunami occurrence in the Gulf of Finland over the past century, Nat. Hazards Earth Syst. Sci., 20, 2535–2546, https://doi.org/10.5194/nhess-20-2535-2020, 2020.
Pelling, M. and Blackburn, S. (Eds.): Megacities and the coast: Risk,
resilience and transformation, Routledge, London, 245 pp., 2013.
Peltier, W. R.: Global Glacial Isostasy And The Surface Of The Ice-Age Earth: The ICE-5G (VM2) Model and GRACE, Annu. Rev. Earth Planet. Sci., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Pindsoo, K. and Soomere, T.: Contribution of wave set-up into the total water level in the Tallinn area, Proc. Estonian Acad. Sci., 64, 338–348, https://doi.org/10.3176/proc.2015.3S.03, 2015.
Pindsoo, K. and Soomere, T.: Basin-wide variations in trends in water level
maxima in the Baltic Sea, Cont. Shelf Res., 193, 104029, https://doi.org/10.1016/j.csr.2019.104029, 2020.
Plag, H.-P. and Jüttner, H.-U.: Inversion of the global tide gauge data
for present-day ice load changes, Mem. Natl Inst. Polar Res., 54, 301–317,
2001.
Pranzini, E. and Williams, A. (Eds.): Coastal Erosion and Protection in Europe, Taylor and Francis, Hoboken, 483 pp., 2013.
Pugh, D. and Woodworth, P.: Sea-Level Science, Cambridge University Press,
Cambridge, 2014.
Quartly, G. D., Legeais, J.-F., Ablain, M., Zawadzki, L., Fernandes, M. J.,
Rudenko, S., Carrère, L., García, P. N., Cipollini, P., Andersen, O. B., Poisson, J.-C., Mbajon Njiche, S., Cazenave, A., and Benveniste, J.: A new phase in the production of quality-controlled sea level data, Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, 2017.
Räisänen, J.: Future Climate Change in the Baltic Sea Region and
Environmental Impacts, 1, Oxford University Press, Oxford, 2017.
Reusch, T. B. H., Dierking, J., Andersson, H. C., Bonsdorff, E., Carstensen,
J., Casini, M., Czajkowski, M., Hasler, B., Hinsby, K., Hyytiäinen, K.,
Johannesson, K., Jomaa, S., Jormalainen, V., Kuosa, H., Kurland, S., Laikre,
L., MacKenzie, B. R., Margonski, P., Melzner, F., Oesterwind, D., Ojaveer, H., Refsgaard, J. C., Sandström, A., Schwarz, G., Tonderski, K., Winder,
M., and Zandersen, M.: The Baltic Sea as a time machine for the future coastal ocean, Sci. Adv., 4, eaar8195, https://doi.org/10.1126/sciadv.aar8195, 2018.
Ribeiro, A., Barbosa, S. M., Scotto, M. G., and Donner, R. V.: Changes in
extreme sea-levels in the Baltic Sea, Tellus A, 66, 20921, https://doi.org/10.3402/tellusa.v66.20921, 2014.
Richter, A., Groh, A., and Dietrich, R.: Geodetic observation of sea-level
change and crustal deformation in the Baltic Sea region, Phys. Chem. Earth Pt. A/B/C, 53–54, 43–53, https://doi.org/10.1016/j.pce.2011.04.011, 2012.
Rosentau, I., Muru, M., Gauk, M., Oja, T., Liibusk, A., Kall, T., Karro, E., Roose, A., Sepp, M., Tammepuu, A., Tross, J., and Uppin, M.: Sea-Level Change and Flood Risks at Estonian Coastal Zone, in: Coastline Changes of the Baltic Sea from South to East, 19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer International Publishing, Cham, 363–388, 2017.
Rutgersson, A., Jaagus, J., Schenk, F., and Stendel, M.: Observed changes and variability of atmospheric parameters in the Baltic Sea region during the last 200 years, Clim. Res., 61, 177–190, https://doi.org/10.3354/cr01244, 2014.
Ryabchuk, D., Kolesov, A., Chubarenko, B., Spiridonov, M., Kurennoy, D., and
Soomere, T.: Coastal erosion processes in the eastern Gulf of Finland and
their links with geological and hydrometeorological factors, Boreal Environ. Res., 16, 117–137, 2011a.
Ryabchuk, D., Leont'yev, I., Sergeev, A., Nesterova, E., Sukhacheva, L., and
Zhamoida, V.: The morphology of sand spits and the genesis of longshore sand
waves on the coast of the eastern Gulf of Finland, Baltica, 24, 13–24, 2011b.
Ryabchuk, D., Sergeev, A., Burnashev, E., Khorikov, V., Neevin, I., Kovaleva, O., Budanov, L., Zhamoida, V., and Danchenkov, A.: Coastal processes in the Russian Baltic (eastern Gulf of Finland and Kaliningrad area), Q. J. Eng. Geol. Hydrogeol., 28, qjegh2020-036, https://doi.org/10.1144/qjegh2020-036, 2020.
Samuelsson, M. and Stigebrandt, A.: Main characteristics of the long-term sea level variability in the Baltic sea, Tellus A, 48, 672–683,
https://doi.org/10.1034/j.1600-0870.1996.t01-4-00006.x, 1996.
Särkkä, J., Kahma, K. K., Kämäräinen, M., Johansson, M. M., and Saku, S.: Simulated extreme sea levels at Helsinki, Boreal Environ. Res., 22, 299–355, 2017.
Sayin, E. and Krauss, W.: A numerical study of the water exchange through the Danish Straits, Tellus A, 48, 324–341, https://doi.org/10.3402/tellusa.v48i2.12063, 1996.
Schaper, J., Ulm, M., Arns, A., Jensen, J., Ratter, B. M. W., and Weisse,
R.: Transdisziplinäres Risikomanagement im Umgang mit extremen Nordsee-Sturmfluten: Vom Modell zur Wissenschafts-Praxis-Kooperation, Küste, 87, 75–114, https://doi.org/10.18171/1.087112, 2019.
Schmager, G., Fröhle, P., Schrader, D., Weisse, R., and Müller-Navarra, S.: Sea State, Tides, Wiley-Blackwell, 143 pp.,
https://doi.org/10.1002/9780470283134.ch7, 2008.
Schöne, T., Schön, N., and Thaller, D.: IGS Tide Gauge Benchmark
Monitoring Pilot Project (TIGA): Scientific benefits, J. Geod., 83, 249–261,
https://doi.org/10.1007/s00190-008-0269-y, 2009.
Schöne, T., Esselborn, S., Rudenko, S., and Raimondo, J.-C.: Radar altimetry derived sea level anomalies – The benefit of new orbits and
harmonization, in: System earth via geodetic-geophysical space techniques,
edited by: Flechtner, F. M., Gruber, T., Güntner, A., Mandea, M., Rothacher, M., Schöne, T., and Wickert, J., Springer, Berlin, Heidelberg,
317–324, 2010.
Schöne, T., Illigner, J., Manurung, P., Subarya, C., Khafid, Zech, C.,
and Galas, R.: GPS-controlled tide gauges in Indonesia – a German contribution to Indonesia's Tsunami Early Warning System, Nat. Hazards Earth
Syst. Sci., 11, 731–740, https://doi.org/10.5194/nhess-11-731-2011, 2011.
Schwabe, J., Ågren, J., Liebsch, G., Westfeld, P., Hammarklint, T., Monoen, J., and Andersen, O. B.: The Baltic Sea Chart Datum 2000 (BSCD2000) Implementation of a common reference level in the Baltic Sea, International Hydrographic Review, International Hydrographic Organization, Monaco, 63–83, 2020.
Sergeev, A., Ryabchuk, D., Zhamoida, V., Leont'yev, I., Kolesov, A., Kovaleva, O., and Orviku, K.: Coastal dynamics of the eastern Gulf of Finland, the Baltic Sea: Toward a quantitative assessment, Baltica, 31, 49–62, https://doi.org/10.5200/baltica.2018.31.05, 2018.
Smith, D. M., Eade, R., Scaife, A. A., Caron, L.-P., Danabasoglu, G., DelSole, T. M., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W. J., Mochizuki, T.,
Müller, W. A., Pohlmann, H., Yeager, S., and Yang, X.: Robust skill of
decadal climate predictions, npj Clim. Atmos. Sci., 2, 1366,
https://doi.org/10.1038/s41612-019-0071-y, 2019.
Soomere, T. and Eelsalu, M.: On the wave energy potential along the eastern
Baltic Sea coast, Renew. Energy, 71, 221–233, https://doi.org/10.1016/j.renene.2014.05.025, 2014.
Soomere, T. and Healy, T.: On the dynamics of “almost equilibrium” beaches
in semi-sheltered bays along the southern coast of the Gulf of Finland, in:
The Baltic Sea Basin, Central and Eastern European Development Studies (CEEDES), edited by: Harff, J., Björck, S., and Hoth, P., Springer-Verlag, Berlin, Heidelberg, 255–279, 2011.
Soomere, T. and Viška, M.: Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea, J. Mar. Syst., 129, 96–105, https://doi.org/10.1016/j.jmarsys.2013.02.001, 2014.
Soomere, T., Kask, A., Kask, J., and Nerman, R.: Transport and distribution of bottom sediments at Pirita Beach, Estonian J. Earth Sci., 56, 233–254, https://doi.org/10.3176/earth.2007.04, 2007.
Soomere, T., Behrens, A., Tuomi, L., and Nielsen, J. W.: Wave conditions in
the Baltic Proper and in the Gulf of Finland during windstorm Gudrun, Nat.
Hazards Earth Syst. Sci., 8, 37–46, https://doi.org/10.5194/nhess-8-37-2008, 2008.
Soomere, T., Parnell, K. E., and Didenkulova, I.: Implications of fast-ferry
wakes for semi-sheltered beaches: a case study at Aegna Island, Baltic Sea, J. Coast. Res., 56, 128–132, 2009.
Soomere, T., Weisse, R., and Behrens, A.: Wave climate in the Arkona Basin,
the Baltic Sea, Ocean Sci., 8, 287–300, https://doi.org/10.5194/os-8-287-2012, 2012.
Soomere, T., Pindsoo, K., Bishop, S. R., Käärd, A., and Valdmann, A.: Mapping wave set-up near a complex geometric urban coastline, Nat. Hazards Earth Syst. Sci., 13, 3049–3061, https://doi.org/10.5194/nhess-13-3049-2013, 2013.
Soomere, T., Eelsalu, M., Kurkin, A., and Rybin, A.: Separation of the Baltic Sea water level into daily and multi-weekly components, Cont. Shelf Res., 103, 23–32, https://doi.org/10.1016/j.csr.2015.04.018, 2015.
Soomere, T. and Pindsoo, K.: Spatial variability in the trends in extreme
storm surges and weekly-scale high water levels in the eastern Baltic Sea,
Cont. Shelf Res., 115, 53–64, https://doi.org/10.1016/j.csr.2015.12.016, 2016.
Soomere, T., Männikus, R., Pindsoo, K., Kudryavtseva, N., and Eelsalu, M.: Modification of closure depths by synchronisation of severe seas and
high water levels, Geo-Mar. Lett., 37, 35–46, https://doi.org/10.1007/s00367-016-0471-5, 2017a.
Soomere, T., Viska, M., and Pindsoo, K.: Retrieving the signal of climate change from numerically simulated sediment transport along the eastern Baltic Sea coast, in: Coastline Changes of the Baltic Sea from South to East, 19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer
International Publishing, Cham, 327–362, 2017b.
Soomere, T., Eelsalu, M., and Pindsoo, K.: Variations in parameters of extreme value distributions of water level along the eastern Baltic Sea coast, Estuarine, Coast. Shelf Sci., 215, 59–68, https://doi.org/10.1016/j.ecss.2018.10.010, 2018.
Soomere, T., Pindsoo, K., Kudryavtseva, N., and Eelsalu, M.: Variability of
distributions of wave set-up heights along a shoreline with complicated
geometry, Ocean Sci., 16, 1047–1065, https://doi.org/10.5194/os-16-1047-2020, 2020.
Spada, G., Olivieri, M., and Galassi, G.: Anomalous secular sea-level acceleration in the Baltic Sea caused by isostatic adjustment, Ann. Geophys., 57, S0432, https://doi.org/10.4401/ag-6548, 2014.
Stammer, D., Wal, R. S. W., Nicholls, R. J., Church, J. A., Le Cozannet, G.,
Lowe, J. A., Horton, B. P., White, K., Behar, D., and Hinkel, J.: Framework
for High-End Estimates of Sea Level Rise for Stakeholder Applications, Earth's Future, 7, 923–938, https://doi.org/10.1029/2019EF001163, 2019.
Stigebrandt, A.: A Model for the Exchange of Water and Salt Between the
Baltic and the Skagerrak, J. Phys. Oceanogr., 13, 411–427,
https://doi.org/10.1175/1520-0485(1983)013<0411:AMFTEO>2.0.CO;2, 1983.
Stramska, M. and Chudziak, N.: Recent multiyear trends in the Baltic Sea level, Oceanologia, 55, 319–337, https://doi.org/10.5697/oc.55-2.319, 2013.
Suursaar, Ü. and Sooäär, J.: Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea, Tellus A, 59, 249–260, https://doi.org/10.1111/j.1600-0870.2006.00220.x, 2016.
Suursaar, Ü., Kullas, T., Otsmann, M., and Kõuts, T.: A model for
storm surge forecasts in the Eastern Baltic Sea, in: Risk analysis III:
[papers presented at the Third International Conference on Computer Simulation in Risk Analysis and Hazard Mitigation (RISK/2002) held in
Sintra, Portugal in June 2002], WIT transactions on modelling and simulation, 31, edited by: Brebbia, C. A., WIT Press, Southampton, 509–519, 2002.
Suursaar, Ü., Jaagus, J., and Kullas, T.: Past and future changes in sea
level near the Estonian coast in relation to changes in wind climate, Boreal
Environ. Res., 11, 123–142, 2006a.
Suursaar, Ü., Kullas, T., Otsmann, M., Saaremäe, I., Kuik, J., and Merilain, M.: Cyclone Gudrun in January 2005 and modelling its hydrodynamic
consequences in Estonian coastal waters, Boreal Environ. Res., 11, 143–159, 2006b.
Suursaar, Ü., Kullas, T., and Aps, R.: Currents and waves in the northern Gulf of Riga: Measurement and long-term hindcast, Oceanologia, 54, 421–447, https://doi.org/10.5697/oc.54-3.421, 2012.
Svansson, A.: Exchange of water and salt in the Baltic and adjacent seas,
Oceanol. Acta, 3, 431–440, 1980.
Thejll, P., Boberg, F., Schmith, T., Christiansen, B., Christensen, O. B.,
Madsen, M. S., Su, J., Andree, E., Olsen, S., Langen, P. L., and Madsen, K.
S.: Methods used in the Danish Climate Atlas, DMI Rep., DMI, Copenhagen., 19–17, 2020.
Tiepold, L. and Schuhmacher, W.: Historische bis rezente
Küstenveränderungen im Raum Fischland-Darß-Zingst-Hiddensee
anhand von Kartne, Luft- und Satellitenbildern, Küste, 61, 29–54, 1999.
Tõnisson, H., Orviku, K., Lapinskis, J., Gulbinskas, S., and Zaromskis,
R.: The Baltic States: Estonia, Latvia and Lithuania, in: Coastal Erosion
and Protection in Europe, edited by: Pranzini, E. and Williams, A., Taylor and Francis, Hoboken, 47–81, 2013a.
Tõnisson, H., Suursaar, Ü., Rivis, R., Kont, A., and Orviku, K.:
Observation and analysis of coastal changes in the West Estonian Archipelago
caused by storm Ulli (Emil) in January 2012, J. Coast. Res., 65, 832–837, https://doi.org/10.2112/SI65-141.1, 2013b.
Tuomi, L., Kahma, K. K., and Pettersson, H.: Wave hindcast statistics in the
seasonally ice-covered Baltic Sea, Boreal Environ. Res., 16, 451–472, 2011.
Tuomi, L., Kahma, K. K., and Fortelius, C.: Modelling fetch-limited wave
growth from an irregular shoreline, J. Mar. Syst., 105-108, 96–105, https://doi.org/10.1016/j.jmarsys.2012.06.004, 2012.
Tuomi, L., Pettersson, H., Fortelius, C., Tikka, K., Björkqvist, J.-V.,
and Kahma, K. K.: Wave modelling in archipelagos, Coast. Eng., 83, 205–220, https://doi.org/10.1016/j.coastaleng.2013.10.011, 2014.
Ulsts, V.: Latvian Coastal Zone of the Baltic Sea, State Geological Survey of Latvia, Riga, 96 pp., 1998.
UNEP: Sand and sustainability: Finding new solutions for environmental governance of global sand resources synthesis for policy makers, vol. 35, United Nations Environment Programme, Nairobi, Kenya, 2019.
Veng, T. and Andersen, O. B.: Consolidating sea level acceleration estimates
from satellite altimetry, Adv. Space Res., 68, 496–503, https://doi.org/10.1016/j.asr.2020.01.016, 2020.
Vestøl, O., Ågren, J., Steffen, H., Kierulf, H., and Tarasov, L.:
NKG2016LU: A new land uplift model for Fennoscandia and the Baltic Region, J.
Geod., 93, 1759–1779, https://doi.org/10.1007/s00190-019-01280-8, 2019.
Viška, M. and Soomere, T.: Hindcast of sediment flow along the Curonian
Spit under different wave climates, in: 2012 IEEE/OES Baltic International Symposium (BALTIC), 8–10 May 2012, Klaipeda, 1–7, 2012.
Viška, M. and Soomere, T.: Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern Baltic Sea coast,
Baltica, 26, 145–156, https://doi.org/10.5200/baltica.2013.26.15, 2013.
Vitousek, S., Barnard, P. L., and Limber, P.: Can beaches survive climate
change?, J. Geophys. Res.-Earth, 122, 1060–1067, https://doi.org/10.1002/2017JF004308, 2017.
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen,
L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47,
3171–3190, https://doi.org/10.1007/s00382-016-3019-5, 2016.
Vousdoukas, M. I., Ranasinghe, R., Mentaschi, L., Plomaritis, T. A., Athanasiou, P., Luijendijk, A., and Feyen, L.: Sandy coastlines under threat
of erosion, Nat. Clim. Change, 10, 260–263, https://doi.org/10.1038/s41558-020-0697-0, 2020.
Weidemann, H.: Klimatologie der Ostseewasserstände: Eine Rekonstruktion
von 1948 bis 2011, Universität Hamburg, Hamburg, 2014.
Weisse, R. and Hünicke, B.: Baltic Sea Level: Past, Present, and Future,
in: Oxford Research Encyclopedia of Climate Science, Oxford University Press, Oxford, 2019.
Weisse, R. and Weidemann, H.: Baltic Sea extreme sea levels 1948–2011:
Contributions from atmospheric forcing, Procedia IUTAM, 25, 65–69,
https://doi.org/10.1016/j.piutam.2017.09.010, 2017.
Weisse, R., von Storch, H., Callies, U., Chrastansky, A., Feser, F., Grabemann, I., Günther, H., Winterfeldt, J., Woth, K., Pluess, A., Stoye, T., and Tellkamp, J.: Regional Meteorological-Marine Reanalyses and Climate Change Projections: Results for Northern Europe and Potential for Coastal and Offshore Applications, B. Am. Meteorol. Soc., 90, 849–860,
https://doi.org/10.1175/2008BAMS2713.1, 2009.
Weisse, R., Bisling, P., Gaslikova, L., Geyer, B., Groll, N., Hortamani, M.,
Matthias, V., Maneke, M., Meinke, I., Meyer, E. M. I., Schwichtenberg, F.,
Stempinski, F., Wiese, F., and Wöckner-Kluwe, K.: Climate services for
marine applications in Europe, Earth Perspect., 2, 3887,
https://doi.org/10.1186/s40322-015-0029-0, 2015.
Weisse, R., Grabemann, I., Gaslikova, L., Meyer, E., Tinz, B., Fery, N., Möller, T., Rudolph, E., Brodhagen, T., Arns, A., Jensen, J., Ulm, M., Ratter, B., and Schaper, J.: Extreme Nordseesturmfluten und mögliche Auswirkungen: Das EXTREMENESS Projekt, Küste, 87, 39–45, https://doi.org/10.18171/1.087110, 2019.
Winsor, P., Rodhe, J., and Omstedt, A.: Baltic Sea ocean climate: An analysis of 100 yr of hydrographic data with focus on the freshwater budget, Clim. Res., 18, 5–15, https://doi.org/10.3354/cr018005, 2001.
Witting, R.: Tidevatten i østerjönoch Finska, Fennia, 29, 1–84, 1911.
Wolski, T. and Wiśniewski, B.: Geographical diversity in the occurrence of extreme sea levels on the coasts of the Baltic Sea, J. Sea Res., 159, 101890, https://doi.org/10.1016/j.seares.2020.101890, 2020.
Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman,
H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., and Lydeikaitė, Ž.: Extreme sea levels at selected stations on the Baltic Sea coast,
Oceanologia, 56, 259–290, https://doi.org/10.5697/oc.56-2.259, 2014.
Woolf, D. K., Shaw, A. G. P., and Tsimplis, M. N.: The influence of the North Atlantic Oscillation on sea-level variability in the North Atlantic region, J. Atmos. Ocean Sci., 9, 145–167, https://doi.org/10.1080/10236730310001633803, 2003.
Wübber, C. and Krauss, W.: The Two dimensional seiches of the baltic sea, Oceanol. Acta, 2, 435–446, 1979.
Zappa, G. and Shepherd, T. G.: Storylines of Atmospheric Circulation Change
for European Regional Climate Impact Assessment, J. Climate, 30, 6561–6577,
https://doi.org/10.1175/JCLI-D-16-0807.1, 2017.
Zhang, W., Harff, J., and Schneider, R.: Analysis of 50-year wind data of the southern Baltic Sea for modelling coastal morphological evolution – a case study from the Darss-Zingst Peninsula, Oceanologia, 53, 489–518,
https://doi.org/10.5697/oc.53-1-TI.489, 2011a.
Zhang, W., Harff, J., Schneider, R., and Wu, C.: Development of a modelling
methodology for simulation of long-term morphological evolution of the southern Baltic coast, Ocean Dynam., 60, 1085–1114, https://doi.org/10.1007/s10236-010-0311-5, 2010.
Zhang, W., Harff, J., Schneider, R., Meyer, M., and Wu, C.: A Multiscale
Centennial Morphodynamic Model for the Southern Baltic Coast, J. Coast. Res., 276, 890–917, https://doi.org/10.2112/JCOASTRES-D-10-00055.1, 2011b.
Zhang, W., Harff, J., Schneider, R., Meyer, M., Zorita, E., and Hünicke,
B.: Holocene morphogenesis at the southern Baltic Sea: Simulation of multi-scale processes and their interactions for the Darss–Zingst peninsula, J. Mar. Syst., 129, 4–18, https://doi.org/10.1016/j.jmarsys.2013.06.003, 2014.
Zhang, W., Schneider, R., Kolb, J., Teichmann, T., Dudzinska-Nowak, J., Harff, J., and Hanebuth, T. J. J.: Land–sea interaction and morphogenesis of
coastal foredunes – A modeling case study from the southern Baltic Sea coast, Coast. Eng., 99, 148–166, https://doi.org/10.1016/j.coastaleng.2015.03.005, 2015.
Zhang, W., Schneider, R., Harff, J., Hünicke, B., and Fröhle, P.:
Modelling of Medium-Term (Decadal) Coastal Foredune Morphodynamics-Historical Hindcast and Future Scenarios of the Świna Gate Barrier Coast (Southern Baltic Sea), in: Coastline Changes of the Baltic Sea from South to East, 19, edited by: Harff, J., Furmańczyk, K., and von Storch, H., Springer International Publishing, Cham, 112–140, 2017.
Zhang, Z.-H. and Leppäranta, M.: Modeling the influence of ice on sea level variations in the Baltic Sea, Geophysica, 31, 31–45, 1995.
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers...
Special issue
Altmetrics
Final-revised paper
Preprint